Dynamics of Open Green Areas in Polish and Romanian Cities during 2006–2018: Insights for Spatial Planners
Abstract
:1. Introduction
1.1. Literature Review
1.2. The Current Study: Aims, Need for Research, Original Elements
2. Materials and Methods
2.1. Original Data and Derived Indices
2.1.1. Mathematical Model of Fragmentation
- The ‘perimeter to area ratio’ mentioned by Rutledge [47], consisting of the ratio between the perimeter and the area, which is the most suited to the ‘broken mirror’ model, is 1 for a circle.
- Additionally, if the total area is constant, the fragmentation process increases its value with the total perimeter.
2.1.2. Indices Assessing the Transformations of OGA
- FI (fragmentation): the fragmentation index, as defined in Section 2.1.1.
- G (gain): the increase in the total area of OGA through the transformation of other land uses into one of the four categories of GI corresponding to OGA: green urban areas, sports and leisure facilities, “agricultural” and “natural” lands.
- L (loss): the decrease in the total area of OGA through the transformation of the four categories of GI corresponding to OGA in other land uses.
- B (balance): the difference between the two indices above (G–L). The dynamic can either be positive or negative.
- T (inner transformation): the transformation of one of the four categories of GI corresponding to OGA into another category, measuring the human pressure within the green areas.
2.1.3. Predictors
2.2. Methodology
- A study in the dynamics of the fragmentation index and the gain, loss, dynamic, and inner transformation of OGA was conducted in each city during the study period, in order to see whether the difference between the values from 2012 and 2006, and between 2018 and 2012, respectively, were positive or negative.
- ANCOVA analyses were used to look at the simultaneous influence of the set of independent variables on each dependent variable, for both the global data and for each country separately, specifically assessing the simultaneous dependence of the fragmentation index and the gain, loss, dynamic, and inner transformation of OGA on the predictors: built-up area of the city, population of the city, population density, number of building permits, number of new dwellings completed, number of employed people, and total length of roads.
- A correlation analysis (based on computing the Bravais-Pearson coefficient of the linear correlation and its significance, in Excel 2003) was used to test whether correlations exist between the components of each possible pair of dependent and independent variables: fragmentation index, raw gain (ha), raw loss (ha), raw dynamic (ha), raw transformation of OGA (ha), gain ratio, loss ratio, dynamic ratio, inner transformation of OGA ratio, population of the city (ratio), population density (ratio), number of building permits (ratio), number of new dwellings completed (ratio), number of employed people (ratio), total length of roads (ratio), total length of modernized road (ratio)s, local budget-revenues (ratio), and local budget expenses (ratio).
3. Results
- The fragmentation manifests itself differently in the two periods; the trend is less consistent from 2006–2012 (18/32 Polish and 11/14 Romanian cities), and stronger in the next period (29/32 Polish and 14/14 Romanian cities). The second period corresponds to the recovery after the economic crisis and a development boom.
- OGA were lost through the change to other uses in all cities from 2006–2012 and 2012–2018, as shown by the “Loss” indicator. Although new infrastructure was created through the transformation of other uses in some cities, as shown by the “Gain”, the overall 2006–2018 balance-indicated by the “Balance” showed that all of the cities permanently lost some OGA.
- OGA were subject to changes between 2006 and 2018 in many cities, especially from 2006–2012. These changes might pinpoint future land use changes.
- There were some cities that in one period, or both periods, showed no gain and/or transformation of OGA. Most likely, these local variations also depended on the resolution of data.
4. Discussion
4.1. Significance of the Results
- From a theoretical perspective, the results provided additional evidence verifying the hypothesis, often repeated in the literature, regarding the crucial impact of urbanization processes on the fragmentation of OGA in special and UGI in general.
- From a methodological perspective, the mathematical model of fragmentation, applicable to most European cities and potentially to any city with a concentric growth pattern, and invariant to the size of the city, proved its utility in bringing new and potentially different perspectives to the fragmentation process.
- This study resulted in concrete recommendations for planners (presented in Section 5). However, the main contribution of this article was the proof that, for the time being, these recommendations could be based solely on precautionary principles. Simply put, both the dedicated literature and the quality of the available datasets prevented us from making precise and mature recommendations for planning practitioners that were based on conclusive proofs. We believe this to be a major problem with current research practices, for reasons not sufficiently debated within the current literature.
- Additionally, last but not least, even though some studies that were carried out separately in different countries were are available in the existing literature, very few investigations were carried out in several countries simultaneously, especially in countries with different planning systems.
4.2. Relevance of the Study Period
4.3. Similarities and Differences between Poland and Romania
4.4. Study Design
4.5. Data and Methodological Limitations, and Future Research Directions
5. Conclusions and Recommendations
- Since design briefs and their associated terms of reference gain contractual power through their inclusion in the public procurement contracts for urban planning documents, they need to have a thorough scientific grounding, as well as a critical perspective on current research. This point cannot be stressed explicitly enough, as a lot of academic output on ES and planning practices in general is surprisingly shallow. It is within such a context that design briefs and their associated terms of reference have the capacity to act as the main drivers for the improvement of future planning documents. Therefore, we strongly urge planning authorities and their consultants to carefully and critically peruse the available scientific literature on ES and to introduce dedicated background studies with expected sets of results in each design brief dedicated to complex urban documents.
- Furthermore, we urge the academic community to try harder and to study the planning process in greater depth, as many of their recommendations are divorced from the planning reality. Recommendations need to be mature enough to be operational, otherwise they are useless to even the most well-disposed of planning practitioners. As we saw earlier while conducting the literature review, academic output was almost entirely self-sufficient, with no real desire to bridge the gap between academia and planning practices. Needless to say, in an ever-changing legal and normative context, operational knowledge is crucial for planners.
- Additionally, last but not least, we encourage academics to produce scientifically informed design manuals, which then can be put to the test in the real world.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, J.E. Human population: The next half century. Science 2003, 302, 1172–1175. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kazmierczak, A.; Niemelä, J.; James, P. Promoting Ecosystem and Human Health in Urban Areas using Green Infrastructure: A Literature Review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Mell, I.C. Green Infrastructure: Concepts and planning. Newctle. Univ. Forum Ej. 2008, 8, 69–80. [Google Scholar]
- Cilliers, S.; Cilliers, J.; Lubbe, R.; Siebert, S. Ecosystem services of urban green spaces in African countries—Perspectives and challenges. Urban Ecosyst. 2013, 16, 681–702. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Gren, Å.; Barton, D.N.; Langemeyer, J.; McPhearson, T.; O’Farrell, P.; Andersson, E.; Hamstead, Z.; Kremer, P. Urban Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. A Global Assessment; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: Berlin, Germany, 2013; pp. 175–251. [Google Scholar]
- Petrişor, A.-I.; Andronache, I.C.; Petrişor, L.E.; Ciobotaru, A.-M.; Peptenatu, D. Assessing the fragmentation of the green infrastructure in Romanian cities using fractal models and numerical taxonomy. Proc. Env. Sci. 2016, 32, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Zwierzchowska, I.; Hof, A.; Ioja, I.C.; Mueller, C.; Ponizy, L.; Breuste, J.H.; Mizgajski, A. Multi-Scale Assessment of Cultural Ecosystem Services of Parks in Central European Cities. Urban For. Urban Green. 2018, 30, 84–97. [Google Scholar] [CrossRef]
- Melles, S.; Glenn, S.; Martin, K. Urban bird diversity and landscape complexity: Species—Environment associations along a multiscale habitat gradient. Ecol. Soc. 2003, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Niemelä, J.; Saarela, S.-R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the ecosystem services approach for better planning and conservation of urban green spaces: A Finland case study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Niemelä, J. Ecology and urban planning. Biodivers. Conserv. 1999, 8, 119–131. [Google Scholar] [CrossRef]
- Fernández-Juricic, E.; Jokimäki, J. A habitat island approach to conserving birds in urban landscapes: Case studies from southern and northern Europe. Biodivers. Conserv. 2001, 10, 2023–2043. [Google Scholar] [CrossRef]
- Pauleit, S.; Ennos, R.; Golding, Y. Modeling the environmental impacts of urban land use and land cover change—A study in Merseyside, UK. Landsc. Urban Plan. 2005, 71, 295–310. [Google Scholar] [CrossRef]
- Angold, P.G.; Sadler, J.P.; Hill, M.O.; Pullin, A.; Rushton, S.; Austin, K.C.; Small, E.; Wood, B.C.; Wadsworth, R.; Sanderson, R.A.; et al. Biodiversity in urban habitat patches. Sci. Total Environ. 2006, 360, 196–204. [Google Scholar] [CrossRef]
- Young, R.F. Managing municipal green space for ecosystem services. Urban For. Urban Green. 2010, 9, 313–321. [Google Scholar] [CrossRef]
- Clergeau, P.; Linglart, M.; Morin, S.; Paris, M.; Dangeon, M. La trame verte et bleue à l’épreuve de la ville (The green and blue corridors working for the city). Trait. Urbains 2016, 83, 37–40. [Google Scholar]
- Artmann, M.; Bastian, O.; Grunewald, K. Using the Concepts of Green Infrastructure and Ecosystem Services to Specify Leitbilder for Compact and Green Cities—The Example of the Landscape Plan of Dresden (Germany). Sustainability 2017, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- Razin, E.; Rosentraub, M. Are Fragmentation and Sprawl Interlinked? North American Evidence. Urban Aff. Rev. 2000, 35, 821–835. [Google Scholar] [CrossRef]
- Gibb, H.; Hochuli, D.F. Habitat fragmentation in an urban environment: Large and small fragments support different arthropod assemblages. Biol. Conserv. 2002, 106, 91–100. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Poelmans, L.; Van Rompaey, A. Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders-Brussels region. Landsc. Urban Plan. 2009, 93, 10–19. [Google Scholar] [CrossRef]
- Andersson, E.; Barthel, S.; Borgström, S.; Colding, J.; Elmqvist, T.; Folke, C.; Gren, Å. Reconnecting Cities to the Biosphere: Stewardship of Green Infrastructure and Urban Ecosystem Services. Ambio 2014, 43, 445–453. [Google Scholar] [CrossRef] [Green Version]
- EC. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital; EC: Brussels, Belgium, 2013. [Google Scholar]
- Qureshi, S.; Breuste, J.H. Prospects of Biodiversity in the Mega-City of Karachi, Pakistan: Potentials, Constraints and Implications. In Urban Biodiversity and Design, 1st ed.; Müller, N., Werner, P., Kelcey, J.G., Eds.; Blackwell: Chichister, UK, 2010; pp. 497–517. [Google Scholar]
- Breuste, J.H.; Qureshi, S.; Li, J. Scaling down the ecosystem services at local level for urban parks of three megacities. Hercynia N. F. 2013, 46, 1–20. [Google Scholar]
- Ghofrani, Z.; Sposito, V.; Faggian, R. A Comprehensive Review of Blue-Green Infrastructure Concepts. Int. J. Environ. Sustain. 2017, 6, 15–36. [Google Scholar] [CrossRef]
- Sanesi, G.; Colangelo, G.; Lafortezza, R.; Calvo, E.; Davies, C. Urban green infrastructure and urban forests: A case study of the Metropolitan Area of Milan. Landsc. Res. 2017, 42, 164–175. [Google Scholar] [CrossRef]
- Dale, V.H.; Efroymnson, R.A.; Kline, K.L. The land use—Climate change—Energy nexus. Landsc. Ecol. 2011, 26, 755–773. [Google Scholar] [CrossRef]
- MEA. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; UN: New York, NY, USA, 2015; Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/%20RES/70/1=E (accessed on 27 September 2021).
- The Habitats Directive. The Habitats Directive Establishing Natura 2000 and Requiring Member States to Designate Special Areas of Conservation (SACs); The Habitats Directive: Brussels, Belgium, 1992. [Google Scholar]
- European Commission. Recovery Plan for Europe; European Commission: Brussels, Belgium, 2021; Available online: https://ec.europa.eu/info/strategy/recovery-plan-europe_en (accessed on 27 September 2021).
- Ojima, D.S.; Galvin, K.A.; Turner, B.L., II. The Global Impact of Land-Cover Change. BioScience 1994, 44, 300–304. [Google Scholar] [CrossRef]
- Lambin, E.F.; Rounsevell, M.D.A.; Geist, H.J. Are agricultural land-use models able to predict changes in land-use intensity? Agric. Ecosys. Environ. 2000, 82, 321–331. [Google Scholar] [CrossRef]
- Petrişor, A.-I. Using CORINE data to look at deforestation in Romania: Distribution & possible consequences. Urban Arhit. Constr. 2015, 6, 83–90. [Google Scholar]
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. A 2002, 360, 1705–1719. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishia, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 3, 115–133. [Google Scholar] [CrossRef] [Green Version]
- La Greca, P.; La Rosa, D.; Martinico, F.; Privitera, R. Agricultural and green infrastructures: The role of non-urbanised areas for eco-sustainable planning in a metropolitan region. Environ. Pollut. 2011, 159, 2193–2202. [Google Scholar] [CrossRef] [PubMed]
- Hagenauer, J.; Helbich, M. Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. Int. J. Geogr. Inf. Sci. 2012, 26, 963–982. [Google Scholar] [CrossRef]
- Prastacos, P.; Chrysoulakis, N.; Kochilakis, G. Spatial metrics for Greek cities using land cover information from the Urban Atlas. In Multidisciplinary Research on Geographical Information in Europe and Beyond. Proceedings of the AGILE’2012 International Conference on Geographic Information Science “Bridging the Geographic Information Science”, Avignon, France, 24–27 April 2012; Gensel, J., Josselin, D., Vandenbroucke, D., Eds.; Springer: Berlin, Germany, 2012; pp. 261–266. [Google Scholar]
- Dijkstra, L.; Poelman, H. Cities in Europe—The New OECD-EC Definition. Regional Focus 2012, RF1. Available online: http://ec.europa.eu/regional_policy/sources/docgener/focus/2012_01_city.pdf (accessed on 5 April 2021).
- Pénzes, J. The dimensions of peripheral areas and their restructuring in Central Europe. Hung. Geogr. Bull. 2013, 62, 373–386. [Google Scholar]
- Bardzinska-Bonenberg, T. Ring-and-circle, symbolical and practical meaning of the form in town planning and architecture. A: Virtual City and Territory. In Back to the Sense of the City: International Monograph Book; Cladera, J.R., Ed.; Centre de Política de Sòl i Valoracions: Barcelona, Spain, 2016; pp. 37–49. [Google Scholar]
- Rutledge, D. Landscape Indices as Measures of the Effects of Fragmentation: Can Pattern Reflect Process? DOC Science Internal Series No. 98; Department of Conservation: Wellington, New Zealand, 2003; pp. 1–27. [Google Scholar]
- Morgenstern, H. Ecologic studies in epidemiology: Concepts, principles, and methods. Annu. Rev. Public Health 1995, 16, 61–81. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org (accessed on 2 July 2019).
- Fox, J.; Weisberg, S.; Price, B. Car: Companion to Applied Regression. Available online: https://CRAN.R-project.org/package=car (accessed on 2 July 2019).
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. Available online: https://CRAN.R-project.org/package=psych (accessed on 2 July 2019).
- Kabisch, N.; Haase, D. Green spaces of European cities revisited for 1990–2006. Landsc. Urban Plan. 2013, 110, 113–122. [Google Scholar] [CrossRef]
- Fahrig, L. Ecological Responses to Habitat Fragmentation Per Se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Fletcher, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I.; et al. Is habitat fragmentation good for biodiversity? Biol. Cons. 2018, 226, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A.G.; et al. Is habitat fragmentation bad for biodiversity? Biol. Cons. 2019, 230, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Björnsen, G.A.; Bokwa, A.; Chełmicki, W.; Elbakidze, M.; Hirschmugl, M.; Hostert, P.; Ibisch, P.; Kozak, J.; Kuemmerle, T.; Matei, E.; et al. Global Change Research in the Carpathian Mountain Region. Mountain Res. Dev. 2009, 29, 282–288. [Google Scholar]
- Zaniewska, H.; Dąbkowski, N. Budownictwo mieszkaniowe w Polsce i jego standardy w latach 1991–2011 (Housing construction in Poland and its standards in the years 1991–2011). Probl. Rozw. Miast 2013, 10, 123–134. [Google Scholar]
- Badiu, D.-L.; Iojă, I.C.; Pătroescu, M.; Breuste, J.H.; Artmann, M.; Niţă, M.R.; Grădinaru, S.R.; Hossu, C.A.; Onose, D.-A. Is urban green space per capita a valuable target to achieve cities’ sustainability goals? Romania as a case study. Ecol. Ind. 2016, 70, 53–66. [Google Scholar] [CrossRef]
- Kolipiński, B. Planowanie przestrzenne w Polsce w minionym 25-leciu (Spatial planning in Poland in the last 25 years). Maz. Studia Reg. 2014, 15, 109–118. [Google Scholar]
- Petrişor, A.-I. The theory and practice of urban and spatial planning in Romania: Education, laws, actors, procedures, documents, plans, and spatial organization. A multiscale analysis. Serb. Arch. J. 2010, 2, 139–154. [Google Scholar] [CrossRef]
- Petrişor, A.-I.; Hamma, W.; Nguyen, H.D.; Randazzo, G.; Muzirafuti, A.; Stan, M.-I.; Tran, V.T.; Aştefănoaiei, R.; Bui, Q.-T.; Vintilă, D.-F.; et al. Degradation of Coastlines under the Pressure of Urbanization and Tourism: Evidence on the Change of Land Systems from Europe, Asia and Africa. Land 2020, 9, 275. [Google Scholar] [CrossRef]
- Munteanu, M.; Servillo, L. Romanian spatial planning system: Post-communist dynamics of change and Europeanization processes. Eur. Plan Stud. 2013, 22, 2248–2267. [Google Scholar] [CrossRef] [Green Version]
- Grădinaru, S.R.; Iojă, I.C.; Pătru-Stupariu, I.; Hersperger, A.M. Are spatial planning objectives reflected in the evolution of urban landscape patterns? A framework for the evaluation of spatial planning outcomes. Sustainability 2017, 9, 1279. [Google Scholar] [CrossRef] [Green Version]
- Petrişor, A.-I.; Petrişor, L.E. The shifting relationship between urban and spatial planning and the protection of the environment: Romania as a case study. Present Environ. Sustain. Dev. 2013, 7, 267–277. [Google Scholar]
- Mierzejewska, L. Urban planning in Poland in the context of European standards. Quaest. Geogr. 2009, 28, 29–38. [Google Scholar]
- Mierzejewska, L. Wybrane problemy planowania i zagospodarowania przestrzennego w miastach na prawach powiatu w Polsce (Selected issues of spatial planning and development in cities with poviat rights in Poland). In Planowanie Przestrzenne w Miastach na Prawach Powiatu. Diagnoza Problemu (Spatial Planning in Cities with Poviat Rights. Diagnosis of the Issue); Mądry, T., Topolnicka, E., Eds.; Adam Mickiewicz University Press: Poznan, Poland, 2017; pp. 9–26. [Google Scholar]
- The Supreme Audit Office. Zarządzanie Zielenią Miejską. Informacja o Wynikach Kontroli (Management of Urban Greenery. Information about the Audit Results). Available online: http://www.nik.gov.pl/plik/id,15863,vp,18378.pdf (accessed on 8 February 2019).
- Loney, T.; Nagelkerke, N.J. The individualistic fallacy, ecological studies and instrumental variables: A causal interpretation. Emerg. Themes Epidemiol. 2014, 11, 18. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, D. On the Determinants of Class Legislation: An Ecological Study of Political Struggles between Workers and Management. Sociol. Quart. 1987, 19, 469–480. [Google Scholar] [CrossRef]
- Sætersdal, M.; Birks, H.J.B. A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change. J. Biogeogr. 1997, 24, 127–152. [Google Scholar] [CrossRef]
- Whitley, E.; Gunnell, D.; Dorling, D.; Smith, G.D. Ecological study of social fragmentation, poverty, and suicide. Brit. Med. J. 1999, 319, 1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, Á.; Álvarez-Dardet, C.; Ruiz, M.T. Effect of democracy on health: Ecological study. Brit. Med. J. 2004, 329, 1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartorius, K.; Sartorius, B.K.D. A spatial model to quantify the mortality impact of service delivery in Sub-Saharan Africa: An ecological design utilizing data from South Africa. Int. J. Health Geogr. 2013, 12, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrişor, A.-I.; Sîrodoev, I.; Ianoş, I. Trends in the national and regional transitional dynamics of land cover and use changes in Romania. Remote Sens. 2020, 12, 230. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice: Pattern and Process; Springer: New York, NY, USA, 2001. [Google Scholar]
- Assumma, V.; Bottero, M.; De Angelis, E.; Lourenço, J.M.; Monaco, R.; Soares, A.J. A decision support system for territorial resilience assessment and planning: An application to the Douro Valley (Portugal). Sci. Total Environ. 2021, 756, 143806. [Google Scholar] [CrossRef]
- Mitrea, A. The delayed reform: The issue of argumentation in urban planning. In Sustainable Development and Resilience. Territorial Perspectives and Multidisciplinary Approaches; Bănică, A., Petrişor, A.-I., Eds.; Romanian Academy Press: Bucharest, Romania, 2021; pp. 329–357. (In Romanian) [Google Scholar]
No. | Core Ideas | References | Comments |
---|---|---|---|
1 | The study of GI is necessary due to the increasing speed of urbanization and its extent (including the population potentially affected). | [1,2,3] | The available body of literature is mainly concerned with establishing a legitimate niche for urban ecology studies. |
2 | The importance of any GI is justified by the Ecosystem Services (ES) provided to the human population. | [4,5,6,7,8,9] | The ES framework justifies the importance of studying GI from an economic perspective. |
3 | The level of ES depends on their structural and functional integrity. | [10,11] | |
4 | The fragmentation GI is an important cause of reducing the level of ES | [5,8,12,13,14,15,16,17,18] | These studies revealed the existence of a “vicious circle”–fragmentation affects GI and reduces the level of ES and human welfare. Wise planning and proper enforcement may turn it into a “virtuous circle”. |
5 | Urban sprawl is a major cause of the fragmentation of GI, and affects its structural and functional integrity. | [2,10,11,13,19,20,21,22,23,24] | Urban sprawl corresponds to unplanned development, but also to a poor or lacking enforcement of planning provisions. |
6 | In planning terms, the problem is reduced to the choice between compact and dispersed cities. | [18] | The choice also depends on the historical settings, economic factors (transportation), and natural conditions, especially on the availability of land. |
Country | City | 2006 | 2012 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Population | Area (km2) | Density (per km2) | Population | Area (km2) | Density (per km2) | Population | Area (km2) | Density (per km2) | ||
Poland | Białystok | 294,830 | 102 | 2890 | 294,921 | 102 | 2891 | 297,459 | 102 | 2916 |
Bydgoszcz | 363,468 | 175 | 2077 | 361,254 | 176 | 2053 | 350,178 | 176 | 1990 | |
Częstochowa | 245,030 | 160 | 1531 | 234,472 | 160 | 1465 | 222,292 | 160 | 1389 | |
Gdańsk | 456,658 | 266 | 1717 | 460,427 | 262 | 1757 | 466,631 | 262 | 1781 | |
Gorzów Wielkopolski | 125,504 | 86 | 1459 | 124,609 | 86 | 1449 | 123,921 | 86 | 1441 | |
Jastrzębie-Zdrój | 94,716 | 85 | 1114 | 91,723 | 85 | 1079 | 89,128 | 85 | 1049 | |
Jelenia Góra | 86,503 | 109 | 794 | 82,846 | 109 | 760 | 79,480 | 109 | 729 | |
Kalisz | 108,477 | 69 | 1572 | 104,676 | 69 | 1517 | 100,975 | 69 | 1463 | |
Katowice | 314,500 | 165 | 1906 | 307,233 | 165 | 1862 | 294,510 | 165 | 1785 | |
Kielce | 207,188 | 110 | 1884 | 200,938 | 110 | 1827 | 195,774 | 110 | 1780 | |
Konin | 80,471 | 82 | 981 | 77,847 | 82 | 949 | 74,151 | 82 | 904 | |
Koszalin | 107,693 | 83 | 1298 | 109,343 | 98 | 1116 | 107,321 | 98 | 1095 | |
Kraków | 756,267 | 327 | 2313 | 758,334 | 327 | 2319 | 771,069 | 327 | 2358 | |
Łódź | 760,251 | 293 | 2595 | 718,960 | 293 | 2454 | 339,682 | 147 | 2311 | |
Lublin | 353,483 | 147 | 2405 | 347,678 | 147 | 2365 | 685,285 | 293 | 2339 | |
Nowy Sącz | 84,487 | 58 | 1457 | 84,129 | 58 | 1451 | 83,896 | 58 | 1446 | |
Olsztyn | 174,941 | 88 | 1988 | 174,641 | 88 | 1985 | 172,362 | 88 | 1959 | |
Opole | 127,602 | 97 | 1315 | 121,576 | 97 | 1253 | 128,137 | 149 | 860 | |
Ostrów Wielkopolski | 72,665 | 42 | 1730 | 73,107 | 42 | 1741 | 72,050 | 42 | 1715 | |
Pabianice | 70,296 | 33 | 2130 | 68,342 | 33 | 2071 | 65,283 | 33 | 1978 | |
Płock | 127,224 | 88 | 1446 | 123,627 | 88 | 1405 | 120,000 | 88 | 1364 | |
Poznań | 564,951 | 262 | 2156 | 550,742 | 262 | 2102 | 536,438 | 262 | 2047 | |
Radom | 225,810 | 112 | 2016 | 219,703 | 112 | 1962 | 213,029 | 112 | 1902 | |
Rybnik | 141,388 | 148 | 955 | 140,789 | 148 | 951 | 138,696 | 148 | 937 | |
Rzeszów | 163,508 | 68 | 2405 | 182,028 | 117 | 1556 | 191,564 | 120 | 1596 | |
Stargard | 70,336 | 48 | 1465 | 69,608 | 48 | 1450 | 67,938 | 48 | 1415 | |
Suwałki | 69,246 | 66 | 1049 | 69,404 | 66 | 1052 | 69,827 | 66 | 1058 | |
Szczecin | 409,068 | 301 | 1359 | 408,913 | 301 | 1359 | 402,465 | 301 | 1337 | |
Toruń | 207,190 | 116 | 1786 | 204,299 | 116 | 1761 | 202,074 | 116 | 1742 | |
Warszawa | 1,702,139 | 517 | 3292 | 1,715,517 | 517 | 3318 | 1,777,972 | 517 | 3439 | |
Wrocław | 634,630 | 293 | 2166 | 631,188 | 293 | 2154 | 640,648 | 293 | 2187 | |
Zielona Góra | 118,115 | 58 | 2036 | 119,023 | 58 | 2052 | 140,297 | 277 | 506 | |
Romania | Alba Iulia | 66,747 | 21 | 3211 | 63,536 | 26 | 2461 | 74,592 | 40 | 1887 |
Arad | 167,980 | 40 | 4217 | 159,074 | 40 | 3993 | 177,013 | 41 | 4313 | |
Bacău | 179,507 | 35 | 5146 | 144,307 | 39 | 3719 | 197,386 | 39 | 5087 | |
Brăila | 216,814 | 40 | 5426 | 180,302 | 42 | 4292 | 203,876 | 38 | 5355 | |
Bucureşti | 1,931,236 | 162 | 11,958 | 1,883,425 | 238 | 7918 | 2,121,794 | 240 | 8840 | |
Călăraşi | 73,908 | 28 | 2632 | 65,181 | 35 | 1845 | 76,147 | 35 | 2156 | |
Cluj Napoca | 305,620 | 88 | 3467 | 324,576 | 93 | 3483 | 324,267 | 105 | 3091 | |
Craiova | 300,587 | 70 | 4268 | 269,506 | 70 | 3827 | 301,924 | 71 | 4275 | |
Giurgiu | 69,479 | 22 | 3226 | 61,353 | 30 | 2022 | 67,402 | 30 | 2221 | |
Oradea | 205,956 | 77 | 2668 | 196,367 | 79 | 2483 | 221,398 | 82 | 2706 | |
Piatra Neamţ | 108,940 | 21 | 5268 | 85,055 | 21 | 3960 | 113,164 | 24 | 4739 | |
Sibiu | 154,452 | 39 | 3960 | 147,245 | 49 | 3019 | 169,056 | 50 | 3376 | |
Târgu Mureş | 146,448 | 32 | 4562 | 134,290 | 33 | 4088 | 148,199 | 33 | 4538 | |
Timişoara | 303,796 | 69 | 4422 | 319,279 | 75 | 4279 | 329,003 | 76 | 4329 |
Variable | Type | Explanation | Definition |
---|---|---|---|
FI, FI% | Dependent | Fragmentation index | Ratio of the fragmentation index in the final year and its value in the first year (Section 2.1.1) (raw values, expressed as surface affected by the process, and as a share of the city area) |
G, G% | Dependent | Gain | Increase in the total area of OGA through transformation of other land uses into one of the four categories of GI corresponding to OGA (raw values, expressed as surface affected by the process, and as a share of the city area) |
L, L% | Dependent | Loss | Decrease in the total area of GI through the transformation of the four categories of GI corresponding to OGA in other land uses (raw values, expressed as surface affected by the process, and as a share of the city area) |
B, B% | Dependent | Balance | Difference between gain and loss (raw values, expressed as surface affected by the process, and as a share of the city area) |
T, T% | Dependent | Inner transformation | Transformation of one of the four categories of GI corresponding to OGA into another one (raw values, expressed as surface affected by the process, and as a share of the city area) |
A | Independent | Built-up area of the city | Portion of the administrative territory of the city where buildings can be erected (expressed as percentual variation from one period to the next one) |
P | Independent | Population | Population of the city (expressed as percentual variation from one period to the next one) |
PD | Independent | Density | Population density (expressed as percentual variation from one period to the next one) |
BP | Independent | Building permits | Number of building permits issued in a given year (expressed as percentual variation from one period to the next one) |
DC | Independent | Dwellings completed | Number of new dwellings completed in a given year (expressed as percentual variation from one period to the next one) |
NE | Independent | Number of employees | Number of employed people (expressed as percentual variation from one period to the next one) |
TR | Independent | Total roads | Total length of roads (expressed as percentual variation from one period to the next one) |
MR | Independent | Total modernized roads | Total length of modernized roads (expressed as percentual variation from one period to the next one) |
BR | Independent | Revenues | Local budget revenues (expressed as percentual variation from one period to the next one) |
BE | Independent | Expenses | Local budget expenses (expressed as percentual variation from one period to the next one) |
Country | City | Changes of OGA * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2006–2012 | 2012–2018 | ||||||||||
F | G | L | B | T | F | G | L | B | T | ||
Poland | Białystok | − | + | + | − | + | + | + | + | − | + |
Poland | Bydgoszcz | − | + | + | − | + | + | + | + | − | + |
Poland | Częstochowa | + | + | + | − | + | + | + | + | − | + |
Poland | Gdańsk | − | + | + | − | + | + | + | + | − | + |
Poland | Gorzów Wielkopolski | + | + | + | − | + | − | + | + | − | + |
Poland | Jastrzębie-Zdrój | + | 0 | + | − | 0 | + | + | + | − | + |
Poland | Jelenia Góra | + | + | + | − | 0 | + | + | + | − | + |
Poland | Kalisz | + | + | + | − | 0 | + | + | + | − | + |
Poland | Katowice | − | + | + | − | + | + | + | + | − | + |
Poland | Kielce | − | + | + | − | + | + | + | + | − | + |
Poland | Konin | − | + | + | − | + | + | + | + | − | + |
Poland | Koszalin | − | + | + | − | + | + | + | + | − | + |
Poland | Kraków | + | + | + | − | + | + | 0 | + | − | + |
Poland | Łódź | + | + | + | − | + | + | + | + | − | + |
Poland | Lublin | − | 0 | + | − | + | − | + | + | − | 0 |
Poland | Nowy Sącz | + | + | + | − | 0 | − | + | + | − | + |
Poland | Olsztyn | + | + | + | − | + | + | + | + | − | + |
Poland | Opole | − | + | + | − | + | + | + | + | − | + |
Poland | Ostrów Wielkopolski | + | 0 | + | − | + | + | + | + | − | + |
Poland | Pabianice | − | + | + | − | 0 | + | + | + | − | + |
Poland | Płock | − | 0 | + | − | 0 | + | + | + | − | + |
Poland | Poznań | + | + | + | − | + | + | + | + | − | + |
Poland | Radom | + | + | + | − | + | + | + | + | − | + |
Poland | Rybnik | − | + | + | − | + | + | 0 | + | − | + |
Poland | Rzeszów | + | + | + | − | + | + | + | + | − | + |
Poland | Stargard | + | + | + | − | + | + | + | + | − | + |
Poland | Suwałki | + | + | + | − | + | + | + | + | − | + |
Poland | Szczecin | − | + | + | − | + | + | + | + | − | + |
Poland | Toruń | − | + | + | − | + | + | 0 | + | − | + |
Poland | Warszawa | + | + | + | − | + | + | + | + | − | + |
Poland | Wrocław | + | + | + | − | + | + | + | + | − | + |
Poland | Zielona Góra | + | + | + | − | + | – | + | + | − | + |
Romania | Alba Iulia | + | 0 | + | − | 0 | + | + | + | − | + |
Romania | Arad | + | + | + | − | + | + | + | + | − | + |
Romania | Bacău | − | + | + | − | + | + | + | + | − | + |
Romania | Brăila | − | + | + | − | + | + | + | + | − | + |
Romania | București | + | + | + | − | + | + | + | + | − | + |
Romania | Călărași | − | + | + | − | + | + | + | + | − | + |
Romania | Cluj Napoca | + | + | + | − | + | + | + | + | − | + |
Romania | Craiova | + | + | + | − | + | + | + | + | − | + |
Romania | Giurgiu | + | + | + | − | 0 | + | + | + | − | + |
Romania | Oradea | + | + | + | − | + | + | + | + | − | + |
Romania | Piatra Neamț | + | 0 | + | − | + | + | + | + | − | + |
Romania | Sibiu | + | + | + | − | 0 | + | + | + | − | + |
Romania | Târgu Mureș | + | + | + | − | + | + | + | + | − | + |
Romania | Timișoara | + | + | + | − | + | + | + | + | − | + |
Variable * | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall (2006–2012) | |||||||||||||||||||
01 | − | + | + | − | |||||||||||||||
02 | + | + | + | ||||||||||||||||
03 | + | + | + | + | + | + | + | + | + | + | |||||||||
04 | + | + | + | + | + | + | + | + | + | + | |||||||||
05 | − | + | + | + | + | ||||||||||||||
06 | + | + | − | ||||||||||||||||
07 | + | + | + | − | + | ||||||||||||||
08 | + | + | + | + | |||||||||||||||
09 | + | + | + | + | |||||||||||||||
10 | + | − | + | ||||||||||||||||
11 | + | + | + | + | + | + | |||||||||||||
12 | − | + | + | − | + | + | + | − | |||||||||||
13 | + | + | |||||||||||||||||
14 | + | ||||||||||||||||||
15 | + | + | − | − | + | + | |||||||||||||
16 | + | + | + | − | + | ||||||||||||||
17 | + | + | + | + | |||||||||||||||
18 | + | ||||||||||||||||||
19 | + | + | |||||||||||||||||
Poland (2006–2012) | |||||||||||||||||||
01 | − | − | + | – | + | ND | + | + | |||||||||||
02 | + | + | + | ND | |||||||||||||||
03 | + | + | + | + | + | + | ND | ||||||||||||
04 | + | + | + | + | + | + | ND | ||||||||||||
05 | − | + | + | + | ND | ||||||||||||||
06 | + | ND | |||||||||||||||||
07 | + | + | + | + | + | ND | |||||||||||||
08 | + | + | + | + | + | ND | |||||||||||||
09 | − | + | + | ND | |||||||||||||||
10 | + | + | − | + | ND | ||||||||||||||
11 | + | + | + | − | + | + | ND | ||||||||||||
12 | − | − | − | − | ND | ||||||||||||||
13 | + | ND | |||||||||||||||||
14 | ND | + | + | ||||||||||||||||
15 | + | + | + | + | + | + | ND | ||||||||||||
16 | + | + | − | ND | |||||||||||||||
17 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
18 | + | + | ND | + | |||||||||||||||
19 | + | + | ND | + | |||||||||||||||
Romania (2006–2012) | |||||||||||||||||||
01 | + | + | + | + | |||||||||||||||
02 | + | + | − | − | |||||||||||||||
03 | + | + | + | + | + | + | + | + | |||||||||||
04 | + | + | + | + | + | + | + | + | |||||||||||
05 | + | + | + | + | |||||||||||||||
06 | + | + | + | − | − | ||||||||||||||
07 | + | + | + | + | |||||||||||||||
08 | + | + | + | ||||||||||||||||
09 | + | ||||||||||||||||||
10 | − | − | |||||||||||||||||
11 | + | + | + | + | + | ||||||||||||||
12 | + | + | + | − | + | ||||||||||||||
13 | − | ||||||||||||||||||
14 | + | + | |||||||||||||||||
15 | + | ||||||||||||||||||
16 | + | ||||||||||||||||||
17 | + | + | + | + | |||||||||||||||
19 | − | − | + | ||||||||||||||||
19 | − | − | + | ||||||||||||||||
Overall (2012–2018) | |||||||||||||||||||
01 | + | + | + | + | + | + | |||||||||||||
02 | + | + | + | + | + | + | |||||||||||||
03 | + | + | + | + | + | + | |||||||||||||
04 | + | + | + | + | + | + | + | ||||||||||||
05 | + | + | + | + | + | + | |||||||||||||
06 | + | + | + | + | − | − | |||||||||||||
07 | + | + | + | + | + | + | − | ||||||||||||
08 | + | + | + | + | + | − | |||||||||||||
09 | + | + | |||||||||||||||||
10 | + | + | + | − | + | + | + | + | |||||||||||
11 | + | + | + | + | − | − | |||||||||||||
12 | − | − | − | − | − | − | |||||||||||||
13 | − | + | |||||||||||||||||
14 | − | − | |||||||||||||||||
15 | + | + | + | + | + | ||||||||||||||
16 | + | + | − | + | + | ||||||||||||||
17 | + | − | + | ||||||||||||||||
18 | + | + | − | + | − | − | + | − | + | ||||||||||
19 | + | − | + | + | − | − | − | + | |||||||||||
Poland (2012–2018) | |||||||||||||||||||
01 | + | + | + | ND | |||||||||||||||
02 | + | + | + | + | + | ND | − | − | |||||||||||
03 | + | + | + | + | + | ND | |||||||||||||
04 | + | + | + | + | ND | ||||||||||||||
05 | + | + | + | ND | |||||||||||||||
06 | + | + | + | + | + | ND | |||||||||||||
07 | + | + | + | + | + | − | + | + | ND | + | + | ||||||||
08 | + | + | + | + | − | + | + | ND | + | + | |||||||||
09 | + | ND | + | + | |||||||||||||||
10 | + | + | + | − | + | + | + | ND | + | + | |||||||||
11 | + | + | + | + | ND | ||||||||||||||
12 | – | – | − | – | − | ND | − | − | |||||||||||
13 | ND | ||||||||||||||||||
14 | + | + | + | − | + | ND | + | + | |||||||||||
15 | + | + | + | + | + | ND | |||||||||||||
16 | + | + | + | + | − | + | + | ND | + | ||||||||||
17 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
18 | − | + | + | + | + | − | + | ND | + | ||||||||||
19 | − | + | + | + | + | − | + | + | ND | + | |||||||||
Romania (2012–2018) | |||||||||||||||||||
01 | + | + | + | + | + | + | |||||||||||||
02 | + | + | + | + | + | + | + | ||||||||||||
03 | + | + | + | + | + | + | − | + | + | + | |||||||||
04 | + | + | + | + | + | + | − | + | + | + | |||||||||
05 | + | + | + | + | + | + | + | ||||||||||||
06 | + | + | |||||||||||||||||
07 | + | + | + | + | + | − | + | + | |||||||||||
08 | + | + | + | + | − | ||||||||||||||
09 | + | ||||||||||||||||||
10 | + | + | + | − | |||||||||||||||
11 | + | ||||||||||||||||||
12 | − | − | − | − | − | + | |||||||||||||
13 | + | + | − | ||||||||||||||||
14 | |||||||||||||||||||
15 | + | + | + | + | + | ||||||||||||||
16 | + | + | + | + | |||||||||||||||
17 | + | − | + | ||||||||||||||||
18 | + | + | + | + | + | + | |||||||||||||
19 | + | + | + | + | + | + |
Romania * | Poland ** | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
City | Year | City | Year | City | Year | ||||||
2006 | 2012 | 2018 | 2006 | 2012 | 2018 | 2006 | 2012 | 2018 | |||
Alba Iulia | No | No | Yes | Białystok | 1.96 | 42.16 | 53.64 | Olsztyn | 7.95 | 50.00 | 55.96 |
Arad | Yes | No | No | Bydgoszcz | 10.86 | 30.68 | 37.43 | Opole | 11.34 | 37.11 | 28.71 |
Bacău | Yes | Yes | Yes | Częstochowa | 1.88 | 15.00 | 22.73 | Ostrów Wielkopolski | 16.67 | 30.95 | 36.59 |
Brăila | Yes | No | No | Gdańsk | 43.61 | 67.18 | 65.89 | Pabianice | 12.12 | 96.97 | 100.00 |
București | Yes | No | No | Gorzów Wielkopolski | 10.47 | 38.37 | 56.01 | Płock | 32.95 | 35.23 | 38.23 |
Călărași | Yes | Yes | Yes | Jastrzębie-Zdrój | 1.17 | 99.61 | 99.87 | Poznań | 5.34 | 34.35 | 46.43 |
Cluj Napoca | Yes | No | Yes | Jelenia Góra | 18.35 | 54.13 | 98.61 | Radom | 3.57 | 9.82 | 15.64 |
Craiova | Yes | No | No | Kalisz | 7.25 | 15.94 | 17.85 | Rybnik | 4.05 | 100.00 | 100.00 |
Giurgiu | Yes | No | Yes | Katowice | 9.70 | 20.61 | 26.33 | Rzeszów | 4.41 | 13.68 | 16.79 |
Oradea | Yes | No | Yes | Kielce | 1.82 | 14.55 | 17.64 | Stargard | 16.67 | 37.50 | 39.06 |
Piatra Neamț | Yes | No | No | Konin | 84.15 | 95.12 | 95.46 | Suwałki | 7.58 | 27.27 | 65.21 |
Sibiu | Yes | Yes | Yes | Koszalin | 12.05 | 33.67 | 42.66 | Szczecin | 11.63 | 44.19 | 53.59 |
Târgu Mureș | Yes | Yes | Yes | Kraków | 3.06 | 37.61 | 61.75 | Toruń | 18.97 | 43.10 | 56.15 |
Timișoara | Yes | No | No | Łódź | 2.73 | 5.12 | 53.29 | Warszawa | 15.86 | 29.59 | 37.34 |
Lublin | 43.54 | 44.90 | 20.54 | Wrocław | 25.26 | 50.85 | 58.10 | ||||
Nowy Sącz | 8.62 | 43.10 | 49.32 | Zielona Góra | 15.52 | 56.90 | 17.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrisor, A.-I.; Mierzejewska, L.; Mitrea, A.; Drachal, K.; Tache, A.V. Dynamics of Open Green Areas in Polish and Romanian Cities during 2006–2018: Insights for Spatial Planners. Remote Sens. 2021, 13, 4041. https://doi.org/10.3390/rs13204041
Petrisor A-I, Mierzejewska L, Mitrea A, Drachal K, Tache AV. Dynamics of Open Green Areas in Polish and Romanian Cities during 2006–2018: Insights for Spatial Planners. Remote Sensing. 2021; 13(20):4041. https://doi.org/10.3390/rs13204041
Chicago/Turabian StylePetrisor, Alexandru-Ionut, Lidia Mierzejewska, Andrei Mitrea, Krzysztof Drachal, and Antonio Valentin Tache. 2021. "Dynamics of Open Green Areas in Polish and Romanian Cities during 2006–2018: Insights for Spatial Planners" Remote Sensing 13, no. 20: 4041. https://doi.org/10.3390/rs13204041
APA StylePetrisor, A. -I., Mierzejewska, L., Mitrea, A., Drachal, K., & Tache, A. V. (2021). Dynamics of Open Green Areas in Polish and Romanian Cities during 2006–2018: Insights for Spatial Planners. Remote Sensing, 13(20), 4041. https://doi.org/10.3390/rs13204041