Coastal Retreat Due to Thermodenudation on the Yugorsky Peninsula, Russia during the Last Decade, Update since 2001–2010
Abstract
:1. Introduction
2. Study Area
2.1. Pervaya Peschanaya Key Site
2.2. Shpindler Key Site
3. Materials and Methods
3.1. Processing Remote-Sensing Data
3.1.1. Photogrammetric Processing
3.1.2. Determining Thermocirque Dynamics (TC Edge Retreat Rates)
3.2. Processing Climatic Data for 2010–2020
4. Results
4.1. Overview of Retreat Pattern within the Yugorsky Coastline
4.2. Pervaya Peschanaya Key Site Coastal Retreat
4.3. Shpindler Key Site Coastal Retreat
5. Discussion
5.1. Comparing Retreat Rates in 2001–2010 and 2010–2020 Periods
5.2. Climatic Controls of Coastal Retreat
5.3. Comparing Retreat Rates in the Yugorsky Peninsula and Other Regions of the World
5.3.1. Regions Farther North from the Yugorsky Peninsula
5.3.2. Regions at the Same Latitude or South of the Yugorsky Peninsula
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RTS | Retrogressive thaw slump |
TC | Thermocirque |
PP | Pervaya Peschanaya key site |
Sh | Shpindler key site |
DEM | Digital elevation model |
WPD | Warm period duration |
WTC | Western Thermocirque |
CTC | Central Thermocirque |
ETC | Eastern Thermocirque |
Appendix A
2010–2012 | 2012–2013 | 2013–2015 | 2015–2016 | 2016–2017 | 2017–2020 | |
---|---|---|---|---|---|---|
count | 137 | 131 | 133 | 135 | 127 | 125 |
mean | 16.084891 | 3.534504 | 7.006541 | 1.364963 | 6.076142 | 5.18736 |
std | 14.033858 | 3.521240 | 6.807610 | 2.068945 | 10.709844 | 8.551684 |
min | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
5% | 0.342 | 0.0 | 0.22 | 0.0 | 0.0 | 0.0 |
25% | 3.26 | 0.06 | 1.61 | 0.0 | 0.625 | 0.46 |
50% | 13.67 | 2.85 | 4.46 | 0.46 | 2.15 | 1.45 |
75% | 24.51 | 5.84 | 9.69 | 1.945 | 4.65 | 5.11 |
95% | 44.44 | 10.015 | 20.426 | 6.754 | 27.11 | 27.88 |
max | 59.09 | 18.78 | 30.69 | 9.42 | 60.33 | 40.97 |
Normal | Test | alpha = 0.05 | ||||
2010–2012 | alpha = 0.05 | result = 0.0004 | ||||
2012–2013 | alpha = 0.05 | result = 0.0 | ||||
2013–2015 | alpha = 0.05 | result = 0.0 | ||||
2015–2016 | alpha = 0.05 | result = 0.0 | ||||
2016–2017 | alpha = 0.05 | result = 0.0 | ||||
2017–2020 | alpha = 0.05 | result = 0.0 |
2010–2012 | 2012–2013 | 2013–2015 | 2015–2016 | 2016–2017 | 2017–2020 | |
---|---|---|---|---|---|---|
count | 123 | 123 | 123 | 123 | 122 | 122 |
mean | 2.259268 | 3.720325 | 4.266423 | 2.255366 | 2.078852 | 0.852705 |
std | 2.85189 | 4.960016 | 7.525415 | 2.608869 | 3.592606 | 1.202779 |
min | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
5% | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
25% | 0.0 | 0.62 | 0.085 | 0.36 | 0.405 | 0.0 |
50% | 1.22 | 1.67 | 1.72 | 1.22 | 1.03 | 0.465 |
75% | 3.33 | 5.205 | 4.78 | 3.25 | 2.0175 | 1.255 |
95% | 8.312 | 12.815 | 16.273001 | 7.652000 | 7.637 | 3.357 |
max | 12.38 | 27.23 | 40.69 | 11.7 | 25.61 | 5.70 |
Normal | Test | alpha = 0.05 | ||||
2010–2012 | alpha = 0.05 | result = 0.0 | ||||
2012–2013 | alpha = 0.05 | result = 0.0 | ||||
2013–2015 | alpha = 0.05 | result = 0.0 | ||||
2015–2016 | alpha = 0.05 | result = 0.0 | ||||
2016–2017 | alpha = 0.05 | result = 0.0 | ||||
2017–2020 | alpha = 0.05 | result = 0.0 |
References
- Lewkowicz, A.G. Headwall retreat of ground-ice slumps, Banks Island, Northwest Territories. Can. J. Earth Sci. 1987, 24, 1077–1085. [Google Scholar] [CrossRef]
- Leibman, M.O.; Gubarkov, A.A.; Khomutov, A.V.; Kizyakov, A.I.; Vanshtein, B.G. Coastal processes at the tabular-ground-ice-bearing area, Yugorsky Peninsula, Russia. In Proceedings of the 9th International Conference on Permafrost, University of Alaska Fairbanks, Fairbanks, AK, USA, 29 June–3 July 2008; pp. 1037–1042. [Google Scholar]
- Leibman, M.; Khomutov, A.; Kizyakov, A. Cryogenic Landslides in the West-Siberian Plain of Russia: Classification, Mechanisms, and Landforms. In Environmental Science and Engineering (Subseries: Environmental Science); Springer International Publishing AG: Cham, Switzerland, 2014; pp. 143–162. [Google Scholar]
- Günther, F.; Overduin, P.P.; Yakshina, I.A.; Opel, T.; Baranskaya, A.V.; Grigoriev, M.N. Observing Muostakh disappear: Permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 2015, 9, 151–178. [Google Scholar] [CrossRef] [Green Version]
- Kokelj, S.V.; Tunnicliffe, J.; Lacelle, D.; Lantz, T.C.; Chin, K.S.; Fraser, R. Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Glob. Planet. Chang. 2015, 129, 56–68. [Google Scholar] [CrossRef] [Green Version]
- French, H. The Periglacial Environment, 4th ed.; Hoboken, N.J., Ed.; Wiley-Blackwell: Oxford, UK, 2017; ISBN 9781119132790. [Google Scholar]
- Ramage, J.L.; Irrgang, A.M.; Herzschuh, U.; Morgenstern, A.; Couture, N.; Lantuit, H. Terrain controls on the occurrence of coastal retrogressive thaw slumps along the Yukon Coast, Canada. J. Geophys. Res. Earth Surf. 2017, 122, 1619–1634. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, S.A., Connors, L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Vasiliev, A.A.; Streletskaya, I.D.; Cherkashev, G.A.; Vanshtein, B.G. Coastal dynamics of the Kara sea. Kriosf. Zemli (Earth Cryosphere) 2006, 10, 56–67. [Google Scholar]
- Gubar’kov, A.A.; Leibman, M.O.; Mel’nikov, V.P.; Khomutov, A.V. Contribution of lateral thermoerosion and thermal denudation to coastal retreat of the Yugorskii Peninsula. Dokl. Earth Sci. 2008, 423, 1452–1454. [Google Scholar] [CrossRef]
- Lantz, T.C.; Kokelj, S.V. Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, NWT., Canada. Geophys. Res. Lett. 2008, 35, L06502. [Google Scholar] [CrossRef]
- Babkina, E.A.; Leibman, M.O.; Dvornikov, Y.A.; Fakashchuk, N.Y.; Khairullin, R.R.; Khomutov, A.V. Activation of Cryogenic Processes in Central Yamal as a Result of Regional and Local Change in Climate and Thermal State of Permafrost. Russ. Meteorol. Hydrol. 2019, 44, 283–290. [Google Scholar] [CrossRef]
- Lewkowicz, A.G.; Way, R.G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 2019, 10, 1329. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: An example from the Beiluhe Region. Geomorphology 2019, 341, 79–85. [Google Scholar] [CrossRef]
- Ward Jones, M.K.; Pollard, W.H.; Jones, B.M. Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environ. Res. Lett. 2019, 14, 055006. [Google Scholar] [CrossRef]
- Blais-Stevens, A.; Kremer, M.; Bonnaventure, P.P.; Smith, S.L.; Lipovsky, P.; Lewkowicz, A.G. Active Layer Detachment Slides and Retrogressive Thaw Slumps Susceptibility Mapping for Current and Future Permafrost Distribution, Yukon Alaska Highway Corridor. In Engineering Geology for Society and Territory-Volume 1: Climate Change and Engineering Geology; Springer International Publishing AG: Cham, Switzerland, 2015. [Google Scholar]
- Overeem, I.; Anderson, R.S.; Wobus, C.W.; Clow, G.D.; Urban, F.E.; Matell, N. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 2011, 38, L17503. [Google Scholar] [CrossRef]
- Fritz, M.; Vonk, J.E.; Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Chang. 2017, 7, 6–7. [Google Scholar] [CrossRef] [Green Version]
- Guégan, E.B.M.; Christiansen, H.H. Seasonal Arctic Coastal Bluff Dynamics in Adventfjorden, Svalbard. Permafr. Periglac. Process. 2017, 28, 18–31. [Google Scholar] [CrossRef]
- Isaev, V.S.; Koshurnikov, A.V.; Pogorelov, A.; Amangurov, R.M.; Podchasov, O.; Sergeev, D.O.; Buldovich, S.N.; Aleksyutina, D.M.; Grishakina, E.A.; Kioka, A. Cliff retreat of permafrost coast in south-west Baydaratskaya Bay, Kara Sea, during 2005–2016. Permafr. Periglac. Process. 2019, 30, 35–47. [Google Scholar] [CrossRef]
- Lantuit, H.; Pollard, W.H. Remotely sensed evidence of enhanced erosion during the twentieth century on Herschel Island, Yukon Territory. Ber. Zur Polar-Meeresforsch. (Rep. Polar Mar. Res.) 2003, 443, 54–59. [Google Scholar]
- Solomon, S.M. A new shoreline change database for the Mackenzie-Beaufort region, NWT, Canada. Ber. Zur Polar-Meeresforsch. (Rep. Polar Mar. Res.) 2003, 3, 108–109. [Google Scholar]
- Lantuit, H.; Couture, N.; Pollard, W.H.; Haltigin, T.; De Pascale, G.; Budkewitsch, P. Short-term evolution of coastal polycyclic retrogressive thaw slumps on Herschel Island, Yukon Territory. Ber. Zur Polar-Meeresforsch. (Rep. Polar Mar. Res.) 2005, 5, 72–75. [Google Scholar]
- Kizyakov, A.I.; Leibman, M.O.; Perednya, D.D. Destructive reliefgforming processes at the coasts of the Arctic plains with tabular ground ice. Kriosf. Zemli (Earth Cryosphere) 2006, 10, 79–89. [Google Scholar]
- Kizyakov, A.I.; Leibman, M.O. Cryogenic relief-formation processes: A review of 2010–2015 publications. Kriosf. Zemli (Earth Cryosphere) 2016, XX, 45–58. [Google Scholar] [CrossRef]
- Cherkashov, G.A.; Goncharov, G.N.; Kizyakov, A.I.; Krinitsky, P.I.; Leibman, M.O.; Persov, A.V.; Petrova, V.I.; Solovyev, V.A.; Vanshtein, B.G.; Vasiliev, A.A. Arctic coastal dynamics in the areas with massive ground ice occurrence. In Proceedings of the Arctic Coastal Dynamics Workshop, Woods Hole, MA, USA, 2–4 November 1999; pp. 5–6. [Google Scholar]
- Leibman, M.O.; Kizyakov, A.I.; Archegova, I.B.; Gorlanova, L.A. Stages of cryogenic landslides on Yugorsky and Yamal Peninsulas. Kriosf. Zemli (Earth Cryosphere) 2000, IV, 67–75. [Google Scholar]
- Kizyakov, A.I.; Perednya, D.D. Destruction of coasts on the Yugorsky peninsula and on Kolguev Island, Russia. In Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003; University of Zurich: Zürich, Switzerland, 2003; pp. 79–80. [Google Scholar]
- Leibman, M.O. Mechanisms and stages of development of slope cryogenic processes in the western sector of the Arctic. In Proceedings of the Relief-forming processes: Theory, practice, research methods. Materials of the XXVIII Plenum of the Geomorphological Commission, IG SO RAN, Novosibirsk, Russia, 20–24 September 2004; Institute of Geology and Mineralogy SB RAS: Novosibirsk, Russia, 2004; pp. 160–162. [Google Scholar]
- Kizyakov, A.I. Dynamics of thermal denudation processes on the coast of the Yugorsky Peninsula. Kriosf. Zemli (Earth Cryosphere) 2005, IX, 63–67. [Google Scholar]
- Khomutov, A.V. Environmental controls for the coastal processes on Yugorsky Peninsula, Kara Sea, Russia. In Proceedings of the Extended abstracts of the 9th International Conference on Permafrost, University of Alaska Fairbanks, Fairbanks, AK, USA, 29 June–3 July 2008; pp. 135–136. [Google Scholar]
- Khomutov, A.V.; Leibman, M.O. Landscape factors of thermodenudation rate at the Yugorsky Peninsula coast. Kriosf. Zemli (Earth Cryosphere) 2008, XII, 24–35. [Google Scholar]
- Lacelle, D.; Brooker, A.; Fraser, R.H.; Kokelj, S.V. Distribution and growth of thaw slumps in the Richardson Mountains-Peel Plateau region, northwestern Canada. Geomorphology 2015, 235, 40–51. [Google Scholar] [CrossRef]
- Lokrantz, H.; Ingólfsson, Ó.; Forman, S.L. Glaciotectonised Quaternary sediments at Cape Shpindler, Yugorski Peninsula, Arctic Russia: Implications for glacial history, ice movements and Kara Sea Ice Sheet configuration. J. Quat. Sci. 2003, 18, 527–543. [Google Scholar] [CrossRef]
- Leibman, M.O.; Hubberten, H.-W.; Lein, A.Y.; Streletskaya, I.D.; Vanshtein, B.G. Tabular ground ice origin in the Arctic coastal zone: Cryolythological and isotope-geochemical reconstruction of conditions for its formation. In Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003; University of Zurich: Zürich, Switzerland, 2003; Volume 1, pp. 645–650. [Google Scholar]
- Slagoda, E.A.; Leibman, M.O.; Opokina, O.L. Origin of deformations in Holocene-Quaternary deposits with tabular ground ice on Yugorsky Peninsula. Kriosf. Zemli (Earth Cryosphere) 2010, XIV, 31–40. [Google Scholar]
- Khomutov, A.V.; Babkina, E.A.; Belova, N.G.; Dvornikov, Y.A.; Leibman, M.O.; Nesterova, N.B.; Khairullin, R.R. Thermodenudation processes at the Yugorsky Peninsula coast. In Proceedings of the Geology of the Seas and Oceans: Materials of XXIII International Scientific Conference (School) on Marine Geology, Moscow, Russia, 18–22 November 2019; Volume 2, pp. 168–172. [Google Scholar]
- Belova, N.G.; Babkina, E.A.; Dvornikov, Y.A.; Nesterova, N.B.; Khomutov, A.V. Permafrost sediments with tabular ground ice on the coast of the Yugorsky Peninsula. Arct. Antarct. 2019, 4, 74–83. [Google Scholar] [CrossRef]
- Goldfarb, J.I.; Ezhova, A.B. Fossil tabular ice on Yugorsky Peninsula. In Questions of Evolution and Development of Permafrost; Permafrost Institute AS USSR: Yakutsk, Russia, 1990; pp. 22–31. [Google Scholar]
- Manley, W.F.; Lokrantz, H.; Gataullin, V.; Ingólfsson, Ó.; Forman, S.L.; Andersson, T. Late Quaternary stratigraphy, radiocarbon chronology, and glacial history at Cape Shpindler, southern Kara Sea, Arctic Russia. Glob. Planet. Chang. 2001, 31, 239–254. [Google Scholar] [CrossRef]
- Leibman, M.O.; Lein, A.Y.; Hubberten, H.W.; Vanshtein, B.G.; Goncharov, G.N. Isotope-geochemical characteristics of tabular ground ice at Yugorsky peninsula and reconstruction of conditions for its formation. Mater. Glaciol. Stud. Chron. Discuss. 2001, 90, 30–39. [Google Scholar]
- Kizyakov, A.I.; Günther, F.; Zimin, M.V.; Sonyushkin, A.V.; Wetterich, S. Coastal destruction in the western and eastern-most occurrence of tabular ground ice in the Eurasian Arctic. In Proceedings of the 15th International Circumpolar Remote Sensing Symposium–Book of Abstracts, Potsdam, Germany, 10–14 September 2018; Günther, F., Grosse, G., Jones, B.M., Eds.; Bibliothek Wissenschaftspark Albert Einstein: Potsdam, Germany, 2018; p. 20. [Google Scholar]
- Porter, C.; Morin, P.; Howat, I.; Noh, M.-J.; Bates, B.; Peterman, K.; Keesey, S.; Schlenk, M.; Gardiner, J.; Tomko, K.; et al. ArcticDEM. Earth Environ. Sci. 2018. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; Open-File Report 2018-1179; U.S. Geological Survey: Reston, VA, USA, 2018. [CrossRef] [Green Version]
- Khomutov, A.; Leibman, M.; Dvornikov, Y.; Gubarkov, A.; Mullanurov, D.; Khairullin, R. Activation of Cryogenic Earth Flows and Formation of Thermocirques on Central Yamal as a Result of Climate Fluctuations. In Advancing Culture of Living with Landslides; Mikoš, K., Vilímek, V., Yin, Y., Sassa, K., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 209–216. [Google Scholar]
- Lantuit, H.; Pollard, W.H. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 2008, 95, 84–102. [Google Scholar] [CrossRef]
- Wang, B.; Paudel, B.; Li, H. Behaviour of retrogressive thaw slumps in northern Canada—Three-year monitoring results from 18 sites. Landslides 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Lantuit, H.; Pollard, W.H.; Couture, N.; Fritz, M.; Schirrmeister, L.; Meyer, H.; Hubberten, H.W. Modern and Late Holocene Retrogressive Thaw Slump Activity on the Yukon Coastal Plain and Herschel Island, Yukon Territory, Canada. Permafr. Periglac. Process. 2012, 23, 39–51. [Google Scholar] [CrossRef]
- Swanson, D.K.; Nolan, M. Growth of retrogressive thaw slumps in the Noatak Valley, Alaska, 2010–2016, measured by airborne photogrammetry. Remote Sens. 2018, 10, 983. [Google Scholar] [CrossRef] [Green Version]
Date | Sensor | Pan Ground Sample Distance, m | Imagery Relative Spatial Alignment (RMS), m | Monitoring Data for a Period between Acquisitions. United Data for a Group of Three TC | |||
---|---|---|---|---|---|---|---|
Q 1/4, m | Median Retreat, m | Q 3/4, m | Max Retreat, m | ||||
Pervaya Peschanaya key-site | |||||||
13 October 2010 | WorldView-1 | 0.5 | 0.3 | ||||
09 October 2012 | Formosat-2 | 2.0 | 0.9 | 3.26 | 13.67 | 24.51 | 59.09 |
03 September 2013 | SPOT6 | 1.5 | 0.4 | 0.06 | 2.85 | 5.84 | 18.78 |
17 August 2015 | SPOT7 | 1.5 | 0.8 | 1.61 | 4.46 | 9.69 | 30.69 |
17 June 2016 | SPOT7 | 1.5 | 0.4 | 0 | 0.46 | 1.95 | 9.42 |
27 July 2017 | WorldView-2 | 0.5 | 0.3 | 0.625 | 2.15 | 4.65 | 60.33 |
22 September 2020 | WorldView-1 | 0.5 | 0.3 | 0.46 | 1.45 | 5.11 | 40.97 |
Shpindler key-site | |||||||
13 October 2010 | WorldView-1 | 0.5 | 0.3 | ||||
26 June 2012 | Formosat-2 | 2.0 | 0.4 | 0 | 1.22 | 3.33 | 12.38 |
17 July 2013 | WorldView-1 | 0.5 | 0.3 | 0.62 | 1.67 | 5.21 | 27.23 |
17 August 2015 | SPOT7 | 1.5 | 0.9 | 0.085 | 1.72 | 4.78 | 40.69 |
17 June 2016 | SPOT7 | 1.5 | 0.57 | 0.36 | 1.22 | 3.25 | 11.7 |
12 October 2017 | SPOT7 | 1.5 | 0.56 | 0.405 | 1.03 | 2.02 | 25.61 |
24 September 2020 | WorldView-2 | 0.5 | 0.35 | 0 | 0.47 | 1.26 | 5.7 |
Dates between Measurements | Warm Period Duration, Days | Thaw Index, degree-days | Summer Precipitation, mm | Probability North Wind Speed > 10 m/s, % | Open Water Period Duration, Days |
---|---|---|---|---|---|
Pervaya Peschanaya key-site | |||||
13.10.2010–09.10.2012 | 728 | 1937/6.5 | 472.7/1.59 | 32.1/0.108 | 396/1.33 |
09.10. 2012–03.09.2013 | 330 | 817/7.9 | 104.7/1.01 | 18.8/0.181 | 136/1.31 |
03.09. 2013–17.08.2015 | 714 | 1263/5.1 | 394.2/1.60 | 34.2/0.138 | 282/1.14 |
17.08.2015–17.06.2016 | 306 | 349/4.5 | 108.3/1.39 | 42.3/0.543 | 160/2.05 |
17.06. 2016–27.07.2017 | 406 | 1693/9.2 | 175.8/0.96 | 33.5/0.182 | 232/1.26 |
27.07. 2017–22.09.2020 | 1154 | 3067/6.3 | 732.1/1.51 | 48.9/0.101 | 643/1.33 |
Shpindler key-site | |||||
13.10.2010–26.06.2012 | 194 | 1109/5.7 | 267.2/1.38 | 26.5/0.136 | 291/1.5 |
26.06.2012–17.07.2013 | 160 | 1151/7.2 | 251.6/1.57 | 34.9/0.218 | 194/1.21 |
17.07.2013–17.08.2015 | 299 | 1782/6.0 | 451.2/1.51 | 31.7/0.106 | 330/1.1 |
17.08.2015–17.06.2016 | 78 | 349/4.5 | 108.3/1.39 | 42.3/0.543 | 160/2.05 |
17.06. 2016–12.10.2017 | 259 | 2129/8.2 | 223.4/0.86 | 39.8/0.154 | 309/1.19 |
12.10.2017–24.09.2020 | 410 | 2628/6.4 | 684.5 /1.67 | 47.8/0.117 | 568/1.39 |
TC: | WTC | CTC | ETC | ||||||
---|---|---|---|---|---|---|---|---|---|
Retreat Indicator: | Q2 | Max | Average | Q2 | Max | Average | Q2 | Max | Average |
Pervaya Peschanaya key-site | |||||||||
2010–2012 | 20.9 | 36.37 | 9.4 | 11.615 | 59.09 | 9.7 | 10.63 | 51.1 | 8.1 |
2012–2013 | 5.69 | 12.96 | 2.9 | 0.58 | 7.2 | 1.5 | 2.43 | 18.78 | 1.9 |
2013–2015 | 7.35 | 17.83 | 4.2 | 0.65 | 3.54 | 1.0 | 5.52 | 30.69 | 5.6 |
2015–2016 | 1.16 | 4.13 | 0.9 | 0.75 | 2.29 | 0.9 | 0 | 9.42 | 0.9 |
2016–2017 | 1.42 | 13.46 | 1.9 | 0.49 | 4.61 | 1.1 | 2.39 | 60.33 | 6.4 |
2017–2020 | 0 | 5.11 | 0.7 | 1.02 | 5.86 | 1.3 | 2.61 | 40.97 | 5.2 |
Shpindler key-site | |||||||||
2010–2012 | 0.53 | 12.38 | 0.92 | 2.07 | 11.39 | 2.72 | 1.72 | 10.42 | 2.08 |
2012–2013 | 1.32 | 15.92 | 2.23 | 1.12 | 12.41 | 2.75 | 3.65 | 27.23 | 3.56 |
2013–2015 | 1.5 | 6.61 | 1.96 | 4.33 | 40.69 | 9.29 | 1.20 | 9.54 | 1.50 |
2015–2016 | 3.06 | 11.59 | 3.68 | 0.18 | 4.81 | 1.12 | 1.77 | 11.7 | 2.06 |
2016–2017 | 1.48 | 6.63 | 1.80 | 0.65 | 25.61 | 5.40 | 0.89 | 7.69 | 1.13 |
2017–2020 | 1.11 | 5.7 | 1.27 | 0 | 5.23 | 1.07 | 0 | 4.41 | 0.29 |
WTC | CTC | ETC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Indicator: | Retreat Area, m2 | Total Edge Length in 2001 | Total Edge Length in 2010 | Active Edge Length 2010–2020 | Retreat Area, m2 | Total Edge Length in 2001 | Total Edge Length in 2010 | Active Edge Length 2010–2020 | Retreat Area, m2 | Total Edge Length in 2001 | Total Edge Length in 2010 | Active Edge Length 2010–2020 |
Pervaya Peschanaya key-site | ||||||||||||
2001–2010 (2010–2020) | 24,004 (13,484) | 356 | 676 | 369 | 2488 (4004) | 22 | 260 | 133 | 24765 (30892) | 638 | 1100 | 980 |
Shpindler key-site | ||||||||||||
2001–2010 (2010–2020) | 1483 (5233) | 432 | 441 | 417 | 8283 (8783) | 301 | 393 | 383 | 3007 (5101) | 172 | 480 | 480 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leibman, M.; Kizyakov, A.; Zhdanova, Y.; Sonyushkin, A.; Zimin, M. Coastal Retreat Due to Thermodenudation on the Yugorsky Peninsula, Russia during the Last Decade, Update since 2001–2010. Remote Sens. 2021, 13, 4042. https://doi.org/10.3390/rs13204042
Leibman M, Kizyakov A, Zhdanova Y, Sonyushkin A, Zimin M. Coastal Retreat Due to Thermodenudation on the Yugorsky Peninsula, Russia during the Last Decade, Update since 2001–2010. Remote Sensing. 2021; 13(20):4042. https://doi.org/10.3390/rs13204042
Chicago/Turabian StyleLeibman, Marina, Alexander Kizyakov, Yekaterina Zhdanova, Anton Sonyushkin, and Mikhail Zimin. 2021. "Coastal Retreat Due to Thermodenudation on the Yugorsky Peninsula, Russia during the Last Decade, Update since 2001–2010" Remote Sensing 13, no. 20: 4042. https://doi.org/10.3390/rs13204042
APA StyleLeibman, M., Kizyakov, A., Zhdanova, Y., Sonyushkin, A., & Zimin, M. (2021). Coastal Retreat Due to Thermodenudation on the Yugorsky Peninsula, Russia during the Last Decade, Update since 2001–2010. Remote Sensing, 13(20), 4042. https://doi.org/10.3390/rs13204042