Impact of Winter Snowfall on Vegetation Greenness in Central Asia
Abstract
:1. Introduction
2. Data and Method
2.1. Study Area
2.2. Data
2.3. Method
2.3.1. Variation of Climatic Factors and NDVI
2.3.2. Effect of Winter Snowfall on Vegetation Growth
2.3.3. Climatic Factor Importance to Vegetation Growth
3. Results
3.1. Spatiotemporal Variation of NDVI during the Growing Season
3.2. Spatiotemporal Variation of Winter Snowfall
3.3. Relationship between Vegetation Greenness and Winter Snowfall
3.4. Direct Effect of Winter Snowfall and Its Interactions with Climatic Factors in the Growing Season
3.5. Importacne of Winter Snowfall and Climatic Factors in the Growing Season to Vegetation Greenness
4. Discussion
4.1. Vegetation Response to Winter Snowfall
4.2. Effect of Winter Snowfall on Vegetation
4.3. Uncertainties and Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Norin, L.; Devasthale, A.; L’Ecuyer, T.S. The sensitivity of snowfall to weather states over Sweden. Atmos. Meas. Tech. 2017, 10, 3249–3263. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Ding, J. Change characteristics of different types of snowfall event in China’s Tianshan Mountains from 1961 to 2016. Adv. Water Sci. 2019, 30, 457–466. [Google Scholar]
- Blanchet, J.; Marty, C.; Lehning, M. Extreme value statistics of snowfall in the Swiss Alpine region. Water Resour. Res. 2009, 45, 12. [Google Scholar] [CrossRef]
- Zhong, K.Y.; Zheng, F.L.; Zhang, X.C.; Qin, C.; Xu, X.M.; Lalic, B.; Cupina, B. Dynamic changes in snowfall extremes in the Songhua River Basin, Northeastern China. Int. J. Climatol. 2021, 41, 423–438. [Google Scholar] [CrossRef]
- Ye, H.C.; Cho, H.R.; Gustafson, P.E. The changes in Russian winter snow accumulation during 1936–1983 and its spatial patterns. J. Clim. 1998, 11, 856–863. [Google Scholar] [CrossRef]
- Qin, D.; Liu, S.; Li, P. Snow cover distribution, variability, and response to climate change in western China. J. Clim. 2006, 19, 1820–1833. [Google Scholar]
- Heegaard, E. A model of alpine species distribution in relation to snowmelt time and altitude. J. Veg. Sci. 2002, 13, 493–504. [Google Scholar] [CrossRef]
- Wu, Y.; Onipchenko, V.G. The impact of snow–cover on alpine vegetation type of different aspects in the west of Sichuan Province. Acta Ecol. Sin. 2007, 27, 5120–5129. [Google Scholar]
- Gao, J.; Wang, J.N.; Xu, B.; Xie, Y.; He, J.D.; Wu, Y. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow. Chin. J. Plant Ecol. 2016, 40, 775–787. [Google Scholar]
- Buus-Hinkler, J.; Hansen, B.U.; Tamstorf, M.P.; Pedersen, S.B. Snow-vegetation relations in a High Arctic ecosystem: Inter-annual variability inferred from new monitoring and modeling concepts. Remote Sens. Environ. 2006, 105, 237–247. [Google Scholar] [CrossRef]
- Wipf, S. Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecol. 2010, 207, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, M.; Wang, B.; Wang, Y.; Wang, S. The Change Characteristics of Winter Snowfall, Snow Concentration Degree and Concentration Period in the Tianshan Mountains. Resour. Sci. 2012, 34, 1556–1564. [Google Scholar]
- Lute, A.C.; Abatzoglou, J.T.; Hegewisch, K.C. Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour. Res. 2015, 51, 960–972. [Google Scholar] [CrossRef]
- Davis, R.E.; Lowit, M.B.; Knappenberger, P.C.; Legates, D.R. A climatology of snowfall-temperature relationships in Canada. J. Geophys. Res. Atmos. 1999, 104, 11985–11994. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Chen, Z. Changes of Snowfall Under Warmer and Wetter in the Tianshan Mountains. Sci. Geogr. Sin. 2018, 38, 1933–1942. [Google Scholar]
- Chen, X.; An, S.; Inouye, D.W.; Schwartz, M.D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Chang. Biol. 2015, 21, 3635–3646. [Google Scholar] [CrossRef]
- Yang, T.; Huang, F.R.; Li, Q.; Bai, L.; Li, L.H. Spatial-temporal variation of NDVI for growing season and its relationship with winter snowfall in Northern Xinjiang. Remote Sens. Technol. Appl. 2018, 32, 1132–1140. [Google Scholar]
- Peng, S.; Piao, S.; Ciais, P.; Fang, J.; Wang, X. Change in winter snow depth and its impacts on vegetation in China. Glob. Chang. Biol. 2010, 16, 3004–3013. [Google Scholar] [CrossRef]
- Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Glob. Planet. Chang. 2013, 110, 74–87. [Google Scholar] [CrossRef]
- Wan, Y.F.; Gao, Q.Z.; Li, Y.; Qin, X.B.; Ganjurjav; Zhang, W.N.; Ma, X.; Liu, S. Change of snow cover and its impact on alpine vegetation in the source regions of large rivers on the Qinghai-Tibetan Plateau, China. Arct. Antarct. Alp. Res. 2014, 46, 632–644. [Google Scholar] [CrossRef] [Green Version]
- Mu, S.; Li, J.; Chen, Y.; Gang, C.; Zhou, W.; Ju, W. Spatial Differences of Variations of Vegetation Coverage in Inner Mongolia during 2001–2010. Acta Geogr. Sin. 2012, 67, 1255–1268. [Google Scholar]
- Huang, F.R.; Mo, X.G.; Lin, Z.H.; Hu, S. Dynamics and responses of vegetation to climatic variations in Ziya-Daqing basins, China. Chin. Geogr. Sci. 2016, 26, 478–494. [Google Scholar] [CrossRef] [Green Version]
- Chen, X. Retrieval and Analysis of Evapotranspiration in Central Areas of Asia; China Meteorological Press: Beijing, China, 2012. [Google Scholar]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J. Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Song, S.; Bai, J. Increasing Winter Precipitation over Arid Central Asia under Global Warming. Atmosphere 2016, 7, 139. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xu, G.Y.; Mao, H.X.; Wang, Y. Spatiotemporal Variation in Precipitation and Water Vapor Transport Over Central Asia in Winter and Summer Under Global Warming. Front. Earth Sci. 2020, 8, 297. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Pu, Z.; Wang, M.; Wang, S.; Zhao, S. Spatial-temporal variation of seasonal and annual air temperature in Xinjiang during 1961–2010. Arid Land Geogr. 2013, 36, 228–237. [Google Scholar]
- Xu, T.; Shao, H.; Zhang, C. Temporal pattern analysis of air temperature change in Central Asia during 1980–2011. Arid Land Geogr. 2015, 38, 25–35. [Google Scholar]
- Ma, Y.G.; Chen, X.; Niu, X.M.; Zhang, C. The trend and comparison of vegetation phenological change in Central Asia based GIMMS and SPOT Vegetation. Ecol. Environ. Sci. 2014, 23, 1889–1896. [Google Scholar]
- Li, Z.; Chen, Y.; Li, W.; Deng, H.; Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, X.L.; Chen, X.; Luo, G.P.; Li, L.H. Vegetation change and its response to climate change in Central Asia from 1982 to 2012. Chin. J. Plant Ecol. 2016, 40, 13–23. [Google Scholar]
- Han, Q.; Luo, G.; Li, C.; Li, S. Response of carbon dynamics to climate change varied among different vegetation types in Central Asia. Sustainability 2018, 10, 3288. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Shi, H.; Yu, Q.; Xie, Z.; Li, L.; Luo, G.; Jin, N.; Li, J. Satellite-observed vegetation stability in response to changes in climate and total water storage in Central Asia. Sci. Total Environ. 2019, 659, 862–871. [Google Scholar] [CrossRef]
- Mu, Z.X.; Jiang, H.F.; Liu, F. Spatial and temporal variations of snow cover area and NDVI in the west of Tianshan Mountains. J. Glaciol. Geocryol. 2010, 32, 875–882. [Google Scholar]
- Dubovyk, O.; Landmann, T.; Dietz, A.; Menz, G. Quantifying the Impacts of Environmental Factors on Vegetation Dynamics over Climatic and Management Gradients of Central Asia. Remote Sens. 2016, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wang, X.; Zhang, X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 390–402. [Google Scholar] [CrossRef]
- Jiang, L.; Guli, J.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Sun, F.; Li, Z. Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia. Ecol. Indic. 2021, 129, 107912. [Google Scholar] [CrossRef]
- Wang, S.P.; Ding, Y.J.; Jiang, F.Q.; Anjum, M.N.; Iqbal, M. Defining Indices for the Extreme Snowfall Events and Analyzing their Trends in Northern Xinjiang, China. J. Meteorol. Soc. Jpn. 2017, 95, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Li, Q.; Liu, W.; Liu, X.; Li, L.; De Maeyer, P. Spatiotemporal variability of snowfall and its concentration in northern Xinjiang, Northwest China. Theor. Appl. Climatol. 2020, 139, 1247–1259. [Google Scholar] [CrossRef]
- Balashova, Y.N.; Zhitomirskaya, O.; Semyonova, O. Climatologic Characterization of the Central Asian Republics; Hydrometeorological Publishing House: Saint Petersburg, Russia, 1960. (In Russian) [Google Scholar]
- Zhang, Y.; Jiang, F.; Wei, W.; Liu, M.; Wang, W.; Bai, L.; Li, X.; Wang, S. Changes in annual maximum number of consecutive dry and wet days during 1961–2008 in Xinjiang, China. Nat. Hazards Earth Syst. Sci. 2012, 12, 1353–1365. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Horion, S.; Tagesson, T.; Ehammer, A.; Ivits, E.; Rasmussen, K. Global-scale mapping of changes in ecosystem functioning from earth observation-based trends in total and recurrent vegetation. Glob. Ecol. Biogeogr. 2015, 24, 1003–1017. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. Hum. Policy Dimens. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Yin, G.; Hu, Z.; Chen, X.; Tiyip, T. Vegetation dynamics and its response to climate change in Central Asia. J. Arid Land 2016, 8, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Weedon, G.P.; Gomes, S.S.; Viterbo, P.P.; Shuttleworth, W.J.; Blyth, E.E.; Österle, H.H.; Adam, J.C.; Bellouin, N.N.; Boucher, O.O.; Best, M.M. Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century. J. Hydrometeorol. 2011, 12, 823–848. [Google Scholar] [CrossRef] [Green Version]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.L.; Ma, J.; Wu, L.F.; Xu, G.Q.; Li, Y.; Tang, L.S. Response of the herbaceous layer to snow variability at the south margin of the Gurbantonggut Desert of China. Chin. J. Plant Ecol. 2012, 36, 126–135. [Google Scholar] [CrossRef]
- Rigden, A.J.; Salvucci, G.D.; Entekhabi, D.; Gianotti, D.J.S. Partitioning Evapotranspiration Over the Continental United States Using Weather Station Data. Geophys. Res. Lett. 2018, 45, 9605–9613. [Google Scholar] [CrossRef]
- Deng, Y.H.; Wang, S.J.; Bai, X.Y.; Luo, G.J.; Wu, L.H.; Chen, F.; Wang, J.F.; Li, C.J.; Yang, Y.J.; Hu, Z.Y.; et al. Vegetation greening intensified soil drying in some semi-arid and arid areas of the world. Agric. For. Meteorol. 2020, 292–293, 108103. [Google Scholar] [CrossRef]
- Li, X.Y.; He, Y.; Zeng, Z.Z.; Lian, X.; Wang, X.H.; Du, M.Y.; Jia, G.S.; Li, Y.N.; Ma, Y.M.; Tang, Y.H.; et al. Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agric. For. Meteorol. 2018, 259, 131–140. [Google Scholar] [CrossRef]
- Meng, X.Y.; Gao, X.; Li, S.Y.; Lei, J.Q. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.C.; Wang, Y.Y.; Fu, Y.S.H.; Xue, B.L.; Wang, G.Q.; Yu, J.S.; Zuo, D.P.; Xu, Z.X. Spatial heterogeneity of changes in vegetation growth and their driving forces based on satellite observations of the Yarlung Zangbo River Basin in the Tibetan Plateau. J. Hydrol. 2019, 574, 324–332. [Google Scholar] [CrossRef]
- Theil, H. A rank invariant method of linear and polynomial regression analysis: Part 3. Ned. Akad. Wetensch. Proc. 1950, 53, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of regression coefficient based on Kendalls tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–249. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975; p. 220. [Google Scholar]
- Garcia del Moral, L.F.; Rharrabti, Y.; Villegas, D.; Royo, C. Evaluation of grain yield and its components in durum wheat under Mediterranean conditions: An ontogenic approach. Agron. J. 2003, 95, 266–274. [Google Scholar] [CrossRef]
- Jia, J.S.; Deng, H.B.; Duan, J.; Zhao, J.Z. Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method-A case study in Henan Province, China. Ecol. Econ. 2009, 68, 2818–2824. [Google Scholar] [CrossRef]
- Suo, L.; Huang, M.; Zhang, Y.; Duan, L.; Shan, Y. Soil moisture dynamics and dominant controls at different spatial scales over semiarid and semi-humid areas. J. Hydrol. 2018, 562, 635–647. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Ren, Z.Q.; Li, S.Q. The influence of fluctuation of global temperature on precipitation in China. Q. J. Appl. Meteorol. 1994, 5, 333–339. [Google Scholar]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Propastin, P.A.; Kappas, M.; Muratova, N.R. Inter-Annual Changes in Vegetation Activities and Their Relationship to Temperature and Precipitation in Central Asia from 1982 to 2003. J. Environ. Inform. 2008, 12, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Shu, J.; Yin, J.; Yuan, X.; Jiaerheng, A.; Xiong, S.; He, P.; Liu, W. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 216–228. [Google Scholar] [CrossRef]
- Zhuang, X.C.; Tian, Z.F.; Li, B.Y. Change of characteristic index of daily snowfall in winter in Altay prefecture, Xinjiang. Arid Zone Res. 2014, 31, 463–471. [Google Scholar]
- Angert, A.; Biraud, S.; Bonfils, C.; Henning, C.C.; Buermann, W.; Pinzon, J.; Tucker, C.J.; Fung, I. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl. Acad. Sci. USA 2005, 102, 10823–10827. [Google Scholar] [CrossRef] [Green Version]
- Buermann, W.; Lintner, B.R.; Koven, C.D.; Angert, A.; Pinzon, J.E.; Tucker, C.J.; Fung, I.Y. The changing carbon cycle at Mauna Loa Observatory. Proc. Natl. Acad. Sci. USA 2007, 104, 4249–4254. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Hiyama, T.; Matsuo, K.; Ichii, K.; Iijima, Y.; Yamazaki, D. Accelerated continental-scale snowmelt and ecohydrological impacts in the four largest Siberian river basins in response to spring warming. Hydrol. Process. 2020, 34, 3867–3881. [Google Scholar] [CrossRef]
- Li, P.; Sayer, E.J.; Jia, Z.; Liu, W.; Wu, Y.; Yang, S.; Wang, C.; Yang, L.; Chen, D.; Bai, Y.; et al. Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Glob. Chang. Biol. 2020, 26, 3015–3027. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Guo, H.; Liu, D.; Zhao, Y.; Zhang, T.; Liu, Q.; Piao, S. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Chang. Biol. 2018, 24, 1651–1662. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Liu, H.; Ciais, P.; Li, Y.; Xu, C.; Babst, F.; Guo, W.; Hao, B.; Wang, P.; et al. Uneven winter snow influence on tree growth across temperate China. Glob. Chang. Biol. 2019, 25, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fu, B.; Liu, Y.; Li, Y.; Feng, X.; Wang, S. Response of vegetation to drought in the Tibetan Plateau: Elevation differentiation and the dominant factors. Agric. For. Meteorol. 2021, 306, 108468. [Google Scholar] [CrossRef]
- Rita, A.; Camarero, J.J.; Nolè, A.; Borghetti, M.; Brunetti, M.; Pergola, N.; Serio, C.; Vicente-Serrano, S.M.; Tramutoli, V.; Ripullone, F. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Glob. Chang. Biol. 2020, 26, 851–863. [Google Scholar] [CrossRef]
- Piao, S.; Nan, H.; Huntingford, C.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Peng, S.; Ahlström, A.; Canadell, J.G.; Cong, N.; et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 2014, 5, 5018. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jiang, F.; Li, L.; Wang, G. Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. Int. J. Climatol. 2011, 31, 1679–1693. [Google Scholar] [CrossRef]
- Bontemps, S.; Defourny, P.; Van Bogaert, E.; Kalogirou, V.; Arino, O. GLOBCOVER: Products Description and Validation Report; UCL: Leuven, Belgium; ESA: Paris, France, 2011. [Google Scholar]
- Editorial Committee for Vegetation Map of China. Vegetation Atlas of China; Science Press: Beijing, China, 2001. [Google Scholar]
- Xu, X.R. Remote Sensing Physics; The Peking University Publishing House: Beijing, China, 2005; p. 176. [Google Scholar]
- Wang, Z.X.; Suo, Y.X.; Lin, X.; Shi, R.X. Advances in AVHRR global time serials: PAL-GIMMS-LTDR. Resour. Sci. 2008, 30, 1252–1260. [Google Scholar]
- Feng, T.; Huang, F.; Hao, J.; Li, L. Spatial distribution of surface soil moisture and soil conductivity in the Kunes Valley. Arid Zone Res. 2020, 37, 1457–1468. [Google Scholar]
- Zhou, Y.; Zhang, L.; Fensholt, R.; Wang, K.; Vitkovskaya, I.; Tian, F. Climate Contributions to Vegetation Variations in Central Asian Drylands: Pre- and Post-USSR Collapse. Remote Sens. 2015, 7, 2449–2470. [Google Scholar] [CrossRef] [Green Version]
/Decade | April | May | June | July | August | September | GS |
---|---|---|---|---|---|---|---|
Farmland | 0.003 | 0.015 * | 0.011 * | 0.001 | 0.001 | 0.004 | 0.007 |
Forestland | 0.004 | 0.014 * | 0.007 * | 0.002 | 0.004 | 0.004 | 0.007 |
Grassland | 0.003 | 0.015 * | 0.006 | −0.003 | −0.001 | 0.002 | 0.006 |
Sparse vegetation | 0.004 | 0.001 | −0.004 | −0.004 * | −0.004 * | −0.002 | −0.001 |
Whole Region | 0.004 | 0.008 * | −0.001 | −0.003 | −0.002 | 0.001 | 0.002 |
Cropland | Forestland | Grassland | Sparse Vegetation | Whole Region | |
---|---|---|---|---|---|
Mean value (mm) | 50.75 | 52.86 | 49.89 | 19.16 | 32.98 |
Variation (mm a−1) | 0.04 | 0.14 | 0.14 | 0.01 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Feng, T.; Guo, Z.; Li, L. Impact of Winter Snowfall on Vegetation Greenness in Central Asia. Remote Sens. 2021, 13, 4205. https://doi.org/10.3390/rs13214205
Huang F, Feng T, Guo Z, Li L. Impact of Winter Snowfall on Vegetation Greenness in Central Asia. Remote Sensing. 2021; 13(21):4205. https://doi.org/10.3390/rs13214205
Chicago/Turabian StyleHuang, Farong, Ting Feng, Zengkun Guo, and Lanhai Li. 2021. "Impact of Winter Snowfall on Vegetation Greenness in Central Asia" Remote Sensing 13, no. 21: 4205. https://doi.org/10.3390/rs13214205
APA StyleHuang, F., Feng, T., Guo, Z., & Li, L. (2021). Impact of Winter Snowfall on Vegetation Greenness in Central Asia. Remote Sensing, 13(21), 4205. https://doi.org/10.3390/rs13214205