Connectivity Analysis Applied to Mesoscale Eddies in the Western Mediterranean Basin
Abstract
:1. Introduction
2. Data and Methods
2.1. Drifter Data and Pseudo-Eulerian Analysis of Drifter Velocities
2.2. Eddy Detection and Tracking Routines Outputs
2.3. Connectivity Analysis
3. Results
3.1. Drifter Connectivity Analysis
3.2. Anticyclonic Eddies Connectivity Analysis
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergamasco, A.; Malanotte-Rizzoli, P. The circulation of the Mediterranean Sea: A historical review of experimental investigations. Adv. Ocean. Limn. 2010, 1, 11–28. [Google Scholar] [CrossRef]
- Millot, C.; Taupier-Letage, I. Circulation in the Mediterranean Sea. In The Mediterranean Sea, The Handbook of Environmental Chemistry; Saliot, A., Ed.; Springer Publ.: Berlin, Germany, 2005; Volume 5K, pp. 29–66. [Google Scholar] [CrossRef]
- Fusco, G.; Manzella, G.M.R.; Cruzado, A.; Gačić, M.; Gasparini, G.P.; Kovačević, V.; Millot, C.; Tziavos, C.; Velasquez, Z.R.; Walne, A.; et al. Variability of mesoscale features in the Mediterranean Sea from XBT data analysis. Ann. Geophys. 2003, 21, 21–32. [Google Scholar] [CrossRef]
- Millot, C. Some features of the Algerian Current. J. Geophys. Res. Oceans. 1985, 90, 7169–7176. [Google Scholar] [CrossRef]
- Salas, J.; Millot, C.; Font, F.; García-Ladona, E. Analysis of mesoscale phenomena in the Algerian basin from drifting buoys and infrared images. Deep-Sea Res. 2002, 49, 245–266. [Google Scholar] [CrossRef]
- Puillat, I.; Taupier-Letage, I.; Millot, C. Algerian Eddies lifetime can near 3 years. J. Mar. Syst. 2002, 31, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Pessini, F.; Olita, A.; Cotroneo, Y.; Perilli, A. Mesoscale eddies in the Algerian Basin: Do they differ as a function of their formation site? Ocean Sci. 2018, 14, 669–688. [Google Scholar] [CrossRef] [Green Version]
- Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 1999, 20, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Send, U.; Font, J.; Krahmann, G.; Millot, C.; Rhein, M.; Tintoré, J. Recent advances in observing the physical oceanography of the western Mediterranean Sea. Prog. Oceanogr. 1999, 44, 37–64. [Google Scholar] [CrossRef]
- García, E.; Tintoré, J.; Pinot, J.M.; Font, J.; Manriquez, M. Surface circulation and dynamic of the Balearic Sea. In Seasonal and Interannual Variability of the Western Mediterranean Sea; La Viollette, P.E., Ed.; Coastal and Estuarine Studies Series; AGU Publ.: Washington, DC, USA, 1994; Volume 46, pp. 73–91. [Google Scholar] [CrossRef]
- Olita, A.; Sparnocchia, S.; Cusí, S.; Fazioli, L.; Sorgente, R.; Tintoré, J.; Ribotti, A. Observations of a phytoplankton spring bloom onset triggered by a density front in NW Mediterranean. Ocean Sci. 2014, 10, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Pinardi, N.; Zavatarelli, M.; Adani, M.; Coppini, G.; Fratianni, C.; Oddo, P.; Simoncelli, S.; Tonani, M.; Lyubartsev, V.; Dobricic, S.; et al. The Mediterranean Sea large scale low frequency ocean variability from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 2015, 132, 318–332. [Google Scholar] [CrossRef]
- Sannino, G.; Carillo, A.; Iacono, R.; Napolitano, E.; Palma, M.; Pisacane, G.; Struglia, M.V. Modelling Present and Future Climate in the Mediterranean Sea: A Focus on Sea-Level Change. Clim. Dyn. 2021. [Google Scholar] [CrossRef]
- Olita, A.; Iermano, I.; Fazioli, L.; Ribotti, A.; Tedesco, C.; Pessini, F.; Sorgente, R. Impact of currents on surface flux computations and their feedback on dynamics at regional scales. Ocean Sci. 2015, 11, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Cotroneo, Y.; Budillon, G.; Fusco, G.; Spezie, G. Cold core eddies and fronts of the Antarctic Circumpolar Current south of New Zealand from in situ and satellite data. J. Geophys. Res. Ocean. 2013, 118, 2653–2666. [Google Scholar] [CrossRef]
- Chen, G.; Han, G. Contrasting short-lived with long-lived mesoscale eddies in the global ocean. J. Geophys. Res. Ocean. 2019, 124, 3149–3167. [Google Scholar] [CrossRef]
- Morrow, R.; Le Traon, P.-Y. Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Adv. Space Res. 2012, 50, 1062–1076. [Google Scholar] [CrossRef] [Green Version]
- Menna, M.; Cotroneo, Y.; Falco, P.; Zambianchi, E.; Di Lemma, R.; Poulain, P.-M.; Fusco, G.; Budillon, G. Response of the Pacific Sector of the Southern Ocean to wind stress variability from 1995 to 2017. J. Geophys. Res. Oceans. 2020, 125, e2019JC015696. [Google Scholar] [CrossRef]
- Zambianchi, E.; Trani, M.; Falco, P. Lagrangian Transport of Marine Litter in the Mediterranean Sea. Front. Environ. Sci. 2017, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic mass transport by mesoscale eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef]
- Tarry, D.R.; Essink, S.; Pascual, A.; Ruiz, S.; Poulain, P.-M.; Özgökmen, T.; Centurioni, L.R.; Farrar, J.T.; Shcherbina, A.; Mahadevan, A.; et al. Frontal convergence and vertical velocity measured by drifters in the Alboran Sea. J. Geophys. Res. Ocean. 2021, 126, e2020JC016614. [Google Scholar] [CrossRef]
- Fuda, L.; Millot, C.; Taupier-Letage, I.; Send, U.; Bocognano, J.M. XBT monitoring of a meridian section across the Western Mediterranean Sea. Deep-Sea Res. I 2000, 47, 2191–2218. [Google Scholar] [CrossRef]
- Troupin, C.; Ruiz, S.; Olita, A.; Casas, B.; Margirier, F.; Poulain, P.-M.; Notarstefano, G.; Torner, M.; Fernàndez, J.; Rùjula, M.; et al. The AlborEX dataset: Sampling of sub-mesoscale features in the Alboran Sea. Earth Syst. Sci. Data 2019, 11, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Lévy, M.; Mémery, L.; Madec, G. Combined effects of mesoscale processes and atmospheric high-frequency variability on the spring bloom in the MEDOC area. Deep Sea Res. I 2000, 47, 27–53. [Google Scholar] [CrossRef]
- Stegner, A.; Briac, L.V. Atlas of 3D Eddies in the Mediterranean Sea from 2000 to 2017, 2019. ESPRI/IPSL, MISTRALS Database. Available online: https://mistrals.sedoo.fr/ (accessed on 8 July 2021).
- Cotroneo, Y.; Aulicino, G.; Ruiz, S.; Pascual, A.; Budillon, G.; Fusco, G.; Tintorè, J. Glider and satellite high resolution monitoring of a mesoscale eddy in the Algerian basin: Effects on the mixed layer depth and biochemistry. J. Mar. Syst. 2016, 162, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Cotroneo, Y.; Aulicino, G.; Ruiz, S.; Sánchez Román, A.; Torner Tomàs, M.; Pascual, A.; Fusco, G.; Heslop, E.; Tintoré, J.; Budillon, G. Glider data collected during the Algerian Basin Circulation Unmanned Survey from 2014 to 2016. Earth Syst. Sci. Data. 2019, 11, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Aulicino, G.; Cotroneo, Y.; Ruiz, S.; Sanchez Roman, A.; Pascual, A.; Fusco, G.; Tintorè, J.; Budillon, G. Monitoring the Alge-rian Basin through glider observations, satellite altimetry and numerical simulations along a SARAL/AltiKa track. J. Mar. Syst. 2018, 179, 55–71. [Google Scholar] [CrossRef]
- Barceló-Llull, B.; Pascual, A.; Sánchez-Román, A.; Cutolo, E.; d’Ovidio, F.; Fifani, G.; Ser-Giacomi, E.; Ruiz, S.; Mason, E.; Cyr, F.; et al. Fine-Scale Ocean Currents Derived From in situ Observations in Anticipation of the Upcoming SWOT Altimetric Mission. Front. Mar. Sci. 2018, 8, 679844. [Google Scholar] [CrossRef]
- Pessini, F.; Cotroneo, Y.; Olita, A.; Sorgente, R.; Ribotti, A.; Jendersie, S.; Perilli, A. Life history of an anticyclonic eddy in the Algerian basin from altimetry data, tracking algorithm and in situ observations. J. Mar. Syst. 2020, 207, 103346. [Google Scholar] [CrossRef]
- Aulicino, G.; Cotroneo, Y.; Lacava, T.; Sileo, G.; Fusco, G.; Carlon, R.; Satriano, V.; Pergola, N.; Tramutoli, V.; Budillon, G. Results of the first wave glider experiment in the southern Tyrrhenian Sea. Adv. Oceanogr. Limnol. 2016, 7, 16–35. [Google Scholar] [CrossRef] [Green Version]
- Aulicino, G.; Cotroneo, Y.; Olmedo, E.; Cesarano, C.; Fusco, G.; Budillon, G. In Situ and Satellite Sea Surface Salinity in the Algerian Basin Observed Through ABACUS Glider Measurements and SMOS Enhanced Products. Remote Sens. 2019, 11, 1361. [Google Scholar] [CrossRef] [Green Version]
- Rio, M.-H.; Pascual, A.; Poulain, P.-M.; Menna, M.; Barceló, B.; Tintoré, J. Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci. 2014, 10, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.E. Drifter observations of coastal surface currents during CODE: The statistical and dynamical views. J. Geophys. Res. Ocean. 1985, 90, 4756–4772. [Google Scholar] [CrossRef]
- Olascoaga, M.J.; Miron, P.; Paris, C.; Pérez-Brunius, P.; Pérez-Portela, R.; Smith, R.H.; Vaz, A. Connectivity of pulley ridge with remote locations as inferred from satellite-tracked drifter trajectories. J. Geophys. Res. Ocean. 2018, 123, 5742–5750. [Google Scholar] [CrossRef]
- Miron, P.; Beron-Vera, F.J.; Olascoaga, M.J.; Sheinbaum, J.; Pérez-Brunius, P.; Froyland, G. Lagrangian dynamical geography of the Gulf of Mexico. Sci. Rep. 2017, 7, 7021. [Google Scholar] [CrossRef] [Green Version]
- Carlson, D.; Griffa, A.; Zambianchi, E.; Suaria, G.; Corgnati, L.; Magaldi, M.; Poulain, P.-M.; Russo, A.; Bellomo, L.; Mantovani, C.; et al. Observed and modeled surface Lagrangian transport between coastal regions in the Adriatic Sea with implications for marine protected areas. Cont. Shelf Res. 2016, 118, 23–48. [Google Scholar] [CrossRef]
- medSVP. Available online: http://nodc.ogs.trieste.it/nodc/metadata/doidetails?doi=10.6092/7a8499bc-c5ee-472c-b8b5-03523d1e73e9 (accessed on 2 July 2021).
- Mauerhan, T.A. Drifter Observations of the Mediterranean Sea Surface Circulation. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2000; p. 111. Available online: http://hdl.handle.net/10945/26496 (accessed on 16 June 2021).
- Gerin, R.; Poulain, P.-M.; Taupier-Letage, I.; Millot, C.; Ben Ismail, S.; Sammari, C. Surface circulation in the Eastern Mediterranean using Lagrangian drifters (2005–2007). Ocean Sci. 2009, 5, 559–574. [Google Scholar] [CrossRef] [Green Version]
- Salas, J.; Garcia-Ladona, E.; Font, J. Statistical analysis of the surface circulation in the Algerian Current using Lagrangian buoys. J. Mar. Syst. 2001, 29, 69–85. [Google Scholar] [CrossRef]
- Poulain, P.-M.; Gerin, R.; Rixen, M.; Zanasca, P.; Teixeira, J.; Griffa, A.; Molcard, A.; De Marte, M.; Pinardi, N. Aspects of the surface circulation in the Liguro-Provençal basin and Gulf of Lion as observed by satellite-tracked drifters (2007–2009). Boll. Geofis. Teor. Appl. 2012, 53, 261–279. [Google Scholar]
- Menna, M.; Poulain, P.-M.; Zodiatis, G.; Gertman, I. On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data. Deep-Sea Res. I 2012, 65, 46–58. [Google Scholar] [CrossRef]
- La Casce, J.H. Statistics from Lagrangian observations. Prog. Oceanogr. 2008, 77, 1–29. [Google Scholar] [CrossRef]
- Falco, P.; Zambianchi, E. Near-surface structure of the Antarctic Circumpolar Current derived from World Ocean Circulation Experiment drifter data. J. Geophys. Res. Ocean. 2011, 116, C05003. [Google Scholar] [CrossRef] [Green Version]
- Poulain, P.-M.; Bussani, A.; Gerin, R.; Jungwirth, R.; Mauri, E.; Menna, M.; Notarstefano, G. Mediterranean surface currents measured with drifters: From basin to subinertial scales. Oceanography 2013, 26, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Falco, P.; Griffa, A.; Poulain, P.-M.; Zambianchi, E. Transport properties in the Adriatic Sea as deduced from drifter data. J. Phys. Oceanogr. 2000, 30, 2055–2071. [Google Scholar] [CrossRef]
- Poulain, P.-M.; Zambianchi, E. Surface circulation in the central Mediterranean Sea as deduced from Lagrangian drifters in the 1990s. Cont. Shelf Res. 2007, 27, 981–1001. [Google Scholar] [CrossRef]
- Zambianchi, E.; Griffa, A. Effects of finite scales of turbulence on dispersion estimates. J. Mar. Res. 1994, 52, 129–148. [Google Scholar] [CrossRef]
- Poulain, P.-M.; Niiler, P.P. Statistical analysis of the surface circulation in the California Current System using satellite-tracked drifters. J. Phys. Oceanogr. 1989, 19, 1588–1603. [Google Scholar] [CrossRef] [Green Version]
- Halo, I.; Backeberg, B.; Penven, P.; Ansorge, I.; Reason, C.; Ullgren, J.E. Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models. Deep-Sea Res. I 2014, 100, 38–53. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; De Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34, L15606. [Google Scholar] [CrossRef]
- Le Vu, B.; Stegner, A.; Arsouze, T. Angular Momentum Eddy Detection and tracking Algorithm (AMEDA) and its application to coastal eddy formation. J. Atmos. Ocean. Tech. 2017, 35, 739–762. [Google Scholar] [CrossRef]
- Penven, P. Detection and Tracking Algorithm. 2011. Available online: https://sourceforge.net/projects/eddydetect/ (accessed on 15 May 2021).
- SSALTO/DUACS User Handbook. Available online: http://cmems-resources.cls.fr/documents/PUM/CMEMS-SL-PUM-008-032-051.pdf (accessed on 2 July 2021).
- Holzer, M.; Hall, T.M. Transit-time and tracer-age distributions in geophysical flows. J. Atmos. Sci. 2000, 57, 3539–3558. [Google Scholar] [CrossRef] [Green Version]
- Celentano, P.; Falco, P.; Zambianchi, E. Surface connection between the Ionian Sea and different areas of the Mediterranean derived from drifter data. Deep-Sea Res. I 2020, 166, 103431. [Google Scholar] [CrossRef]
- Castiglione, P.; Cencini, M.; Vulpiani, A.; Zambianchi, E. Transport in finite size systems: An exit time approach. Chaos 1999, 9, 871–879. [Google Scholar] [CrossRef] [Green Version]
- López, C.; Hernández-García, E.; Piro, O.; Vulpiani, A.; Zambianchi, E. Population dynamics advected by chaotic flows: A discrete-time map approach. Chaos 2001, 11, 397. [Google Scholar] [CrossRef] [Green Version]
- Berline, L.; Rammou, A.-M.; Doglioli, A.; Molcard, A.; Petrenko, A. A Connectivity-Based Eco-Regionalization Method of the Mediterranean Sea. PLoS ONE 2014, 9, e111978. [Google Scholar] [CrossRef] [Green Version]
- Poulain, P.-M.; Menna, M.; Mauri, E. Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr. 2012, 42, 973–990. [Google Scholar] [CrossRef]
- Taupier-Letage, I.; Millot, C. Surface circulation in the Algerian basin during 1984. Oceanol. Acta 1984, 9, 79–85. Available online: https://archimer.ifremer.fr/doc/00267/37811/ (accessed on 7 May 2021).
- Pinot, J.-M.; López-Jurado, J.L.; Riera, M. The CANALES experiment (1996–98). Interannual, seasonal, and mesoscale variability of the circulation in the Balearic Channels. Prog. Oceanogr. 2002, 55, 335–370. [Google Scholar] [CrossRef]
- Pujol, M.-I.; Larnicol, G. Mediterranean Sea eddy kinetic energy variability from11 years of altimetric data. J. Mar. Syst. 2005, 58, 121–142. [Google Scholar] [CrossRef]
- Ruiz, S.; Pascual, A.; Garau, B.; Faugère, Y.; Alvarez, A.; Tintoré, J. Mesoscale dynamics of the Balearic Front, integrating glider, ship and satellite data. J. Mar. Syst. 2009, 78, S3–S16. [Google Scholar] [CrossRef]
- Trani, M.; Falco, P.; Zambianchi, E.; Sallée, J.B. Aspects of the Antarctic circumpolar current dynamics investigated with drifter data. Progr. Oceanogr. 2014, 125, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, S.; Kolahchi, A.A.; Ablain, M.; Adusumilli, S.; Bhowmick, S.A.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L.; et al. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Testor, P.; Send, U.; Gascard, J.; Millot, C.; Taupier-Letage, I.; Béranger, K. The mean circulation of the southwestern Mediterranean Sea: Algerian Gyres. J. Geophys. Res. 2005, 110, C11017. [Google Scholar] [CrossRef] [Green Version]
- Olita, A.; Sorgente, R.; Ribotti, A.; Fazioli, L.; Perilli, A. Pelagic primary production in the Algero-Provençal Basin by means of multisensor satellite data: Focus on interannual variability and its drivers. Ocean Dyn. 2011, 61, 1005–1016. [Google Scholar] [CrossRef]
- Elhmaidi, D.; Nefzi, H.; Carton, X.; Lili, T. Particle dispersion in the Western Mediterranean basin. Open Oceanogr. J. 2010, 4, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Nefzi, H.; Elhmaidi, D.; Carton, X. Turbulent dispersion properties from a model simulation of the western Mediterranean Sea. Ocean Sci. 2014, 10, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Aulicino, G.; Cesarano, C.; Zerrouki, M.; Ruiz, S.; Budillon, G.; Cotroneo, Y. On the use of ABACUS high resolution glider observations for the assessment of phytoplankton ocean biomass from CMEMS model products. Ecol. Modell. 2021, 455, 109619. [Google Scholar] [CrossRef]
- Rivaro, P.; Ianni, C.; Langone, L.; Ori, C.; Aulicino, G.; Cotroneo, Y.; Saggiomo, M.; Mangoni, O. Physical and biological forcing of mesoscale variability in the carbonate system of the Ross Sea (Antarctica) during summer 2014. J. Mar. Syst. 2017, 166, 144–158. [Google Scholar] [CrossRef]
- Rivaro, P.; Ardini, F.; Grotti, M.; Aulicino, G.; Cotroneo, Y.; Fusco, G.; Mangoni, O.; Bolinesi, F.; Saggiomo, M.; Celussi, M. Mesoscale variability related to iron speciation in a coastal Ross Sea area (Antarctica) during summer 2014. Chem. Ecol. 2019, 35, 1–19. [Google Scholar] [CrossRef]
- Rivaro, P.; Ianni, C.; Raimondi, L.; Manno, C.; Sandrini, S.; Castagno, P.; Cotroneo, Y.; Falco, P. Analysis of Physical and Biogeochemical Control Mechanisms on Summertime Surface Carbonate System Variability in the Western Ross Sea (Antarctica) Using in Situ and Satellite Data. Remote Sens. 2019, 11, 238. [Google Scholar] [CrossRef] [Green Version]
- Misic, C.; Covazzi Harriague, A.; Mangoni, O.; Aulicino, G.; Castagno, P.; Cotroneo, Y. Effects of physical constraints on the liability of POM during summer in the Ross Sea. J. Mar. Syst. 2017, 166, 132–143. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Miyazawa, Y.; Béguer-Pon, M. The dynamical impact of mesoscale eddies on migration of Japanese eel larvae. PLoS ONE 2017, 12, e0172501. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.J.; Kim, J.K. Upwelling and eddies affect connectivity among local populations of the goldeye ockfish, Sebastes thompsoni (Pisces, Scorpaenoidei). Ecol. Evol. 2018, 8, 4387–4402. [Google Scholar] [CrossRef] [PubMed]
- Devine, B.; Fennell, S.; Themelis, D.; Fisher, J.A.D. Influence of anticyclonic, warm-core eddies on mesopelagic fish assemblages in the Northwest Atlantic Ocean. Deep Sea Res. I 2021, 173, 103555. [Google Scholar] [CrossRef]
- Cózar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.Á.; Irigoien, X.; Duarte, C.M. Plastic Accumulation in the Mediterranean Sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef] [Green Version]
- Suaria, G.; Aliani, S. Floating debris in the Mediterranean Sea. Mar. Pollut. Bull. 2014, 86, 494–504. [Google Scholar] [CrossRef]
- Deudero, S.; Alomar, C. Mediterranean marine biodiversity under threat: Reviewing influence of marine litter on species. Mar. Poll. Bull. 2015, 98, 58–68. [Google Scholar] [CrossRef] [PubMed]
BOX | EXPORT | IMPORT | ||
---|---|---|---|---|
Eddies | AREAS | Eddies | AREAS | |
A1 | 13 | 4 | 3 | 1 |
A2 | 49 | 7 | 27 | 11 |
A3 | 28 | 6 | 56 | 11 |
A4 | 65 | 19 | 32 | 4 |
A5 | 58 | 10 | 102 | 12 |
A6 | 20 | 7 | 27 | 7 |
B1 | 93 | 20 | 70 | 11 |
B2 | 91 | 20 | 55 | 11 |
B3 | 61 | 20 | 62 | 12 |
B4 | 48 | 12 | 40 | 18 |
B5 | 47 | 8 | 33 | 9 |
B6 | 42 | 8 | 46 | 8 |
C1 | 47 | 15 | 62 | 17 |
C2 | 100 | 14 | 142 | 18 |
C3 | 106 | 15 | 138 | 18 |
C4 | 134 | 15 | 82 | 12 |
C5 | 96 | 13 | 38 | 7 |
C6 | 56 | 15 | 30 | 7 |
C7 | 132 | 17 | 102 | 10 |
C8 | 139 | 17 | 158 | 19 |
C9 | 123 | 17 | 151 | 19 |
C10 | 91 | 20 | 84 | 19 |
D1 | 15 | 9 | 17 | 10 |
D2 | 57 | 18 | 78 | 20 |
D3 | 95 | 15 | 115 | 19 |
E1 | 42 | 12 | 51 | 19 |
E2 | 11 | 7 | 16 | 9 |
E3 | 0 | 0 | 0 | 0 |
F1 | 0 | 0 | 0 | 0 |
F2 | 4 | 3 | 5 | 4 |
F3 | 7 | 3 | 9 | 6 |
F4 | 13 | 6 | 35 | 17 |
F5 | 33 | 15 | 50 | 24 |
F6 | 12 | 7 | 16 | 7 |
G1 | 17 | 6 | 8 | 6 |
G2 | 11 | 6 | 7 | 3 |
G3 | 16 | 7 | 19 | 7 |
G4 | 21 | 6 | 28 | 6 |
G5 | 16 | 4 | 11 | 4 |
G6 | 4 | 2 | 4 | 2 |
G7 | 18 | 4 | 12 | 5 |
G8 | 9 | 4 | 19 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotroneo, Y.; Celentano, P.; Aulicino, G.; Perilli, A.; Olita, A.; Falco, P.; Sorgente, R.; Ribotti, A.; Budillon, G.; Fusco, G.; et al. Connectivity Analysis Applied to Mesoscale Eddies in the Western Mediterranean Basin. Remote Sens. 2021, 13, 4228. https://doi.org/10.3390/rs13214228
Cotroneo Y, Celentano P, Aulicino G, Perilli A, Olita A, Falco P, Sorgente R, Ribotti A, Budillon G, Fusco G, et al. Connectivity Analysis Applied to Mesoscale Eddies in the Western Mediterranean Basin. Remote Sensing. 2021; 13(21):4228. https://doi.org/10.3390/rs13214228
Chicago/Turabian StyleCotroneo, Yuri, Paolo Celentano, Giuseppe Aulicino, Angelo Perilli, Antonio Olita, Pierpaolo Falco, Roberto Sorgente, Alberto Ribotti, Giorgio Budillon, Giannetta Fusco, and et al. 2021. "Connectivity Analysis Applied to Mesoscale Eddies in the Western Mediterranean Basin" Remote Sensing 13, no. 21: 4228. https://doi.org/10.3390/rs13214228
APA StyleCotroneo, Y., Celentano, P., Aulicino, G., Perilli, A., Olita, A., Falco, P., Sorgente, R., Ribotti, A., Budillon, G., Fusco, G., & Pessini, F. (2021). Connectivity Analysis Applied to Mesoscale Eddies in the Western Mediterranean Basin. Remote Sensing, 13(21), 4228. https://doi.org/10.3390/rs13214228