How Much Shallow Coral Habitat Is There on the Great Barrier Reef?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Geomorphic Zonation and Benthic Category Maps
2.3. Calculating Reef Extent
2.4. Calculating Coral Habitat
3. Results
3.1. Geomorphic Zonation and Benthic Category Maps
3.2. Reef Extent
3.3. Benthic Categories across the GBR
3.4. Coral Habitat
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamylton, S.; Duce, S.; Vila-Concejo, A.; Roelfsema, C.M.; Phinn, S.R.; Carvalho, R.C.; Shaw, E.C.; Joyce, K.E. Estimating regional coral reef calcium carbonate production from remotely sensed seafloor maps. Remote Sens. Environ. 2017, 201, 88–98. [Google Scholar] [CrossRef]
- Brown, C.; Smith, S.J.; Lawton, P.; Anderson, J.T. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 2011, 92, 502–520. [Google Scholar] [CrossRef]
- Kostylev, V.E.; Todd, B.J.; Fader, G.B.J.; Courtney, R.C.; Cameron, G.D.M.; Pickrill, R.A. Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Mar. Ecol. Prog. Ser. 2001, 219, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Lecours, V.; Devillers, R.; Schneider, D.C.; Lucieer, V.L.; Brown, C.; Edinger, E.N. Spatial scale and geographic context in benthic habitat mapping: Review and future directions. Mar. Ecol. Prog. Ser. 2015, 535, 259–284. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Sameoto, J.A.; Smith, S.J. Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean management. J. Sea Res. 2012, 72, 1–13. [Google Scholar] [CrossRef]
- Lee, C.K.; Nicholson, E.; Duncan, C.; Murray, N.J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv. Biol. 2021, 35, 325–335. [Google Scholar] [CrossRef]
- Pandolfi, J.M.; Bradbury, R.H.; Sala, E.; Hughes, T.P.; Bjorndal, K.A.; Cooke, R.G.; McArdle, D.; McClenachan, L.; Newman, M.J.H.; Paredes, G.; et al. Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems. Science 2003, 301, 955–958. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.P.; Kerry, J.T.; Baird, A.H.; Connolly, S.R.; Dietzel, A.; Eakin, C.M.; Heron, S.; Hoey, A.S.; Hoogenboom, M.O.; Liu, G.; et al. Global warming transforms coral reef assemblages. Nat. Cell Biol. 2018, 556, 492–496. [Google Scholar] [CrossRef]
- Knowlton, N.; Jackson, J.B.C. Shifting Baselines, Local Impacts, and Global Change on Coral Reefs. PLoS Biol. 2008, 6, e54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellwood, D.R.; Pratchett, M.S.; Morrison, T.; Gurney, G.; Hughes, T.P.; Álvarez-Romero, J.; Day, J.C.; Grantham, R.; Grech, A.; Hoey, A.S.; et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 2019, 236, 604–615. [Google Scholar] [CrossRef]
- Pittman, S.; Christensen, J.; Caldow, C.; Menza, C.; Monaco, M. Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecol. Model. 2007, 204, 9–21. [Google Scholar] [CrossRef]
- Anthony, K.; Bay, L.K.; Costanza, R.; Firn, J.; Gunn, J.; Harrison, P.; Heyward, A.; Lundgren, P.; Mead, D.; Moore, T.; et al. New interventions are needed to save coral reefs. Nat. Ecol. Evol. 2017, 1, 1420–1422. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.; Weeks, S.; Skirving, W.J.; Strong, A.E.; Eakin, C.M.; Christensen, T.R.L.; et al. Remote Sensing of Coral Reefs for Monitoring and Management: A Review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Andréfouët, S.; Riegl, B. Remote sensing: A key tool for interdisciplinary assessment of coral reef processes. Coral Reefs 2004, 23, 1–4. [Google Scholar] [CrossRef]
- Andréfouët, S. Coral reef habitat mapping using remote sensing: A user vs producer perspective. implications for research, management and capacity building. J. Spat. Sci. 2008, 53, 113–129. [Google Scholar] [CrossRef]
- Goodman, J.; Purkis, S.; Phinn, S.R. (Eds.) Coral Reef Remote Sensing: A Guide for Multi-Level Sensing Mapping and Assessment; Springer: Berlin, Germany, 2013. [Google Scholar]
- Purkis, S.J.; Gleason, A.C.R.; Purkis, C.R.; Dempsey, A.C.; Renaud, P.G.; Faisal, M.; Saul, S.; Kerr, J.M. High-resolution habitat and bathymetry maps for 65,000 sq. km of Earth’s remotest coral reefs. Coral Reefs 2019, 38, 467–488. [Google Scholar] [CrossRef] [Green Version]
- Lyons, M.; Roelfsema, C.; Kennedy, E.; Kovacs, E.; Borrego, R.; Markey, K.; Roe, M.; Yuwono, D.; Harris, D.; Phinn, S.; et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 2020, 6, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Roelfsema, C.M.; Kovacs, E.M.; Ortiz, J.C.; Callaghan, D.P.; Hock, K.; Mongin, M.; Johansen, K.; Mumby, P.J.; Wettle, M.; Ronan, M.; et al. Habitat maps to enhance monitoring and management of the Great Barrier Reef. Coral Reefs 2020, 39, 1039–1054. [Google Scholar] [CrossRef]
- Miller, I.R.; Jonker, M.J.; Osborne, K. Scuba search technique: Surveys of agents of coral mortality. In Long-Term Monitoring of the Great Barrier Reef-Standard Operational Procedure Number 8; Australian Institute of Marine Science: Townsville, Australia, 2020; p. 30. [Google Scholar]
- AIMS. Australian Institute of Marine Science Reef Monitoring. 2021. Available online: https://apps.aims.gov.au/reef-monitoring/ (accessed on 18 June 2021).
- Harris, P.T.; Bridge, T.C.; Beaman, R.J.; Webster, J.M.; Nichol, S.L.; Brooke, B.P. Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J. Mar. Sci. 2013, 70, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Bridge, T.; Beaman, R.; Done, T.; Webster, J. Predicting the Location and Spatial Extent of Submerged Coral Reef Habitat in the Great Barrier Reef World Heritage Area, Australia. PLoS ONE 2012, 7, e48203. [Google Scholar] [CrossRef] [Green Version]
- Bozec, Y.-M.; Hock, K.; Mason, R.A.B.; Baird, M.E.; Castro-Sanguino, C.; Condie, S.A.; Puotinen, M.; Thompson, A.; Mumby, P.J. Cumulative Impacts across Australia’s Great Barrier Reef: A Mechanistic Evaluation. 2020. Available online: https://www.biorxiv.org/content/10.1101/2020.12.01.406413v1 (accessed on 28 October 2021).
- Condie, S.A.; Anthony, K.R.N.; Babcock, R.C.; Baird, M.E.; Beeden, R.; Fletcher, C.S.; Gorton, R.; Harrison, D.; Hobday, A.J.; Plagányi, É.E.; et al. Large-scale interventions may delay decline of the Great Barrier Reef. R. Soc. Open Sci. 2021, 8, 201296. [Google Scholar] [CrossRef]
- Jupp, D.L.; Mayo, K.K.; Kuchler, D.A.; Claasen, D.V.R.; Kenchington, R.A.; Guerin, P.R. Remote sensing for planning and managing the great barrier reef of Australia. Photogrammetria 1985, 40, 21–42. [Google Scholar] [CrossRef]
- Lewis, A.; Lowe, D.; Otto, J. Remapping the Great Barrier Reef in Position Magazine; South pacific Science Press International: Alexandria, Australia, 2003; pp. 46–49. [Google Scholar]
- Neil, D.T.; Phinn, S.R.; Ahmad, W. Reef zonation and cover mapping with Landsat Thematic Mapper data: Intraand inter-reef patterns in the southern Great Barrier Reef region. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, HI, USA, 24–28 July 2000; IEEE: Piscataway, NJ, USA, 2002; Volume 5, pp. 1886–1888. [Google Scholar]
- Leon, J.; Woodroffe, C. Improving the synoptic mapping of coral reef geomorphology using object-based image analysis. Int. J. Geogr. Inf. Sci. 2011, 25, 949–969. [Google Scholar] [CrossRef]
- Joyce, K.E.; Phinn, S.R.; Roelfsema, C.M.; Neil, D.T.; Dennison, W.C. Combining Landsat ETM plus and Reef Check classifications for mapping coral reefs: A critical assessment from the southern Great Barrier Reef, Australia. Coral Reefs 2004, 23, 21–25. [Google Scholar] [CrossRef]
- Hamylton, S.; Carvalho, R.C.; Duce, S.; Roelfsema, C.M.; Vila-Concejo, A. Linking pattern to process in reef sediment dynamics at Lady Musgrave Island, southern Great Barrier Reef. Sedimentology 2016, 63, 1634–1650. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Parslow, J.; Clementson, L.; Skirving, W.; Done, T.J.; Wakeford, M.; Miller, I. Hyperspectral detection of coral reef bottom types. In Proceedings of the Ocean Optics XV, Adelaide, Australia, 21–25 August 2000. [Google Scholar]
- Hamylton, S. Will Coral Islands Maintain Their Growth over the Next Century? A Deterministic Model of Sediment Availability at Lady Elliot Island, Great Barrier Reef. PLoS ONE 2014, 9, e94067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andréfouët, S.; Berkelmans, R.; Odriozola, L.; Done, T.; Oliver, J.; Müller-Karger, F. Choosing the appropriate spatial resolution for monitoring coral bleaching events using remote sensing. Coral Reefs 2002, 21, 147–154. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Dietz, J.B.; Berkelmans, R.; Andréfouët, S.; Skirving, W.; Strong, A.E.; Tuttle, B.T. Satellite observation of Keppel Islands (Great Barrier Reef) 2002 coral bleaching using IKONOS data. Coral Reefs 2004, 23, 123–132. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.; Brando, V.; Giardino, C.; Kutser, T.; Phinn, S.; Mumby, P.; Barrilero, O.; Laporte, J.; Koetz, B. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 2018, 216, 598–614. [Google Scholar] [CrossRef]
- Phinn, S.R.; Roelfsema, C.M.; Mumby, P.J. Benthic cover map of Heron Reef derived from a high-spatial-resolution multi-spectra Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int. J. Remote Sens. 2012, 33, 768–3797. [Google Scholar] [CrossRef]
- Roelfsema, C.; Kovacs, E.; Ortiz, J.C.; Wolff, N.; Callaghan, D.; Wettle, M.; Ronan, M.; Hamylton, S.; Mumby, P.; Phinn, S. Coral reef habitat mapping: A combination of object-based image analysis and ecological modelling. Remote Sens. Environ. 2018, 208, 27–41. [Google Scholar] [CrossRef]
- Roelfsema, C.; Kovacs, E.; Roos, P.; Terzano, D.; Lyons, M.; Phinn, S. Use of a semi-automated object based analysis to map benthic composition, Heron Reef, Southern Great Barrier Reef. Remote Sens. Lett. 2018, 9, 324–333. [Google Scholar] [CrossRef]
- Kerrigan, B.; Breen, D.; Death, G.; Day, J.; Fernandes, L.; Tobin, R.; Dobbs, K. Classifying the Biodiversity of the Great Barrier Reef World Heritage Area. In Great Barrier Reef Marine Park Authorithy; Australia, C.O., Ed.; Research Publication: Townsville, Australia, 2010; p. 55. [Google Scholar]
- Hopley, D.; Parnell, K.E.; Isdale, P.J. The Great Barrier Reef Marine Park: Dimensions and Regional Patterns. Aust. Geogr. Stud. 1989, 27, 47–66. [Google Scholar] [CrossRef]
- GBRMPA. Great Barrier Reef (GBR) Features (Reef Boundaries, QLD Mainland, Islands, Cays and Rocks; GBRMPA: Townsville, Australia, 2013.
- Baird, M.; Cherukuru, N.; Jones, E.; Margvelashvili, N.; Mongin, M.; Oubelkheir, K.; Ralph, P.; Rizwi, F.; Robson, B.; Schroeder, T.; et al. Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: Comparison with satellite data. Environ. Model. Softw. 2016, 78, 79–96. [Google Scholar] [CrossRef]
- Baird, M.E.; Mongin, M.; Rizwi, F.; Bay, L.K.; Cantin, N.E.; Soja-Woźniak, M.; Skerratt, J. A mechanistic model of coral bleaching due to temperature-mediated light-driven reactive oxygen build-up in zooxanthellae. Ecol. Model. 2018, 386, 20–37. [Google Scholar] [CrossRef]
- Hock, K.; Wolff, N.H.; Condie, S.A.; Anthony, K.R.N.; Mumby, P.J. Connectivity networks reveal the risks of crown-of-thorns starfish outbreaks on the Great Barrier Reef. J. Appl. Ecol. 2014, 51, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S.; Shoemaker, K.; Pratchett, M.S.; Mellin, C. COTSMod: A spatially explicit metacommunity model of outbreaks of crown-of-thorns starfish and coral recovery. Adv. Mar. Biol. 2020, 87, 259–290. [Google Scholar] [PubMed]
- Mellin, C.; Matthews, S.; Anthony, K.R.; Brown, S.; Caley, M.J.; Johns, K.A.; Osborne, K.; Puotinen, M.; Thompson, A.; Wolff, N.H.; et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob. Chang. Biol. 2019, 25, 2431–2445. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.S.; Castro-Sanguino, C.; Condie, S.; Bozec, Y.; Hock, K.; Gladish, D.W.; Mumby, P.J.; Westcott, D.A. Regional-Scale Modelling Capability for Assessing Crown-of-Thorns Starfish Control. Strategies on the Great Barrier Reef; Australian Government’s National Environmental Science Program: Cairns, Australia, 2021; p. 59.
- Hock, K.; Wolff, N.; Ortiz, J.C.; Condie, S.A.; Anthony, K.; Blackwell, P.G.; Mumby, P.J. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 2017, 15, e2003355. [Google Scholar] [CrossRef]
- Madin, J.S.; Madin, E.M.P. The full extent of the global coral reef crisis. Conserv. Biol. 2015, 29, 1724–1726. [Google Scholar] [CrossRef] [PubMed]
- Kleypas, J.A.; McManus, J.W.; Meñez, L.A.B. Environmental Limits to Coral Reef Development: Where Do We Draw the Line? Am. Zool. 1999, 39, 146–159. [Google Scholar] [CrossRef]
- Kennedy, E.; Roelfsema, C.M.; Lyons, M.B.; Kovacs, E.; Borrego-Acevedo, R.; Roe, M.; Phinn, S.R.; Larsen, K.; Murray, N.; Yuwono, D.; et al. Reef Cover, a coral reef classification for global habitat mapping from remote sensing. Sci. Data 2021, 8, 1–20. [Google Scholar]
- Heege, T.; Bogner, A.; Pinnel, N. Mapping of submerged aquatic vegetation with a physically based process chain. In Remote Sensing of the Ocean and Sea Ice 2003; Bostater, C.R., Santoleri, R., Eds.; SPIE: Bellingham, WA, USA, 2004; pp. 43–50. [Google Scholar]
- Kobryn, H.T.; Wouters, K.; Beckley, L.E.; Heege, T. Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor. PLoS ONE 2013, 8, e70105. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, D.P.; Leon, J.X.; Saunders, M.I. Wave modelling as a proxy for seagrass ecological modelling: Comparing fetch and process-based predictions for a bay and reef lagoon. Estuar. Coast. Shelf Sci. 2015, 153, 108–120. [Google Scholar] [CrossRef]
- Roelfsema, C.M.; Lyons, M.; Murray, N.; Kovacs, E.M.; Kennedy, E.; Markey, K.; Borrego-Acevedo, R.; Ordoñez Alvarez, A.; Say, C.; Tudman, P.; et al. Workflow for the Generation of Expert-Derived Training and Validation Data: A View to Global Scale Habitat Mapping. Front. Mar. Sci. 2021, 8, 228. [Google Scholar] [CrossRef]
- Roelfsema, C.M.; Phinn, S.R. Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps. J. Appl. Remote Sens. 2010, 4, 1–28. [Google Scholar] [CrossRef] [Green Version]
- González-Rivero, M.; Beijbom, O.; Rodriguez-Ramirez, A.; Holtrop, T.; González-Marrero, Y.; Ganase, A.; Roelfsema, C.; Phinn, S.; Hoegh-Guldberg, O. Scaling up Ecological Measurements of Coral Reefs Using Semi-Automated Field Image Collection and Analysis. Remote Sens. 2016, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Lyons, M.; Kovacs, E.; Borrego-Acevedo, R.; Canto, R.; Harris, D.; Kennedy, E.V.; Markey, K.; Murray, N.; Ordoñez Alvarez, A.; Roe, M.; et al. GBR and Torres Straight Benthic Type Reference Sample. 2021. Available online: https://doi.org/10.6084/m9.figshare.1446476428/10/2021 (accessed on 11 July 2021). [CrossRef]
- Lyons, M.; Kovacs, E.; Borrego-Acevedo, R.; Canto, R.; Harris, D.; Kennedy, E.V.; Markey, K.; Murray, N.; Ordoñez Alvarez, A.; Roe, M.; et al. GBR and Torres Straight Geomorphic Type Reference Sample. 2021. Available online: https://doi.org/10.6084/m9.figshare.1446475528/10/2021 (accessed on 11 July 2021). [CrossRef]
- Lyons, M.B.; Keith, D.A.; Phinn, S.R.; Mason, T.J.; Elith, J. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens. Environ. 2018, 208, 145–153. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; Lewis Publishers: Boca Rotan, FL, USA, 1999; p. 137. [Google Scholar]
- GBRMPA. Reef Knowledge System-Interactive Map: Geomorphic and Benthic. 2021. Available online: https://reefiq.gbrmpa.gov.au/ReefKnowledgeSystem/Reef-tools/Interactive-maps/ReefExplorer (accessed on 20 June 2021).
- Hochberg, E.J.; Atkinson, M.J. Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra. Remote Sens. Environ. 2003, 85, 174–189. [Google Scholar] [CrossRef]
- Nurjannah, N.; Teruhisa, K.; Hiroya, Y.; Gulam, A.; Chair, R.; AS, M.A. Spectral response of the coral rubble, living corals, and dead corals: Study case on the Spermonde Archipelago, Indonesia. In Remote Sensing of the Marine Environment II; SPIE: Bellingham, WA, USA, 2012; Volume 8525, p. 85251A. [Google Scholar]
- Benfield, S.L.; Guzman, H.M.; Mair, J.M.; Young, J.A.T. Mapping the distribution of coral reefs and associated sublittoral habitats in Pacific Panama: A comparison of optical satellite sensors and classification methodologies. Int. J. Remote Sens. 2007, 28, 5047–5070. [Google Scholar] [CrossRef]
- Phinn, S.R.; Roelfsema, C.M.; Mumby, P.J. Multi-scale image segmentation for mapping coral reef geomorphic and benthic community zone. Int. J. Remote Sens. 2012, 33, 3768–3797. [Google Scholar] [CrossRef]
- Hopley, D. The Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs; John Wiley & Sons: Brisbane, Australia, 1982; p. 453. [Google Scholar]
- Andréfouët, S. Keynote Address: The Diversity and Extent of Planet Earth’s Modern Coral Reefs as View from Space. In International Coral Reef Symposium; ICRS: Okinawa, Japan, 2004. [Google Scholar]
- Foo, S.; Asner, G.P. Scaling Up Coral Reef Restoration Using Remote Sensing Technology. Front. Mar. Sci. 2019, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, E.; Roelfsema, C.; Lyons, M.; Zhao, S.; Phinn, S. Seagrass habitat mapping: How do Landsat 8 OLI, Sentinel-2, ZY-3A, and Worldview-3 perform? Remote Sens. Lett. 2018, 9, 686–695. [Google Scholar] [CrossRef]
- Atlas, A.C. Imagery, Maps and Monitoring of the World’s Tropical Coral Reefs; Zenodo: Genève, Switzerland, 2020. [Google Scholar]
- Beaman, R.J. Project 3D-GBR: A High-Resolution Depth Model for the Great Barrier Reef and Coral Sea, in Final Report; MTSRF: Cairns, Australia, 2010. [Google Scholar]
- Obura, D.O.; Aeby, G.; Amornthammarong, N.; Appeltans, W.; Bax, N.; Bishop, J.; Brainard, R.E.; Chan, S.; Fletcher, P.; Gordon, T.A.C.; et al. Coral Reef Monitoring, Reef Assessment Technologies, and Ecosystem-Based Management. Front. Mar. Sci. 2019, 6, 580. [Google Scholar] [CrossRef] [Green Version]
- Castro-Sanguino, C.; Ortiz, J.C.; Thompson, A.; Wolff, N.H.; Ferrari, R.; Robson, B.; Magno-Canto, M.M.; Puotinen, M.; Fabricius, K.E.; Uthicke, S. Reef state and performance as indicators of cumulative impacts on coral reefs. Ecol. Indic. 2021, 123, 107335. [Google Scholar] [CrossRef]
- Sweatman, H.; Delean, S.; Syms, C. Assessing loss of coral cover on Australia’s Great Barrier Reef over two decades, with implications for longer-term trends. Coral Reefs 2011, 30, 521–531. [Google Scholar] [CrossRef]
- Tamir, R.; Eyal, G.; Kramer, N.; Laverick, J.H.; Loya, Y. Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere 2019, 10, e02839. [Google Scholar] [CrossRef] [Green Version]
Reef Extent (km2) 2D Planar Area | Reef Extent (km2) 3D Surface Area | Method | GBRMP Region | Reference |
---|---|---|---|---|
20,055 | Not reported | Manual Landsat imagery and labeling Geomorphic Reef type | Inshore, mid-shore and offshore but variable/unknown depth | [41] |
20,679 | Not reported | Delineation Landsat Satellite imagery and contextual manual editing to create outline of main reef area | Inshore, mid-shore and offshore but variable/unknown depth | [27] |
25,600 | Not reported | Assessment of depth [22] in combination with substrate maps | Inshore, mid-shore and offshore 20–200 m depth | [73] |
13,351 | 28,261 | Maps derived from Sentinel 2 using machine learning and object-based analysis, using depth and geomorphic classes within reef to calculate 3D surface area | Mid-shore and offshore down to 20 m depth | This study |
(95% CI: 8203–17,731) | (95% CI: 17,267–37,716) | |||
8837 | 18,388 | Maps derived from Sentinel 2 using machine learning and object-based analysis, using depth and benthic classes within reef to calculate 3D surface area | Mid-shore and offshore down to 10 m depth | This study |
(95% CI: 6089–11,175) | (95% CI: 13,127–22,722) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roelfsema, C.M.; Lyons, M.B.; Castro-Sanguino, C.; Kovacs, E.M.; Callaghan, D.; Wettle, M.; Markey, K.; Borrego-Acevedo, R.; Tudman, P.; Roe, M.; et al. How Much Shallow Coral Habitat Is There on the Great Barrier Reef? Remote Sens. 2021, 13, 4343. https://doi.org/10.3390/rs13214343
Roelfsema CM, Lyons MB, Castro-Sanguino C, Kovacs EM, Callaghan D, Wettle M, Markey K, Borrego-Acevedo R, Tudman P, Roe M, et al. How Much Shallow Coral Habitat Is There on the Great Barrier Reef? Remote Sensing. 2021; 13(21):4343. https://doi.org/10.3390/rs13214343
Chicago/Turabian StyleRoelfsema, Chris M., Mitchell B. Lyons, Carolina Castro-Sanguino, Eva M. Kovacs, David Callaghan, Magnus Wettle, Kathryn Markey, Rodney Borrego-Acevedo, Paul Tudman, Meredith Roe, and et al. 2021. "How Much Shallow Coral Habitat Is There on the Great Barrier Reef?" Remote Sensing 13, no. 21: 4343. https://doi.org/10.3390/rs13214343
APA StyleRoelfsema, C. M., Lyons, M. B., Castro-Sanguino, C., Kovacs, E. M., Callaghan, D., Wettle, M., Markey, K., Borrego-Acevedo, R., Tudman, P., Roe, M., Kennedy, E. V., Gonzalez-Rivero, M., Murray, N., & Phinn, S. R. (2021). How Much Shallow Coral Habitat Is There on the Great Barrier Reef? Remote Sensing, 13(21), 4343. https://doi.org/10.3390/rs13214343