Bathymetry Derivatives and Habitat Data from Hyperspectral Imagery Establish a High-Resolution Baseline for Managing the Ningaloo Reef, Western Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Remote Sensing Data Acquisition
2.2. Field Data Collection
2.3. Image Classification
2.4. Topographic and Geomorphic Classifications
2.5. Topographic Classification and Development of Ruleset
2.6. Geomorphic Classification and Development of Ruleset
2.7. Validation
2.8. Comparison with Allen Atlas
3. Results
3.1. Overview of Marine Habitat Distribution at the Ningaloo Reef
3.2. Topographic Classification
3.3. Geomorphic Classification
3.4. Validation
3.5. Comparison with the Allen Atlas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spalding, M.D.; Ravilious, C.; Green, E.P. World Atlas of Coral Reefs; University of California Press: Berkeley, CA, USA, 2001. [Google Scholar]
- Vanderklift, M.A.; Babcock, R.; Barnes, P.B.; Cresswell, A.K.; Feng, M.; Haywood, M.D.E.; Holmes, T.H.; Lavery, P.S.; Pillans, R.D.; Smallwood, C.B.; et al. The oceanography and marine ecology of Ningaloo, a World Heritage Area. In Oceanography and Marine Biology, an Annual Review; Hawkins, S.J., Allcock, A.L., Bates, A.E., Evans, A.J., Firth, L.B., McQuaid, C.D., Russell, B.D., Smith, I.P., Swearer, S.E., Todd, P.A., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2021; Volume 58, pp. 143–178. [Google Scholar]
- Wilson, B. Coral Reefs of the North West Shelf. In The Biogeography of the Australian North West Shelf; Wilson, B., Ed.; Elsevier: Boston, MA, USA, 2013; pp. 107–201. [Google Scholar]
- Collins, L.B.; Zhu, Z.R.; Wyrwoll, K.-H.; Eisenhauer, A. Late Quaternary structure and development of the northern Ningaloo Reef, Australia. Sediment. Geol. 2003, 159, 81–94. [Google Scholar] [CrossRef]
- CALM.; MPRA. Management Plan for the Ningaloo Marine Park and Muiron Islands Marine Management Area 2005–2015; Conservation and Land Management and Marine Parks and Reserves Authority, Government of Western Australia: Perth, Australia, 2005; p. 111.
- UNESCO. World Heritage Convention. Available online: http://whc.unesco.org/en/decisions/4278 (accessed on 20 January 2022).
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. Cost-effectiveness of remote sensing for coastal management. In Remote Sensing Handbook for Tropical Coastal Management; Edwards, A.J., Ed.; UNESCO: Paris, France, 2000; p. 316. [Google Scholar]
- Purkis, S.J. Remote sensing tropical coral reefs: The view from above. Annu. Rev. Mar. Sci. 2018, 10, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Foo, S.A.; Asner, G.P. Scaling up coral reef restoration using remote sensing technology. Front. Mar. Sci. 2019, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Allen Coral Atlas. Imagery, Maps and Monitoring of the World’s Tropical Coral Reefs. 2020. Available online: https://zenodo.org/record/3833246#.YlPOodNBxPY (accessed on 20 January 2022).
- Teague, J.; Megson-Smith, D.A.; Allen, M.J.; Day, J.C.C.; Scott, T.B. A review of current and new optical techniques for coral monitoring. Oceans 2022, 3, 30–45. [Google Scholar] [CrossRef]
- Green, E.P.; Mumby, P.; Edwards, A.J.; Clark, C.D. Remote Sensing for Tropical Coastal Management; UNESCO: Paris, France, 2000; p. 316. [Google Scholar]
- Hedley, J.; Roelfsema, C.; Chollett, I.; Harborne, A.; Heron, S.; Weeks, S.; Skirving, W.; Strong, A.; Eakin, C.; Christensen, T.; et al. Remote sensing of coral reefs for monitoring and management: A review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Vaughn, N.R.; Heckler, J.; Knapp, D.E.; Balzotti, C.; Shafron, E.; Martin, R.E.; Neilson, B.J.; Gove, J.M. Large-scale mapping of live corals to guide reef conservation. Proc. Natl. Acad. Sci. USA 2020, 117, 33711–33718. [Google Scholar] [CrossRef]
- Bancroft, K.P.; Sheridan, M.W. The Major Marine Habitats of Ningaloo Marine Park and the Proposed Southern Extension; Marine Conservation Branch, Department of Conservation and Land Management: Perth, Australia, 2000; p. 35.
- Cassata, L.; Collins, L.B. Coral reef communities, habitats, and substrates in and near sanctuary zones of Ningaloo Marine Park. J. Coast. Res. 2008, 24, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Kobryn, H.T.; Wouters, K.; Beckley, L.E. Habitats of the Ningaloo Reef and adjacent coastal areas determined through hyperspectral imagery. Ningaloo Collab. Clust. Final. Rep. 2011, 1b, 210. [Google Scholar]
- Kobryn, H.T.; Wouters, K.; Beckley, L.E.; Heege, T. Ningaloo Reef: Shallow marine habitats mapped using a hyperspectral sensor. PLoS ONE 2013, 8, e70105. [Google Scholar] [CrossRef] [Green Version]
- Kobryn, H.T.; Beckley, L.E.; Cramer, V.; Newsome, D. An assessment of coastal land cover and off-road vehicle tracks adjacent to Ningaloo Marine Park, north-western Australia. Ocean. Coast. Manag. 2017, 145, 94–105. [Google Scholar] [CrossRef]
- Hochberg, E.J.; Atkinson, M.J. Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra. Remote Sens. Environ. 2003, 85, 174–189. [Google Scholar] [CrossRef]
- Purkis, S. A ‘reef-up’ approach to classifying coral habitats from IKONOS imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1375–1390. [Google Scholar] [CrossRef]
- Mishra, D.R.; Narumalani, S.; Rundquist, D.; Lawson, M.; Perk, R. Enhancing the detection and classification of coral reef and associated benthic habitats: A hyperspectral remote sensing approach. J. Geophys. Res. 2007, 112, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Mumby, P.J.; Edwards, A.J. Mapping marine environments with IKONOS imagery: Enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens. Environ. 2002, 82, 248–257. [Google Scholar] [CrossRef]
- Andréfouët, S.; Zubia, M.; Payri, C. Mapping and biomass estimation of the invasive brown algae Turbinaria ornata (Turner) J. Agardh and Sargassum mangarevense (Grunow) Setchell on heterogeneous Tahitian coral reefs using 4-meter resolution IKONOS satellite data. Coral Reefs 2004, 23, 26. [Google Scholar] [CrossRef]
- Peneva, E.; Griffith, J.A.; Carter, G.A. Seagrass mapping in the Northern Gulf of Mexico using airborne hyperspectral imagery: A comparison of classification methods. J. Coast. Res. 2008, 24, 850–856. [Google Scholar] [CrossRef]
- Turner, J.A.; Babcock, R.C.; Hovey, R.; Kendrick, G.A. Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps? Estuar. Coast. Shelf Sci. 2018, 204, 149–163. [Google Scholar] [CrossRef]
- Lowe, R.J.; Pivan, X.; Falter, J.; Symonds, G.; Gruber, R. Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats. Sci. Adv. 2016, 2, e1600825. [Google Scholar] [CrossRef] [Green Version]
- Davies, H.N.; Beckley, L.E.; Kobryn, H.T.; Lombard, A.T.; Radford, B.; Heyward, A. Integrating climate change resilience features into the incremental refinement of an existing marine park. PLoS ONE 2016, 11, e0161094. [Google Scholar] [CrossRef] [Green Version]
- Smallwood, C.B.; Beckley, L.E.; Moore, S.A.; Kobryn, H.T. Assessing patterns of recreational use in large marine parks: A case study from Ningaloo Marine Park, Australia. Ocean. Coast. Manag. 2011, 54, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Babcock, R.C.; Bustamante, R.H.; Fulton, E.A.; Fulton, D.J.; Haywood, M.D.E.; Hobday, A.J.; Kenyon, R.; Matear, R.J.; Plagányi, E.E.; Richardson, A.J.; et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 2019, 6, 1–14. [Google Scholar] [CrossRef]
- Molony, B.W.; Thomson, D.P.; Feng, M. What can we learn from the 2010/11 Western Australian marine heatwave to better understand risks from the one forecast in 2020/21? Front. Mar. Sci. 2021, 8, 145. [Google Scholar] [CrossRef]
- Heege, T.; Fischer, J. Sun glitter correction in remote sensing imaging spectrometry. In Proceedings of the SPIE Ocean Optics XV, Monte Carlo, Monaco, 16–20 October 2000. [Google Scholar]
- Heege, T.; Häse, C.; Pinnel, N. Airborne multispectral remote sensing in shallow and deep waters. Backscatter 2003, 14, 17–19. [Google Scholar]
- Heege, T.; Fischer, J. Mapping of water constituents in Lake Constance using multispectral airborne scanner data and a physically based processing scheme. Can. J. Remote Sens. 2004, 30, 77–86. [Google Scholar] [CrossRef]
- Cerdeira-Estrada, S.; Heege, T.; Kolb, M.; Ohlendorf, S.; Uribe, A.; Muller, A.; Garza, R.; Ressl, R.; Aguirre, R.; Marino, I.; et al. Benthic habitat and bathymetry mapping of shallow waters in Puerto Morelos reefs using remote sensing with a physics based data processing. In Proceedings of the 2012 IEEE International, Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 4383–4386. [Google Scholar]
- Ohlendorf, S.; Müller, A.; Heege, T.; Cerdeira-Estrada, S.; Kobryn, H.T. Bathymetry mapping and sea floor classification using multispectral satellite data and standardized physics-based data processing. In Proceedings of the SPIE 8175, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Prague, Czech Republic, 19–22 September 2011; p. 817503. [Google Scholar] [CrossRef] [Green Version]
- McCoy, R.M. Field Methods in Remote Sensing; The Guilford Press: New York, NY, USA, 2005; p. 159. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kendall, M.S.; Miller, T. The influence of thematic and spatial resolution on maps of a coral reef ecosystem. Mar. Geod. 2008, 31, 75–102. [Google Scholar] [CrossRef]
- Roelfsema, C.M.; Lyons, M.B.; Castro-Sanguino, C.; Kovacs, E.M.; Callaghan, D.; Wettle, M.; Markey, K.; Borrego-Acevedo, R.; Tudman, P.; Roe, M.; et al. How Much Shallow Coral Habitat Is There on the Great Barrier Reef? Remote Sens. 2021, 13, 4343. [Google Scholar] [CrossRef]
- Mayorga-Martínez, M.; Bello-Pineda, J.; Perales-Valdivia, H.; Pérez-España, H.; Heyman, W.D. Characterizing geomorphology of mesophotic coral reef ecosystems in the southwestern Gulf of Mexico: Implications for conservation and management. Front. Mar. Sci. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Turner, J.A.; Babcock, R.C.; Hovey, R.; Kendrick, G.A. AUV-based classification of benthic communities of the Ningaloo shelf and mesophotic areas. Coral Reefs 2018, 37, 763–778. [Google Scholar] [CrossRef]
- Roelfsema, C.; Kovacs, E.; Ortiz, J.C.; Wolff, N.H.; Callaghan, D.; Wettle, M.; Ronan, M.; Hamylton, S.M.; Mumby, P.J.; Phinn, S. Coral reef habitat mapping: A combination of object-based image analysis and ecological modelling. Remote Sens. Environ. 2018, 208, 27–41. [Google Scholar] [CrossRef]
- Fulton, C.J.; Depczynski, M.; Holmes, T.H.; Noble, M.M.; Radford, B.; Wernberg, T.; Wilson, S.K. Sea temperature shapes seasonal fluctuations in seaweed biomass within the Ningaloo coral reef ecosystem. Limnol. Oceanogr. 2014, 59, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.K.; Fulton, C.J.; Depczynski, M.; Holmes, T.H.; Noble, M.M.; Radford, B.; Tinkler, P. Seasonal changes in habitat structure underpin shifts in macroalgae-associated tropical fish communities. Mar. Biol. 2014, 161, 2597–2607. [Google Scholar] [CrossRef]
- Vanderklift, M.A.; Berham, D.; Haywood, M.; Lozano-Montes, H.M.; McCallum, R.; McLaughlin, J.; McMahon, K.; Mortimer, N.; Lavery, P.S. Natural Dynamics: Understanding Natural Dynamics of Seagrasses of the North West of Western Australia; Western Australian Marine Science Institution: Perth, Australia, 2017; p. 55. [Google Scholar]
- Westlake, E.L.; Bessey, C.; Fisher, R.; Thomson, D.P.; Haywood, M.D.E. Environmental factors and predator abundance predict the distribution and occurrence of two sympatric urchin species at Ningaloo Reef, Western Australia. Mar. Freshw. Res. 2021, 72, 1711–1721. [Google Scholar] [CrossRef]
- Downie, R.A.; Babcock, R.C.; Thomson, D.P.; Vanderklift, M.A. Density of herbivorous fish and intensity of herbivory are influenced by proximity to coral reefs. Mar. Ecol. Prog. Ser. 2013, 482, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Taebi, S.; Lowe, R.J.; Pattiaratchi, C.B.; Ivey, G.N.; Symonds, G.; Brinkman, R. Nearshore circulation in a tropical fringing reef system. J. Geophys. Res. Ocean. 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Moore, J.A.Y.; Bellchambers, L.M.; Depczynski, M.R.; Evans, R.D.; Evans, S.N.; Field, S.N.; Friedman, K.J.; Gilmour, J.P.; Holmes, T.H.; Middlebrook, R.; et al. Unprecedented Mass Bleaching and Loss of Coral across 12° of Latitude in Western Australia in 2010–11. PLoS ONE 2012, 7, e51807. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, J.P.; Cook, K.L.; Ryan, N.M.; Puotinen, M.L.; Green, R.H.; Shedrawi, G.; Hobbs, J.-P.A.; Thomson, D.P.; Babcock, R.C.; Buckee, J.; et al. The state of Western Australia’s coral reefs. Coral Reefs 2019, 38, 651–667. [Google Scholar] [CrossRef]
- Jonker, M.; Johns, K.; Osborne, K. Surveys of benthic reef communities using underwater digital photography and counts of juvenile corals. In Long-Term Monitoring of the Great Barrier Reef Standard Operation Procedure, No 10; Australian Institute of Marine Science: Townsville, Australia, 2008; p. 85. [Google Scholar]
Name | Description |
---|---|
East facing | Aspect: 45–135° |
North facing | Aspect: 315–360° and 0–45° |
South facing | Aspect: 135–225° |
West facing | Aspect: 225–315° |
Flat | Slope: 0–30° |
Steep | Slope: 30–90° |
Shallow | Depth: 0–5 m |
Deep | Depth > 5 m |
Category | Muiron Islands | Point Maud | Gnaraloo Bay | |||
---|---|---|---|---|---|---|
This Study | Allen Atlas | This Study | Allen Atlas | This Study | Allen Atlas | |
Coral/algae | 629.0 | 192.3 | 898.6 | 326.0 | 623.4 | 162.5 |
Sand + rock + rubble | 13.1 | 24.5 | 148.6 | 310.9 | 45.0 | 90.9 |
Seagrass | 0.0 | 1.1 | 0.0 | 5.6 | 0.0 | 29.5 |
Total area mapped * | 642.08 | 262.20 | 1047.14 | 809.80 | 668.41 | 330.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobryn, H.T.; Beckley, L.E.; Wouters, K. Bathymetry Derivatives and Habitat Data from Hyperspectral Imagery Establish a High-Resolution Baseline for Managing the Ningaloo Reef, Western Australia. Remote Sens. 2022, 14, 1827. https://doi.org/10.3390/rs14081827
Kobryn HT, Beckley LE, Wouters K. Bathymetry Derivatives and Habitat Data from Hyperspectral Imagery Establish a High-Resolution Baseline for Managing the Ningaloo Reef, Western Australia. Remote Sensing. 2022; 14(8):1827. https://doi.org/10.3390/rs14081827
Chicago/Turabian StyleKobryn, Halina T., Lynnath E. Beckley, and Kristin Wouters. 2022. "Bathymetry Derivatives and Habitat Data from Hyperspectral Imagery Establish a High-Resolution Baseline for Managing the Ningaloo Reef, Western Australia" Remote Sensing 14, no. 8: 1827. https://doi.org/10.3390/rs14081827
APA StyleKobryn, H. T., Beckley, L. E., & Wouters, K. (2022). Bathymetry Derivatives and Habitat Data from Hyperspectral Imagery Establish a High-Resolution Baseline for Managing the Ningaloo Reef, Western Australia. Remote Sensing, 14(8), 1827. https://doi.org/10.3390/rs14081827