Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precipitation Products: TAMSAT3, CHIRPS, and MSWEP
2.1.1. TAMSAT3
2.1.2. CHIRPS
2.1.3. MSWEP
2.2. Intercomparison Statistics
2.3. Cluster Analysis for Identification of Precipitation Seasonality Zones
3. Regions of Study and Precipitation Climatology
3.1. East Africa
3.2. Southern Africa
4. Results
4.1. Cluster Analysis and Precipitation Seasonality
4.2. Precipitation Product Intercomparisons at Daily Scale
4.2.1. Dichotomous Statistics: Rain Detection
4.2.2. Quantitative Intercomparisons at Daily Scale
4.3. Temporal Stability of the Rain Detection and Estimation Capabilities
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1265. [Google Scholar]
- Collier, P.; Conway, G.; Venables, T. Climate change and Africa. Oxf. Rev. Econ. Policy 2008, 24, 337–353. [Google Scholar] [CrossRef]
- Scheffran, J.; Brauch, H.G. Conflicts and security risks of climate change in the Mediterranean region. In The Mediterranean Sea: Its History and Present Challenges; Goffredo, S., Dubinsky, Z., Eds.; Springer Nature: Cham, Switzerland, 2014; pp. 625–640. [Google Scholar] [CrossRef]
- Otto, F.E.L.; Wolski, P.; Lehner, F.; Tebaldi, C.; van Oldenborgh, G.J.; Hogesteeger, S.; Singh, R.; Holden, P.; Fučkar, N.S.; Odoulami, R.C.; et al. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. 2018, 13, 124010. [Google Scholar] [CrossRef]
- Nicholson, S.E. A detailed look at the recent drought situation in the Greater Horn of Africa. J. Arid Environ. 2014, 103, 71–79. [Google Scholar] [CrossRef]
- Washington, R.; Harrison, M.; Conway, D.; Black, E.; Challinor, A.; Grimes, D.; Jones, R.; Morse, A.; Kay, G.; Todd, M. African climate change—Taking the shorter route. Bull. Amer. Meteor. Soc. 2006, 87, 1355–1366. [Google Scholar] [CrossRef]
- Maidment, R.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef] [Green Version]
- Levizzani, V.; Kidd, C.; Kirschbaum, D.B.; Kummerow, C.D.; Nakamura, K.; Turk, F.J. (Eds.) Satellite precipitation measurement: Volume 1. In Advances in Global Change Research; Springer Nature: Cham, Switzerland, 2020; Volume 67, 450p. [Google Scholar] [CrossRef]
- Levizzani, V.; Kidd, C.; Kirschbaum, D.B.; Kummerow, C.D.; Nakamura, K.; Turk, F.J. (Eds.) Satellite precipitation measurement: Volume 2. In Advances in Global Change Research; Springer Nature: Cham, Switzerland, 2020; Volume 69, 712p. [Google Scholar] [CrossRef]
- Roca, R.; Haddad, Z.S.; Akimoto, G.F.; Alexander, L.; Behrangi, A.; Huffman, G.J.; Kato, S.; Kidd, C.; Kirstetter, P.E.; Kubota, T.; et al. The joint IPWG/GEWEX precipitation assessment. WCRP Rep. 2021, 2, 125. [Google Scholar] [CrossRef]
- Cattani, E.; Merino, A.; Guijarro, J.; Levizzani, V. East Africa rainfall trends and variability 1983–2015 using three long-term satellite products. Remote Sens. 2018, 10, 931. [Google Scholar] [CrossRef] [Green Version]
- Awange, J.; Hu, K.; Khaki, M. The newly merged satellite remotely sensed, gauge and reanalysis-based multi-source weighted-ensemble precipitation: Evaluation over Australia and Africa (1981–2016). Sci. Total Environ. 2019, 670, 448–465. [Google Scholar] [CrossRef] [PubMed]
- Dezfuli, A.K.; Ichoku, C.M.; Huffman, G.J.; Mohr, K.I.; Selker, J.S.; van de Giesen, N.; Hochreutener, R.; Annor, F.O. Validation of IMERG precipitation in Africa. J. Hydrometeor. 2017, 18, 2817–2825. [Google Scholar] [CrossRef]
- Ayugi, B.; Tan, G.; Ullah, W.; Boiyo, R.; Ongoma, V. Inter-comparison of remotely sensed precipitation datasets over Kenya during 1998–2016. Atmos. Res. 2019, 225, 96–109. [Google Scholar] [CrossRef]
- Seyama, E.; Masocha, M.; Dube, T. Evaluation of TAMSAT satellite rainfall estimates for Southern Africa: A comparative approach. Phys. Chem. Earth Parts A/B/C 2019, 112, 141–153. [Google Scholar] [CrossRef]
- Toté, C.; Patricio, D.; Boogaard, H.; van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef] [Green Version]
- Akinsanola, A.A.; Ogunjobi, K.O.; Ajayi, V.O.; Adefisan, E.A.; Omotosho, J.A.; Sanogo, S. Comparison of five gridded precipitation products at climatological scales over West Africa. Meteorol. Atmos. Phys. 2017, 129, 669–689. [Google Scholar] [CrossRef]
- Satgé, F.; Defrance, D.; Sultan, B.; Bonnet, M.P.; Seyler, F.; Rouché, N.; Pierron, F.; Paturel, J.E. Evaluation of 23 gridded precipitation datasets across West Africa. J. Hydrol. 2020, 581, 124412. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E.; Fink, A.H.; Funk, C. Assessing recovery and change in West Africa’s rainfall regime from a 161-year record. Int. J. Climatol. 2018, 38, 3770–3786. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of satellite-based precipitation products over sparsely-gauged African river basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- The NCAR Command Language (Version 6.6.2). Boulder, Colorado: UCAR/NCAR/CISL/TDD. 2019. Available online: https://www.ncl.ucar.edu (accessed on 9 July 2020).
- Merino, A.; García-Ortega, E.; Navarro, A.; Fernández-González, S.; Tapiador, F.J.; Sánchez, J.L. Evaluation of gridded rain-gauge-based precipitation datasets: Impact of station density, spatial resolution, altitude gradient and climate. Int. J. Climatol. 2021, 41, 3027–3043. [Google Scholar] [CrossRef]
- Black, E.; Tarnavsky, E.; Maidment, R.; Greatrex, H.; Mookerjee, A.; Quaife, T.; Brown, M. The use of remotely sensed rainfall for managing drought risk: A case study of weather index insurance in Zambia. Remote Sens. 2016, 8, 342. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Black, E.; Asfaw, D.; Otu-Larbi, F. Monitoring drought in Ghana using TAMSAT-ALERT: A new decision support system. Weather 2017, 72, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Shukla, S.; Thiaw, W.M.; Rowland, J.; Hoell, A.; McNally, A.; Husak, G.; Novella, N.; Budde, M.; Peters-Lidard, C.; et al. Recognizing the famine early warning systems network: Over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Amer. Meteorol. Soc. 2019, 100, 1011–1027. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.; Allan, R.P.; Tarnavsky, E.; Stringer, M.; Hewison, T.; Roebeling, R.; Black, E. The 30 year TAMSAT African Rainfall Climatology And Time series (TARCAT) data set. J. Geophys. Res. Atmos. 2014, 119, 10–619. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.; McVicar, T.R.; Adler, R.F. MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M.; et al. A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteorol. Soc. Jpn. 2009, 87, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Ebert, E. WWRP/WGNE Joint Working Group on Forecast Verification and Research—Forecast Verification Methods across Time and Space Scales. Available online: https://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts. (accessed on 10 July 2020).
- Cattani, E.; Merino, A.; Levizzani, V. Evaluation of monthly satellite-derived precipitation products over East Africa. J. Hydrometeorol. 2016, 17, 2555–2573. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Meyer-Christoffer, A.; Becker, A.; Finger, P.; Schneider, U.; Ziese, M. GPCC Climatology Version 2018 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges Built on GTS-Based and Historical Data. Available online: https://opendata.dwd.de/climate_environment/GPCC/html/gpcc_normals_v2018_doi_download.html (accessed on 13 July 2020).
- DeGaetano, A. A Smirnov test—Based clustering algorithm with application to extreme precipitation data. Water Resour. Res. 1998, 34, 169–176. [Google Scholar] [CrossRef]
- Gong, X.; Richman, M.B. On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Clim. 1995, 8, 897–931. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E. A review of climate dynamics and climate variability in Eastern Africa. In The Limnology, Climatology, and Paleoclimatology of East African Lakes; Johnson, T.C., Odada, E.O., Eds.; Gordon and Breach: London, UK, 1996; pp. 25–56. [Google Scholar]
- Henderson, J.P. Some Aspects of Climate in Uganda: With Special Reference to Rainfall; East African Meteorological Department: Uganda, East Afica, 1949; p. 17.
- Nicholson, S.E. The ITCZ and the seasonal cycle over equatorial Africa. Bull. Am. Meteorol. Soc. 2018, 99, 337–348. [Google Scholar] [CrossRef]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The annual cycle of East African precipitation. J. Clim. 2015, 28, 2385–2404. [Google Scholar] [CrossRef] [Green Version]
- Berhane, F.; Zaitchik, B. Modulation of daily precipitation over East Africa by the Madden–Julian oscillation. J. Clim. 2014, 27, 6016–6034. [Google Scholar] [CrossRef]
- Hastenrath, S.; Polzin, D.; Mutai, C. Circulation mechanisms of Kenya rainfall anomalies. J. Clim. 2011, 24, 404–412. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Funk, C.; Fink, A.H. Rainfall over the African continent from the 19th through the 21st century. Glob. Planet. Chang. 2018, 165, 114–127. [Google Scholar] [CrossRef]
- Howard, E.; Washington, R.; Hodges, K.I. Tropical lows in Southern Africa: Tracks, rainfall contributions, and the role of ENSO. J. Geophys. Res. Atmos. 2019, 124, 11009–11032. [Google Scholar] [CrossRef]
- Griffiths, J.F. Mozambique. In World Survey of Climatology—Climates of Africa; Landsberg, H.E., Ed.; Elsevier Publishing Company: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 1972; Volume 10, pp. 389–408. ISBN 044440893-2. [Google Scholar]
- Randriamahefasoa, T.; Reason, C. Interannual variability of rainfall characteristics over southwestern Madagascar. Theor. Appl. Climatol. 2017, 128, 421–437. [Google Scholar] [CrossRef]
- Philippon, N.; Rouault, M.; Richard, Y.; Favre, A. The influence of ENSO on winter rainfall in South Africa. Int. J. Climatol. 2012, 32, 2333–2347. [Google Scholar] [CrossRef]
- Griffiths, J.F.; Ranaivoson, R. Madagascar. In World Survey of Climatology—Climates of Africa; Landsberg, H.E., Ed.; Elsevier Publishing Company: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 1972; Volume 10, pp. 461–500. ISBN 044440893-2. [Google Scholar]
- Shen, Z.; Yong, B.; Gourley, J.J.; Qi, W.; Lu, D.; Liu, J.; Ren, L.; Hong, Y.; Zhang, J. Recent global performance of the Climate Hazards group Infrared Precipitation (CHIRP) with Stations (CHIRPS). J. Hydrol. 2020, 591, 125284. [Google Scholar] [CrossRef]
- Marani, M.; Ignaccolo, M. A metastatistical approach to rainfall extremes. Adv. Water Resour. 2015, 79, 121–126. [Google Scholar] [CrossRef]
- Zorzetto, E.; Botter, G.; Marani, M. On the emergence of rainfall extremes from ordinary events. Geophys. Res. Lett. 2016, 43, 8076–8082. [Google Scholar] [CrossRef] [Green Version]
- Marra, F.; Borga, M.; Morin, E. A unified framework for extreme sub-daily precipitation frequency analyses based on ordinary events. Geophys. Res. Lett. 2020, 47, e2020GL090209. [Google Scholar] [CrossRef]
- Miniussi, A.; Marra, F. Estimation of extreme daily precipitation return levels at-site and in ungauged locations using the simplified MEV approach. J. Hydrol. 2021, 603, 126946. [Google Scholar] [CrossRef]
Name | Definition | Perfect Score |
---|---|---|
Probability of Detection | 1 | |
False Alarm Ration | 0 | |
BIAS Score | 1 | |
Hanssen and Kuipers discriminant | 1 |
Name | Definition | Perfect Score |
---|---|---|
Correlation Coeff. | 1 | |
Mean Error | 0 | |
Mean Absolute Error | 0 |
POD | FAR | BIAS | HK | |
---|---|---|---|---|
CHIRPS vs. TAMSAT3 | 0.72 ± 0.12 | 0.38 ± 0.15 | 1.22 ± 0.28 | 0.62 ± 0.11 |
CHIRPS vs. MSWEP | 0.60 ± 0.20 | 0.35 ± 0.16 | 0.94 ± 0.29 | 0.52 ± 0.15 |
MSWEP vs. TAMSAT3 | 0.66 ± 0.14 | 0.45 ± 0.20 | 1.50 ± 0.89 | 0.56 ± 0.12 |
POD | FAR | BIAS | HK | |
---|---|---|---|---|
CHIRPS vs. TAMSAT3 | 0.71 ± 0.15 | 0.29 ± 0.13 | 1.0 ± 0.18 | 0.65 ± 0.14 |
CHIRPS vs. MSWEP | 0.71 ± 0.11 | 0.27 ± 0.11 | 0.98 ± 0.13 | 0.64 ± 0.11 |
MSWEP vs. TAMSAT3 | 0.67 ± 0.16 | 0.34 ± 0.13 | 1.03 ± 0.19 | 0.59 ± 0.15 |
CC | ME [mm day–1] | MAE [mm day–1] | |
---|---|---|---|
CHIRPS vs. TAMSAT3 | 0.63 ± 0.08 | 0.06 ± 0.20 | 1.48 ± 1.00 |
CHIRPS vs. MSWEP | 0.54 ± 0.13 | –0.16 ± 0.30 | 1.49 ± 0.99 |
MSWEP vs. TAMSAT3 | 0.49 ± 0.13 | 0.23 ± 0.33 | 1.66 ± 1.08 |
CC | ME [mm day–1] | MAE [mm day–1] | |
---|---|---|---|
CHIRPS vs. TAMSAT3 | 0.66 ± 0.10 | –0.06 ± 0.35 | 1.47 ± 0.73 |
CHIRPS vs. MSWEP | 0.66 ± 0.07 | 0.01 ± 0.26 | 1.64 ± 1.00 |
MSWEP vs. TAMSAT3 | 0.57 ± 0.11 | –0.08 ± 0.40 | 1.77 ± 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattani, E.; Ferguglia, O.; Merino, A.; Levizzani, V. Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017. Remote Sens. 2021, 13, 4419. https://doi.org/10.3390/rs13214419
Cattani E, Ferguglia O, Merino A, Levizzani V. Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017. Remote Sensing. 2021; 13(21):4419. https://doi.org/10.3390/rs13214419
Chicago/Turabian StyleCattani, Elsa, Olivia Ferguglia, Andrés Merino, and Vincenzo Levizzani. 2021. "Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017" Remote Sensing 13, no. 21: 4419. https://doi.org/10.3390/rs13214419
APA StyleCattani, E., Ferguglia, O., Merino, A., & Levizzani, V. (2021). Precipitation Products’ Inter–Comparison over East and Southern Africa 1983–2017. Remote Sensing, 13(21), 4419. https://doi.org/10.3390/rs13214419