Evaluation of Surface Upward Longwave Radiation in the CMIP6 Models with Ground and Satellite Observations
Abstract
:1. Introduction
2. Data
2.1. CMIP5 and CMIP6 GCMs
2.2. Ground-Measured Data
2.3. ERA5
2.4. CERES EBAF
3. Methods
3.1. Multimodel Ensemble (MME) Methods
3.2. Validation Metrics
4. Results and Analysis
4.1. Evaluation with Ground Measurements
4.1.1. CMIP6 GCMs SULR Evaluation
4.1.2. Comparison with CMIP5
4.2. Evaluation with CERES EBAF
4.3. Spatial Distribution and Seasonal Variations
4.4. Annual Mean and Long-Term Variabilities
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Network | Site ID | Latitude | Longitude | Network | Site ID | Latitude | Longitude |
---|---|---|---|---|---|---|---|
BSRN | ALE | 82.49°N | 62.42°W | FLUXNET | DE-RuS | 50.87°N | 6.45°E |
BSRN | BAR | 71.32°N | 156.61°W | FLUXNET | DE-SfN | 47.81°N | 11.33°E |
BSRN | CAB | 51.97°N | 4.93°E | FLUXNET | DE-Spw | 51.89°N | 14.03°E |
BSRN | DOM | 75.10°S | 123.38°E | FLUXNET | DE-Tha | 50.96°N | 13.57°E |
BSRN | GOB | 23.56°S | 15.04°E | FLUXNET | DK-Sor | 55.49°N | 11.64°E |
BSRN | GVN | 70.65°S | 8.25°W | FLUXNET | FI-Hyy | 61.85°N | 24.29°E |
BSRN | NYA | 78.93°N | 11.93°E | FLUXNET | FI-Lom | 68.00°N | 24.21°E |
BSRN | PAY | 46.82°N | 6.94°E | FLUXNET | FR-Gri | 48.84°N | 1.95°E |
BSRN | SPO | 89.98°S | 24.80°W | FLUXNET | FR-LBr | 44.72°N | 0.77°W |
BSRN | SYO | 69.01°S | 39.59°E | FLUXNET | FR-Pue | 43.74°N | 3.60°E |
BSRN | TAT | 36.06°N | 140.13°E | FLUXNET | GF-Guy | 5.28°N | 52.92°W |
BSRN | TIK | 71.59°N | 128.92°E | FLUXNET | IT-BCi | 40.52°N | 14.96°E |
BSRN | TOR | 58.25°N | 26.46°E | FLUXNET | IT-CA1 | 42.38°N | 12.03°E |
SURFRAD | BND | 40.05°N | 88.37°W | FLUXNET | IT-CA2 | 42.38°N | 12.03°E |
SURFRAD | TBL | 40.12°N | 105.24°W | FLUXNET | IT-CA3 | 42.38°N | 12.02°E |
SURFRAD | DRA | 36.62°N | 116.02°W | FLUXNET | IT-Col | 41.85°N | 13.59°E |
SURFRAD | FPK | 48.31°N | 105.10°W | FLUXNET | IT-Isp | 45.81°N | 8.63°E |
SURFRAD | GWN | 34.25°N | 89.87°W | FLUXNET | IT-La2 | 45.95°N | 11.29°E |
SURFRAD | PSU | 40.72°N | 77.93°W | FLUXNET | IT-Lav | 45.96°N | 11.28°E |
SURFRAD | SXF | 43.73°N | 96.62°W | FLUXNET | IT-MBo | 46.01°N | 11.05°E |
FLUXNET | AT-Neu | 47.12°N | 11.32°E | FLUXNET | IT-Noe | 40.61°N | 8.15°E |
FLUXNET | AU-Ade | 13.08°S | 131.12°E | FLUXNET | IT-Ren | 46.59°N | 11.43°E |
FLUXNET | AU-ASM | 22.28°S | 133.25°E | FLUXNET | IT-Ro1 | 42.41°N | 11.93°E |
FLUXNET | AU-Cpr | 34.00°S | 140.59°E | FLUXNET | IT-Ro2 | 42.39°N | 11.92°E |
FLUXNET | AU-Cum | 33.62°S | 150.72°E | FLUXNET | IT-SR2 | 43.73°N | 10.29°E |
FLUXNET | AU-DaP | 14.06°S | 131.32°E | FLUXNET | IT-SRo | 43.73°N | 10.28°E |
FLUXNET | AU-DaS | 14.16°S | 131.39°E | FLUXNET | IT-Tor | 45.84°N | 7.58°E |
FLUXNET | AU-Dry | 15.26°S | 132.37°E | FLUXNET | JP-MBF | 44.39°N | 142.32°E |
FLUXNET | AU-Emr | 23.86°S | 148.47°E | FLUXNET | JP-SMF | 35.26°N | 137.08°E |
FLUXNET | AU-Fog | 12.55°S | 131.31°E | FLUXNET | NL-Hor | 52.24°N | 5.07°E |
FLUXNET | AU-Gin | 31.38°S | 115.71°E | FLUXNET | NL-Loo | 52.17°N | 5.74°E |
FLUXNET | AU-GWW | 30.19°S | 120.65°E | FLUXNET | RU-Che | 68.61°N | 161.34°E |
FLUXNET | AU-How | 12.49°S | 131.15°E | FLUXNET | RU-Cok | 70.83°N | 147.49°E |
FLUXNET | AU-Lox | 34.47°S | 140.66°E | FLUXNET | RU-Fyo | 56.46°N | 32.92°E |
FLUXNET | AU-RDF | 14.56°S | 132.48°E | FLUXNET | SJ-Adv | 78.19°N | 15.92°E |
FLUXNET | AU-Rig | 36.65°S | 145.58°E | FLUXNET | SJ-Blv | 78.92°N | 11.83°E |
FLUXNET | AU-Rob | 17.12°S | 145.63°E | FLUXNET | US-AR1 | 36.43°N | 99.42°W |
FLUXNET | AU-Stp | 17.15°S | 133.35°E | FLUXNET | US-AR2 | 36.64°N | 99.60°W |
FLUXNET | AU-TTE | 22.29°S | 133.64°E | FLUXNET | US-ARM | 36.61°N | 97.49°W |
FLUXNET | AU-Tum | 35.66°S | 148.15°E | FLUXNET | US-GBT | 41.37°N | 106.24°W |
FLUXNET | AU-Wac | 37.43°S | 145.19°E | FLUXNET | US-GLE | 41.37°N | 106.24°W |
FLUXNET | AU-Whr | 36.67°S | 145.03°E | FLUXNET | US-Los | 46.08°N | 89.98°W |
FLUXNET | AU-Wom | 37.42°S | 144.09°E | FLUXNET | US-Me2 | 44.45°N | 121.56°W |
FLUXNET | AU-Ync | 34.99°S | 146.29°E | FLUXNET | US-Me6 | 44.32°N | 121.61°W |
FLUXNET | BE-Bra | 51.31°N | 4.52°E | FLUXNET | US-MMS | 39.32°N | 86.41°W |
FLUXNET | BE-Lon | 50.55°N | 4.75°E | FLUXNET | US-Ne1 | 41.17°N | 96.48°W |
FLUXNET | BR-Sa3 | 3.02°S | 54.97°W | FLUXNET | US-Ne2 | 41.16°N | 96.47°W |
FLUXNET | CA-Qfo | 49.69°N | 74.34°W | FLUXNET | US-Ne3 | 41.18°N | 96.44°W |
FLUXNET | CA-SF1 | 54.49°N | 105.82°W | FLUXNET | US-NR1 | 40.03°N | 105.55°W |
FLUXNET | CA-SF2 | 54.25°N | 105.88°W | FLUXNET | US-ORv | 40.02°N | 83.02°W |
FLUXNET | CA-SF3 | 54.09°N | 106.01°W | FLUXNET | US-Prr | 65.12°N | 147.49°W |
FLUXNET | CH-Cha | 47.21°N | 8.41°E | FLUXNET | US-SRG | 31.79°N | 110.83°W |
FLUXNET | CH-Dav | 46.82°N | 9.86°E | FLUXNET | US-SRM | 31.82°N | 110.87°W |
FLUXNET | CH-Fru | 47.12°N | 8.54°E | FLUXNET | US-Syv | 46.24°N | 89.35°W |
FLUXNET | CH-Oe1 | 47.29°N | 7.73°E | FLUXNET | US-Tw1 | 38.11°N | 121.65°W |
FLUXNET | CN-Cng | 44.59°N | 123.51°E | FLUXNET | US-Tw2 | 38.10°N | 121.64°W |
FLUXNET | CZ-BK1 | 49.50°N | 18.54°E | FLUXNET | US-Tw3 | 38.12°N | 121.65°W |
FLUXNET | CZ-BK2 | 49.49°N | 18.54°E | FLUXNET | US-Tw4 | 38.10°N | 121.64°W |
FLUXNET | CZ-wet | 49.02°N | 14.77°E | FLUXNET | US-UMB | 45.56°N | 84.71°W |
FLUXNET | DE-Akm | 53.87°N | 13.68°E | FLUXNET | US-UMd | 45.56°N | 84.70°W |
FLUXNET | DE-Geb | 51.10°N | 10.91°E | FLUXNET | US-Var | 38.41°N | 120.95°W |
FLUXNET | DE-Gri | 50.95°N | 13.51°E | FLUXNET | US-WCr | 45.81°N | 90.08°W |
FLUXNET | DE-Hai | 51.08°N | 10.45°E | FLUXNET | US-Whs | 31.74°N | 110.05°W |
FLUXNET | DE-Kli | 50.89°N | 13.52°E | FLUXNET | US-Wkg | 31.74°N | 109.94°W |
FLUXNET | DE-Lkb | 49.10°N | 13.30°E | FLUXNET | ZA-Kru | 25.02°S | 31.50°E |
FLUXNET | DE-Obe | 50.79°N | 13.72°E | FLUXNET | ZM-Mon | 15.44°S | 23.25°E |
FLUXNET | DE-RuR | 50.62°N | 6.30°E |
Appendix B
References
- Dickinson, R.E.; Oleson, K.W.; Bonan, G.; Hoffman, F.; Thornton, P.; Vertenstein, M.; Yang, Z.-L.; Zeng, X. The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Clim. 2006, 19, 2302–2324. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–323. [Google Scholar] [CrossRef]
- Sellers, P.; Dickinson, R.; Randall, D.; Betts, A.; Hall, F.; Berry, J.; Collatz, G.; Denning, A.; Mooney, H.; Nobre, C.; et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Li, J.; Wild, M.; Clayson, C.A.; Loeb, N.; Kato, S.; L’Ecuyer, T.; Stackhouse, P.W.; Lebsock, M.; Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, F.; Guo, Y. A comparative study of bulk parameterization schemes for estimating cloudy-sky surface downward longwave radiation. Remote Sens. 2019, 11, 528. [Google Scholar]
- Gupta, S.; Ritchey, N.; Wilber, A.; Whitlock, C.; Gibson, G.; Stackhouse, P. A climatology of surface radiation budget derived from satellite data. J. Clim. 1999, 12, 2691–2710. [Google Scholar]
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Wang, T.; Yan, G.; Chen, L. Consistent retrieval methods to estimate land surface shortwave and longwave radiative flux components under clear-sky conditions. Remote Sens. Environ. 2012, 124, 61–71. [Google Scholar]
- Jung, H.-S.; Lee, K.-T.; Zo, I.-S. Calculation algorithm of upward longwave radiation based on surface types. Asia–Pac. J. Atmos. Sci. 2020, 56, 291–306. [Google Scholar]
- Cheng, J.; Liang, S.; Verhoef, W.; Shi, L.; Liu, Q. Estimating the hemispherical broadband longwave emissivity of global vegetated surfaces using a radiative transfer model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 905–917. [Google Scholar]
- Zhou, Y.; Kratz, D.P.; Wilber, A.C.; Gupta, S.K.; Cess, R.D. An improved algorithm for retrieving surface downwelling longwave radiation from satellite measurements. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Cao, B.; Li, H.; Bian, Z.; Hu, T.; Du, Y.; Yang, Y.; Xiao, Q.; Liu, Q. Evaluation of six high-spatial resolution clear-sky surface upward longwave radiation estimation methods with MODIS. Remote Sens. 2020, 12, 1834. [Google Scholar] [CrossRef]
- Wang, W.; Liang, S. Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data. Remote Sens. Environ. 2009, 113, 745–754. [Google Scholar]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. Erratum: The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 1001. [Google Scholar] [CrossRef]
- Delia Garcia, R.; Cuevas, E.; Ramos, R.; Eugenia Cachorro, V.; Redondas, A.; Moreno-Ruiz, J.A. Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): Measurements and quality control/assurance procedures. Geosci. Instrum. Meth. 2019, 8, 77–96. [Google Scholar] [CrossRef] [Green Version]
- Ohmura, A.; Dutton, E.; Forgan, B.; Frohlich, C.; Gilgen, H.; Hegner, H.; Heimo, A.; Konig-Langlo, G.; McArthur, B.; Muller, G.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Am. Meteorol. Soc. 1998, 79, 2115–2136. [Google Scholar] [CrossRef] [Green Version]
- Augustine, J.; DeLuisi, J.; Long, C. SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Am. Meteorol. Soc. 2000, 81, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- Garratt, J. Observed screen (air) and GCM surface/screen temperatures: Implications for outgoing longwave fluxes at the surface. J. Clim. 1995, 8, 1360–1368. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. The global energy balance as represented in CMIP6 climate models. Clim. Dynam. 2020, 55, 553–577. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Hakuba, M.Z.; Schär, C.; Seneviratne, S.I.; Kato, S.; Rutan, D.; Ammann, C.; Wood, E.F.; König-Langlo, G. The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Clim. Dynam. 2015, 44, 3393–3429. [Google Scholar]
- Di Biagio, C.; Pelon, J.; Blanchard, Y.; Loyer, L.; Hudson, S.R.; Walden, V.P.; Raut, J.C.; Kato, S.; Mariage, V.; Granskog, M.A. Toward a better surface radiation budget analysis over sea ice in the high Arctic Ocean: A comparative study between satellite, reanalysis, and local-scale observations. J. Geophys. Res.-Atmos. 2021, 126. [Google Scholar] [CrossRef]
- Hinkelman, L.M. The global radiative energy budget in MERRA and MERRA-2: Evaluation with respect to CERES EBAF data. J. Clim. 2019, 32, 1973–1994. [Google Scholar]
- Loeb, N.G.; Kato, S.; Rose, F.G.; Doelling, D.R.; Rutan, D.A.; Caldwell, T.E.; Yu, L.; Weller, R.A. Surface irradiances consistent with CERES-Derived Top-of-Atmosphere shortwave and longwave irradiances. J. Clim. 2013, 26, 2719–2740. [Google Scholar]
- Kato, S.; Rose, F.G.; Rutan, D.A.; Thorsen, T.J.; Loeb, N.G.; Doelling, D.R.; Huang, X.; Smith, W.L.; Su, W.; Ham, S.-H. Surface irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Clim. 2018, 31, 4501–4527. [Google Scholar]
- Perez, J.; Menendez, M.; Mendez, F.J.; Losada, I.J. Evaluating the performance of CMIP3 and CMIP5 global climate models over the North-East Atlantic region. Clim. Dynam. 2014, 43, 2663–2680. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Min, S.-K.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 2020, 29, 100269. [Google Scholar]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Ziarh, G.F.; Chung, E.-S.; Wang, X. Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos. Res. 2021, 254, 105525. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar]
- Bağçaci, S.Ç.; Yucel, I.; Duzenli, E.; Yilmaz, M.T. Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmos. Res. 2021, 256, 105576. [Google Scholar]
- Lu, Z.; Zhao, T.; Zhou, W. Evaluation of the Antarctic circumpolar wave simulated by CMIP5 and CMIP6 models. Atmosphere 2020, 11, 931. [Google Scholar]
- Shen, Z.; Duan, A.; Li, D.; Li, J. Assessment and ranking of climate models in Arctic Sea ice cover simulation: From CMIP5 to CMIP6. J. Clim. 2021, 34, 3609–3627. [Google Scholar] [CrossRef]
- Marotzke, J.; Jakob, C.; Bony, S.; Dirmeyer, P.A.; O’Gorman, P.A.; Hawkins, E.; Perkins-Kirkpatrick, S.; Nowicki, S.; Paulavets, K.; Seneviratne, S.; et al. Climate research must sharpen its view. Nat. Clim. Chang. 2017, 7, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Akinsanola, A.A.; Ongoma, V.; Kooperman, G.J. Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa. Atmos. Res. 2021, 254, 105509. [Google Scholar]
- Ma, Q.; Wang, K.; Wild, M. Evaluations of atmospheric downward longwave radiation from 44 coupled general circulation models of CMIP5. J. Geophys. Res.-Atmos. 2014, 119, 4486–4497. [Google Scholar] [CrossRef]
- Kusunoki, S.; Arakawa, O. Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Clim. 2015, 28, 5601–5621. [Google Scholar] [CrossRef]
- Li, J.L.F.; Waliser, D.E.; Stephens, G.; Lee, S.; L’Ecuyer, T.; Kato, S.; Loeb, N.; Ma, H.-Y. Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res.-Atmos. 2013, 118, 8166–8184. [Google Scholar]
- Wild, M.; Folini, D.; Schär, C.; Loeb, N.; Dutton, E.G.; König-Langlo, G. The global energy balance from a surface perspective. Clim. Dynam. 2013, 40, 3107–3134. [Google Scholar] [CrossRef] [Green Version]
- Wild, M.; Hakuba, M.Z.; Folini, D.; Dorig-Ott, P.; Schar, C.; Kato, S.; Long, C.N. The cloud-free global energy balance and inferred cloud radiative effects: An assessment based on direct observations and climate models. Clim. Dynam. 2019, 52, 4787–4812. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. Short-wave and long-wave surface radiation budgets in GCMs: A review based on the IPCC-AR4/CMIP3 models. Tellus A 2008, 60, 932–945. [Google Scholar] [CrossRef] [Green Version]
- Freidenreich, S.M.; Ramaswamy, V. Analysis of the biases in the downward shortwave surface flux in the GFDL CM2.1 general circulation model. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings. J. Geophys. Res.-Atmos. 1999, 104, 27361–27371. [Google Scholar]
- Mackie, A.; Wild, M.; Brindley, H.; Folini, D.; Palmer, P. Observed and CMIP5-simulated radiative flux variability over West Africa. Earth Space Sci. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, J.L.F.; Lee, W.-L.; Yu, J.-Y.; Hulley, G.; Fetzer, E.; Chen, Y.-C.; Wang, Y.-H. The impacts of precipitating hydrometeors radiative effects on land surface temperature in contemporary GCMs using satellite observations. J. Geophys. Res.-Atmos. 2016, 121, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Li, J.L.F.; Richardson, M.; Hong, Y.; Lee, W.-L.; Wang, Y.-H.; Yu, J.-Y.; Fetzer, E.; Stephens, G.; Liu, Y. Improved simulation of Antarctic Sea ice due to the radiative effects of falling snow. Environ. Res. Lett. 2017, 12, 084010. [Google Scholar] [CrossRef] [Green Version]
- Bhat, K.S.; Haran, M.; Terando, A.; Keller, K. Climate projections using Bayesian model averaging and space–time dependence. J. Agr. Biol. Envir. St. 2011, 16, 606–628. [Google Scholar] [CrossRef]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 2005, 133, 1155–1174. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Ajami, N.K.; Gao, X.; Sorooshian, S. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Reso. 2007, 30, 1371–1386. [Google Scholar]
- Zhang, H.; Chu, P.-S.; He, L.; Unger, D. Improving the CPC’s ENSO forecasts using Bayesian model averaging. Clim. Dynam. 2019, 53, 3373–3385. [Google Scholar]
- Yao, Y.; Liang, S.; Li, X.; Liu, S.; Chen, J.; Zhang, X.; Jia, K.; Jiang, B.; Xie, X.; Munier, S.; et al. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations. Agric. For. Meteorol. 2016, 223, 151–167. [Google Scholar]
- Zhang, W.; Zhang, X.; Li, W.; Hou, N.; Wei, Y.; Jia, K.; Yao, Y.; Cheng, J. Evaluation of Bayesian multimodel estimation in surface incident shortwave radiation simulation over high latitude areas. Remote Sens. 2019, 11, 1776. [Google Scholar]
- Wu, H.; Zhang, X.; Liang, S.; Yang, H.; Zhou, G. Estimation of clear-sky land surface longwave radiation from MODIS data products by merging multiple models. J. Geophys. Res. 2012, 117, D22107. [Google Scholar]
- Martinez, A.; Iglesias, G. Wind resource evolution in Europe under different scenarios of climate change characterised by the novel Shared Socioeconomic Pathways. Energ. Convers. Manag. 2021, 234, 113961. [Google Scholar] [CrossRef]
- Landerer, F.W.; Gleckler, P.J.; Lee, T. Evaluation of CMIP5 dynamic sea surface height multi-model simulations against satellite observations. Clim. Dynam. 2014, 43, 1271–1283. [Google Scholar]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef]
- Verma, M.; Fisher, J.; Mallick, K.; Ryu, Y.; Kobayashi, H.; Guillaume, A.; Moore, G.; Ramakrishnan, L.; Hendrix, V.; Wolf, S.; et al. Global surface net-radiation at 5 km from MODIS Terra. Remote Sens. 2016, 8, 739. [Google Scholar]
- Graham, R.M.; Cohen, L.; Ritzhaupt, N.; Segger, B.; Graversen, R.G.; Rinke, A.; Walden, V.P.; Granskog, M.A.; Hudson, S.R. Evaluation of six atmospheric reanalyses over Arctic Sea ice from winter to early summer. J. Clim. 2019, 32, 4121–4143. [Google Scholar] [CrossRef] [Green Version]
- Hamal, K.; Sharma, S.; Baniya, B.; Khadka, N.; Zhou, X. Inter-annual variability of winter precipitation over Nepal coupled with ocean-atmospheric patterns during 1987–2015. Front. Earth Sci. 2020, 8, 161. [Google Scholar] [CrossRef]
- Flynn, C.J.; Eloranta, E.W.; Cadeddu, M.; Fridlind, A.M.; Bromwich, D.H.; Wang, S.-H.; Verlinde, J.; Silber, I. Cloud influence on ERA5 and AMPS surface downwelling longwave radiation biases in West Antarctica. J. Clim. 2019, 32, 7935–7949. [Google Scholar]
- Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J. Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations. Remote Sens. 2016, 8, 225. [Google Scholar]
- Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.G.; Liang, L.; Mitrescu, C.; Rose, F.G.; Kato, S. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) edition-4.0 data product. J. Clim. 2018, 31, 895–918. [Google Scholar] [CrossRef]
- Smith, N.P.; Thomas, S.; Shankar, M.; Szewczyk, Z.P.; Wilson, R.S.; Walikainen, D.R.; Daniels, J.L.; Hess, P.C.; Priestley, K.J. Assessment of the clouds and the Earth’s Radiant Energy System (CERES) Flight Model 5 (FM5) instrument performance and stability. In Earth Observing Systems XIX, Proceedings of the SPIE Optical Engineering + Applications Conference, San Diego, CA, USA, 18–20 August 2014; Butler, J., Xiong, X., Gu, X., Eds.; SPIE: Washington, DC, USA, 2014. [Google Scholar]
- Smith, N.P.; Wilson, R.; Szewczyk, Z.P.; Thomas, S.; Priestley, K.J. Early trends on the Clouds and the Earth’s Radiant Energy System (CERES) Flight Model 6 (FM6) instrument’s performance. In Earth Observing Systems XXIII, Proceedings of the SPIE Optical Engineering + Applications Conference, San Diego, CA, USA, 21–23 August 2018; Butler, J., Xiong, X., Gu, X., Eds.; SPIE: Washington, DC, USA, 2018. [Google Scholar]
- Li, J.-L.F.; Richardson, M.; Lee, W.-L.; Fetzer, E.; Stephens, G.; Jiang, J.; Hong, Y.; Wang, Y.-H.; Yu, J.-Y.; Liu, Y. Potential faster Arctic Sea ice retreat triggered by snowflakes’ greenhouse effect. Cryosphere 2019, 13, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Cai, X.; Zhao, F.; Liu, J.; Chen, S.; Luo, X.; Xie, Z.; Xu, J. Potential future changes of terrestrial water storage based on climate projections by ensemble model simulations. Adv. Water Resour. 2020, 142, 103635. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, J.; Liang, S. Comprehensive assessment of parameterization methods for estimating clear-sky surface downward longwave radiation. Theor. Appl. Climatol. 2019, 135, 1045–1058. [Google Scholar]
- Medina, H.; Tian, D. Comparison of probabilistic post-processing approaches for improving numerical weather prediction-based daily and weekly reference evapotranspiration forecasts. Hydrol. Earth Syst. Sci. 2020, 24, 1011–1030. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Wang, L.; Gueymard, C.A.; Bilal, M.; Lin, A.; Wei, J.; Zhang, M.; Yang, X. Constructing a gridded direct normal irradiance dataset in China during 1981–2014. Renew. Sust. Energ. Rev. 2020, 131, 110004. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.-Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 scientific gaps and recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
ID | Model Name | Institute ID | Time | Resolution |
---|---|---|---|---|
1 | ACCESS1-0 | CSIRO-BOM | 185001–200512 | 1.88° × 1.24° |
2 | ACCESS1-3 | CSIRO-BOM | 185001–200512 | 1.88° × 1.24° |
3 | BNU-ESM | GCESS | 185001–200512 | 2.81° × 2.81° |
4 | CCSM4 | NCAR | 185001–200512 | 1.25° × 0.94° |
5 | CESM1-BGC | NSF-DOE-NCAR | 185001–200512 | 1.25° × 0.94° |
6 | CESM1-CAM5 | NSF-DOE-NCAR | 185001–200512 | 1.25° × 0.94° |
7 | CESM1-FASTCHEM | NSF-DOE-NCAR | 185001–200512 | 1.25° × 0.94° |
8 | CESM1-WACCM | NSF-DOE-NCAR | 185001–200512 | 2.50° × 1.88° |
9 | CMCC-CESM | CMCC | 185001–200512 | 3.75° × 3.75° |
10 | CMCC-CMS | CMCC | 185001–200512 | 1.88° × 1.88° |
11 | CMCC-CM | CMCC | 185001–200512 | 0.75° × 0.75° |
12 | CNRM-CM5-2 | CNRM-CERFACS | 185001–200512 | 1.41° × 1.41° |
13 | CNRM-CM5 | CNRM-CERFACS | 185001–200512 | 1.41° × 1.41° |
14 | CSIRO-Mk3-6-0 | CSIRO-QCCCE | 185001–200512 | 1.88° × 1.88° |
15 | CanCM4 | CCCMA | 196101–200512 | 2.81° × 2.81° |
16 | CanESM2 | CCCMA | 185001–200512 | 2.81° × 2.81° |
17 | FGOALS-g2 | LASG-CESS | 185001–200512 | 2.81° × 3.00° |
18 | GFDL-CM2p1 | NOAA GFDL | 186101–200512 | 2.50° × 2.00° |
19 | GFDL-CM3 | NOAA GFDL | 186001–200512 | 2.50° × 2.00° |
20 | GFDL-ESM2G | NOAA GFDL | 186101–200512 | 2.50° × 2.00° |
21 | GFDL-ESM2M | NOAA GFDL | 186101–200512 | 2.50° × 2.00° |
22 | GISS-E2-H-CC | NOAA GISS | 185001–201012 | 2.50° × 2.00° |
23 | GISS-E2-H | NOAA GISS | 185001–200512 | 2.50° × 2.00° |
24 | GISS-E2-R-CC | NOAA GISS | 185001–201012 | 2.50° × 2.00° |
25 | GISS-E2-R | NOAA GISS | 185001–200512 | 2.50° × 2.00° |
26 | HadCM3 | MOHC | 185912–200512 | 3.75° × 3.47° |
27 | HadGEM2-CC | MOHC | 185912–200511 | 1.88° × 1.24° |
28 | HadGEM2-ES | MOHC | 185912–200511 | 1.88° × 1.24° |
29 | IPSL-CM5A-LR | IPSL | 185001–200512 | 3.75° × 1.88° |
30 | IPSL-CM5A-MR | IPSL | 185001–200512 | 2.50° × 1.26° |
31 | IPSL-CM5B-LR | IPSL | 185001–200512 | 3.75° × 1.88° |
32 | MIROC-ESM-CHEM | MIROC | 185001–200512 | 2.81° × 2.81° |
33 | MIROC-ESM | MIROC | 185001–200512 | 2.81° × 2.81° |
34 | MIROC4h | MIROC | 195001–200512 | 0.56° × 0.56° |
35 | MIROC5 | MIROC | 185001–201212 | 1.41° × 1.41° |
36 | MPI-ESM-LR | MPI-M | 185001–200512 | 1.88° × 1.88° |
37 | MPI-ESM-MR | MPI-M | 185001–200512 | 1.88° × 1.88° |
38 | MPI-ESM-P | MPI-M | 185001–200512 | 1.88° × 1.88° |
39 | MRI-CGCM3 | MRI | 185001–200512 | 1.13° × 1.13° |
40 | MRI-ESM1 | NCC | 185101–200512 | 1.13° × 1.13° |
41 | NorESM1-ME | NCC | 185001–200512 | 2.50° × 1.88° |
42 | NorESM1-M | NCC | 185001–200512 | 2.50° × 1.88° |
43 | bcc-csm1-1-m | BCC | 185001–201212 | 1.13° × 1.13° |
44 | bcc-csm1-1 | BCC | 185001–201212 | 1.13° × 1.13° |
45 | inmcm4 | UNM | 185001–200512 | 2.00° × 1.50° |
ID | Model Name | Institute ID | Time | Resolution |
---|---|---|---|---|
1 | ACCESS-CM2 | CSIRO-ARCCSS | 185001–201412 | 1.88° × 1.25° |
2 | ACCESS-ESM1-5 | CSIRO | 185001–201412 | 1.88° × 1.24° |
3 | AWI-CM-1-1-MR | AWI | 185001–201412 | 0.94° × 0.94° |
4 | AWI-ESM-1-1-LR | AWI | 185001–201412 | 1.88° × 1.88° |
5 | BCC-CSM2-MR | BCC | 185001–201412 | 1.13° × 1.13° |
6 | BCC-ESM1 | BCC | 185001–201412 | 2.81° × 2.81° |
7 | CAMS-CSM1-0 | CAMS | 185001–201412 | 1.13° × 1.13° |
8 | CAS-ESM2-0 | CAS | 185001–201412 | 1.41° × 1.41° |
9 | CESM2-FV2 | NCAR | 185001–201412 | 2.50° × 1.88° |
10 | CESM2-WACCM-FV2 | NCAR | 185001–201412 | 2.50° × 1.88° |
11 | CESM2-WACCM | NCAR | 185001–201412 | 1.25° × 0.94° |
12 | CESM2 | NCAR | 185001–201412 | 1.25° × 0.94° |
13 | CIESM | THU | 185001–201412 | 1.25° × 0.94° |
14 | CMCC-CM2-HR4 | CMCC | 185001–201412 | 1.25° × 0.94° |
15 | CMCC-CM2-SR5 | CMCC | 185001–201412 | 1.25° × 0.94° |
16 | CMCC-ESM2 | CMCC | 185001–201412 | 1.25° × 0.94° |
17 | CanESM5 | CCCma | 185001–201412 | 2.81° × 2.81° |
18 | E3SM-1-0 | E3SM-Project | 185001–201412 | 1.00° × 1.00° |
19 | E3SM-1-1-ECA | E3SM-Project | 185001–201412 | 1.00° × 1.00° |
20 | E3SM-1-1 | E3SM-Project | 185001–201412 | 1.00° × 1.00° |
21 | EC-Earth3-AerChem | EC-Earth-Consortium | 185001–201412 | 0.70° × 0.70° |
22 | EC-Earth3-CC | EC-Earth-Consortium | 185001–201412 | 0.70° × 0.70° |
23 | EC-Earth3-Veg-LR | EC-Earth-Consortium | 185001–201412 | 1.13° × 1.13° |
24 | EC-Earth3-Veg | EC-Earth-Consortium | 185001–201412 | 0.70° × 0.70° |
25 | EC-Earth3 | EC-Earth-Consortium | 185001–201412 | 0.70° × 0.70° |
26 | FGOALS-f3-L | CAS | 185001–201412 | 1.25° × 1.00° |
27 | FGOALS-g3 | CAS | 185001–201612 | 2.00° × 2.25° |
28 | FIO-ESM-2-0 | FIO-QLNM | 185001–201412 | 1.25° × 0.94° |
29 | GFDL-ESM4 | NOAA-GFDL | 185001–201412 | 1.25° × 1.00° |
30 | GISS-E2-1-G-CC | NASA-GISS | 185001–201412 | 2.50° × 2.00° |
31 | GISS-E2-1-G | NASA-GISS | 185001–201412 | 2.50° × 2.00° |
32 | GISS-E2-1-H | NASA-GISS | 185001–201412 | 2.50° × 2.00° |
33 | IITM-ESM | CCCR-IITM | 185001–201412 | 1.88° × 1.91° |
34 | INM-CM4-8 | INM | 185001–201412 | 2.00° × 1.50° |
35 | INM-CM5-0 | INM | 185001–201412 | 2.00° × 1.50° |
36 | IPSL-CM5A2-INCA | IPSL | 185001–201412 | 3.75° × 1.88° |
37 | IPSL-CM6A-LR-INCA | IPSL | 185001–201412 | 2.50° × 1.26° |
38 | IPSL-CM6A-LR | IPSL | 185001–201412 | 2.50° × 1.26° |
39 | KACE-1-0-G | NIMS-KMA | 185001–201412 | 1.88° × 1.25° |
40 | KIOST-ESM | KIOST | 185001–201412 | 1.88° × 1.88° |
41 | MIROC6 | MIROC | 185001–201412 | 1.41° × 1.41° |
42 | MPI-ESM-1-2-HAM | HAMMOZ-Consortium | 185001–201412 | 1.88° × 1.88° |
43 | MPI-ESM1-2-HR | MPI-M | 185001–201412 | 0.94° × 0.94° |
44 | MPI-ESM1-2-LR | MPI-M | 185001–201412 | 1.88° × 1.88° |
45 | MRI-ESM2-0 | MRI | 185001–201412 | 1.13° × 1.13° |
46 | NESM3 | NUIST | 185001–201412 | 1.88° × 1.88° |
47 | NorCPM1 | NCC | 185001–202912 | 2.50° × 1.88° |
48 | NorESM2-LM | NCC | 185001–201412 | 2.50° × 1.88° |
49 | NorESM2-MM | NCC | 185001–201412 | 1.25° × 0.94° |
50 | SAM0-UNICON | SNU | 185001–201412 | 1.25° × 0.94° |
51 | TaiESM1 | AS-RCEC | 185001–201412 | 1.25° × 0.94° |
ID | Model Name | RMSE | Bias | RRMSE | RBias | R | GPI |
---|---|---|---|---|---|---|---|
1 | ACCESS-CM2 | 15.39 | 0.48 | 4.33 | 0.14 | 0.988 | 3.76 |
2 | ACCESS-ESM1-5 | 15.60 | 4.18 | 4.39 | 1.17 | 0.989 | −1.24 |
3 | AWI-CM-1-1-MR | 14.18 | 2.32 | 3.99 | 0.65 | 0.990 | 2.96 |
4 | AWI-ESM-1-1-LR | 15.64 | −0.50 | 4.40 | −0.14 | 0.988 | 3.41 |
5 | BCC-CSM2-MR | 16.04 | 2.96 | 4.51 | 0.83 | 0.987 | −0.26 |
6 | BCC-ESM1 | 18.11 | 3.13 | 5.09 | 0.88 | 0.984 | −3.13 |
7 | CAMS-CSM1-0 | 19.35 | 1.91 | 5.44 | 0.54 | 0.981 | −3.16 |
8 | CAS-ESM2-0 | 20.32 | −0.53 | 5.71 | −0.15 | 0.980 | −2.63 |
9 | CESM2-FV2 | 16.26 | 2.54 | 4.57 | 0.71 | 0.987 | 0.01 |
10 | CESM2-WACCM-FV2 | 15.86 | 2.89 | 4.46 | 0.81 | 0.988 | 0.07 |
11 | CESM2-WACCM | 14.99 | 3.10 | 4.22 | 0.87 | 0.989 | 0.91 |
12 | CESM2 | 15.30 | 4.02 | 4.30 | 1.13 | 0.989 | −0.66 |
13 | CIESM | 17.17 | 6.40 | 4.83 | 1.80 | 0.987 | −6.11 |
14 | CMCC-CM2-HR4 | 14.80 | 2.96 | 4.16 | 0.83 | 0.989 | 1.35 |
15 | CMCC-CM2-SR5 | 18.94 | 6.71 | 5.33 | 1.89 | 0.984 | −8.77 |
16 | CMCC-ESM2 | 17.57 | 5.15 | 4.94 | 1.45 | 0.986 | −5.01 |
17 | CanESM5 | 16.51 | 0.11 | 4.64 | 0.03 | 0.986 | 2.80 |
18 | E3SM-1-0 | 16.38 | 2.94 | 4.61 | 0.83 | 0.987 | −0.66 |
19 | E3SM-1-1-ECA | 16.36 | 1.07 | 4.60 | 0.30 | 0.987 | 1.75 |
20 | E3SM-1-1 | 16.33 | 1.83 | 4.59 | 0.52 | 0.987 | 0.83 |
21 | EC-Earth3-AerChem | 17.41 | 5.15 | 4.90 | 1.45 | 0.986 | −4.82 |
22 | EC-Earth3-CC | 19.49 | 8.75 | 5.48 | 2.46 | 0.985 | −12.09 |
23 | EC-Earth3-Veg-LR | 18.12 | 2.81 | 5.09 | 0.79 | 0.984 | −2.72 |
24 | EC-Earth3-Veg | 17.75 | 5.58 | 4.99 | 1.57 | 0.986 | −5.80 |
25 | EC-Earth3 | 18.10 | 5.53 | 5.09 | 1.56 | 0.985 | −6.19 |
26 | FGOALS-f3-L | 16.49 | −1.24 | 4.64 | −0.35 | 0.986 | 1.38 |
27 | FGOALS-g3 | 30.17 | 10.74 | 8.48 | 3.02 | 0.959 | −28.35 |
28 | FIO-ESM-2-0 | 14.27 | −1.31 | 4.01 | −0.37 | 0.990 | 4.13 |
29 | GFDL-ESM4 | 14.08 | 0.85 | 3.96 | 0.24 | 0.990 | 4.96 |
30 | GISS-E2-1-G-CC | 16.99 | 1.04 | 4.78 | 0.29 | 0.986 | 1.00 |
31 | GISS-E2-1-G | 17.07 | 0.32 | 4.80 | 0.09 | 0.985 | 1.80 |
32 | GISS-E2-1-H | 17.82 | 5.33 | 5.01 | 1.50 | 0.985 | −5.57 |
33 | IITM-ESM | 21.48 | 3.41 | 6.04 | 0.96 | 0.978 | −7.80 |
34 | INM-CM4-8 | 17.39 | −0.88 | 4.89 | −0.25 | 0.985 | 0.68 |
35 | INM-CM5-0 | 15.32 | −1.64 | 4.31 | −0.46 | 0.988 | 2.36 |
36 | IPSL-CM5A2-INCA | 17.37 | −1.25 | 4.89 | −0.35 | 0.985 | 0.23 |
37 | IPSL-CM6A-LR-INCA | 15.62 | 0.70 | 4.39 | 0.20 | 0.988 | 3.18 |
38 | IPSL-CM6A-LR | 15.29 | −0.37 | 4.30 | −0.10 | 0.988 | 4.04 |
39 | KACE-1-0-G | 16.05 | 2.32 | 4.51 | 0.65 | 0.987 | 0.56 |
40 | KIOST-ESM | 18.03 | −1.40 | 5.07 | −0.39 | 0.984 | −0.80 |
41 | MIROC6 | 21.07 | 7.62 | 5.92 | 2.14 | 0.981 | −12.67 |
42 | MPI-ESM-1-2-HAM | 17.59 | 0.30 | 4.95 | 0.08 | 0.985 | 1.17 |
43 | MPI-ESM1-2-HR | 14.64 | 2.31 | 4.12 | 0.65 | 0.989 | 2.38 |
44 | MPI-ESM1-2-LR | 16.13 | 1.59 | 4.54 | 0.45 | 0.987 | 1.38 |
45 | MRI-ESM2-0 | 14.75 | 1.84 | 4.15 | 0.52 | 0.989 | 2.83 |
46 | NESM3 | 16.95 | 1.11 | 4.77 | 0.31 | 0.985 | 0.95 |
47 | NorCPM1 | 20.64 | −8.39 | 5.80 | −2.36 | 0.983 | −13.11 |
48 | NorESM2-LM | 16.54 | 4.25 | 4.65 | 1.20 | 0.987 | −2.55 |
49 | NorESM2-MM | 14.91 | 0.76 | 4.19 | 0.21 | 0.989 | 4.03 |
50 | SAM0-UNICON | 16.25 | −5.23 | 4.57 | −1.47 | 0.989 | −3.43 |
51 | TaiESM1 | 15.15 | −1.26 | 4.26 | −0.36 | 0.990 | 3.07 |
CMIP6 GCMs | CMIP5 GCMs | ERA5 | CERES EBAF | ||||
---|---|---|---|---|---|---|---|
SMA | BMA | SMA | BMA | ||||
1850–2014 | Mean | 396.7 | 388.6 | —— | —— | —— | —— |
Median | 396.4 | 388.2 | —— | —— | —— | —— | |
Min | 394.2 | 386.2 | —— | —— | —— | —— | |
Max | 401.2 | 392.8 | —— | —— | —— | —— | |
1861–2005 | Mean | 396.6 | 388.4 | 394.9 | 392.0 | —— | —— |
Median | 396.4 | 388.2 | 394.7 | 391.8 | —— | —— | |
Min | 394.2 | 386.2 | 392.3 | 389.5 | —— | —— | |
Max | 400.1 | 391.7 | 398.7 | 395.7 | —— | —— | |
1979–2014 | Mean | 398.9 | 390.6 | —— | —— | 396.4 | —— |
Median | 398.8 | 390.5 | —— | —— | 396.4 | —— | |
Min | 396.9 | 388.7 | —— | —— | 394.7 | —— | |
Max | 401.2 | 392.8 | —— | —— | 398.0 | —— | |
2000–2014 | Mean | 400.4 | 392.0 | —— | —— | 397.4 | 398.6 |
Median | 400.3 | 392.0 | —— | —— | 397.4 | 398.7 | |
Min | 399.4 | 391.1 | —— | —— | 396.0 | 397.8 | |
Max | 401.2 | 392.8 | —— | —— | 398.0 | 399.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhang, X.; Feng, C.; Yang, S.; Guan, S.; Jia, K.; Yao, Y.; Xie, X.; Jiang, B.; Cheng, J.; et al. Evaluation of Surface Upward Longwave Radiation in the CMIP6 Models with Ground and Satellite Observations. Remote Sens. 2021, 13, 4464. https://doi.org/10.3390/rs13214464
Xu J, Zhang X, Feng C, Yang S, Guan S, Jia K, Yao Y, Xie X, Jiang B, Cheng J, et al. Evaluation of Surface Upward Longwave Radiation in the CMIP6 Models with Ground and Satellite Observations. Remote Sensing. 2021; 13(21):4464. https://doi.org/10.3390/rs13214464
Chicago/Turabian StyleXu, Jiawen, Xiaotong Zhang, Chunjie Feng, Shuyue Yang, Shikang Guan, Kun Jia, Yunjun Yao, Xianhong Xie, Bo Jiang, Jie Cheng, and et al. 2021. "Evaluation of Surface Upward Longwave Radiation in the CMIP6 Models with Ground and Satellite Observations" Remote Sensing 13, no. 21: 4464. https://doi.org/10.3390/rs13214464
APA StyleXu, J., Zhang, X., Feng, C., Yang, S., Guan, S., Jia, K., Yao, Y., Xie, X., Jiang, B., Cheng, J., & Zhao, X. (2021). Evaluation of Surface Upward Longwave Radiation in the CMIP6 Models with Ground and Satellite Observations. Remote Sensing, 13(21), 4464. https://doi.org/10.3390/rs13214464