Comparison of Field and SAR-Derived Descriptors in the Retrieval of Soil Moisture from Oil Palm Crops Using PALSAR-2
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Collection
2.2.1. Field Data
2.2.2. Remote Sensing Data
3. Methodology
4. Results
4.1. WCM Parameterization
4.2. Sensitivity Backscatter Coefficient vs. Vegetation Descriptors
4.3. Soil Moisture Data Retrieval
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quezada, J.C.; Etter, A.; Ghazoul, J.; Buttler, A.; Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 2019, 5, eaaw4418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, A.S.A.F.; Er, A.C.; Begum, H. Malaysian oil palm industry: Prospect and problem. J. Food Agric. Environ. 2015, 13, 143–148. [Google Scholar]
- Arunachalam, V. Oil Palm. In Genomics of Cultivated Palms, 1st ed.; Elsevier Inc Publications: Amsterdam, The Netherlands, 2012; pp. 29–48. [Google Scholar]
- Voora, V.; Larrea, C.; Bermúdez, S.; Baliño, S. Global Market Report: Palm Oil; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2020. [Google Scholar]
- Lim, C.H.; Cheah, Z.H.; Lee, X.H.; How, B.S.; Ng, W.P.Q.; Ngan, S.L.; Lim, S.; Lam, H.L. Harvesting and evacuation route optimisation model for fresh fruit bunch in the oil palm plantation site. J. Clean. Prod. 2021, 307, 127238. [Google Scholar] [CrossRef]
- Suharjito; Elwirehardja, G.N.; Prayoga, J.S. Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches. Comput. Electron. Agric. 2021, 188, 106359. [Google Scholar] [CrossRef]
- Jaroenkietkajorn, U.; Gheewala, S.H. Land suitability assessment for oil palm plantations in Thailand. Sustain. Prod. Consum. 2021, 28, 1104–1113. [Google Scholar] [CrossRef]
- Bos, U.; Maier, S.D.; Horn, R.; Leistner, P.; Finkbeiner, M. A GIS based method to calculate regionalized land use characterization factors for life cycle impact assessment using LANCA®. Int. J. Life Cycle Assess. 2020, 25, 1259–1277. [Google Scholar] [CrossRef]
- Sehler, R.; Li, J.; Reager, J.; Ye, H. Investigating Relationship Between Soil Moisture and Precipitation Globally Using Remote Sensing Observations. J. Contemp. Water Res. Educ. 2019, 168, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sehler, R.; Reager, J.T., II; Ye, H. Using Satellite-based Observations to Investigate the Soil Moisture—Precipitation Relationship. AGU Fall Meet. Abstr. 2019, 2019, 1910. [Google Scholar]
- Ali, G. Climate change and associated spatial heterogeneity of Pakistan: Empirical evidence using multidisciplinary approach. Sci. Total Environ. 2018, 634, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Clim. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Shukla, A.; Panchal, H.; Mishra, D.M.; Patel, P.R.; Srivastava, H.S.; Patel, P. Soil Moisture Estimation using Gravimetric Technique and FDR Probe Technique: A Comparative Analysis. Am. Int. J. Res. Form. Appl. Nat. Sci. 2014, 8, 89–92. [Google Scholar]
- Degirmenci, H.; Gonen, E.; Boyaci, S.; Resources, W.; Location, T. A comparison of the gravimetric and TDR methods in terms of determining the soil water content of the corn plant. Sci. Pap.-Ser. A-Agron. 2016, 59, 153–158. [Google Scholar]
- Teixeira, W.G.; Huwe, B.; Schroth, G.; Marques, J.D. Sampling and TDR probe insertion in the determination of the volumetric soil water content. Rev. Bras. Ciênc. Solo 2003, 27, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Kaleita, A.L.; Tian, L.F.; Hirschi, M.C. Relationship between Soil Moisture Content and Soil Surface Reflectance. Trans. ASAE 2005, 48, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Al-Mamoori, S.K.; Al-Maliki, L.A.; Al-Sulttani, A.H.; El-Tawil, K.; Al-Ansari, N. Statistical analysis of the best GIS interpolation method for bearing capacity estimation in An-Najaf City, Iraq. Environ. Earth Sci. 2021, 80, 683. [Google Scholar] [CrossRef]
- Chen, H.; Fan, L.; Wu, W.; Liu, H.-B. Comparison of spatial interpolation methods for soil moisture and its application for monitoring drought. Environ. Monit. Assess. 2017, 189, 525. [Google Scholar] [CrossRef]
- Gilewski, P. Impact of the Grid Resolution and Deterministic Interpolation of Precipitation on Rainfall-Runoff Modeling in a Sparsely Gauged Mountainous Catchment. Water 2021, 13, 230. [Google Scholar] [CrossRef]
- İmamoğlu, M.Z.; Sertel, E. Analysis of Different Interpolation Methods for Soil Moisture Mapping Using Field Measurements and Remotely Sensed Data. Int. J. Environ. Geoinformatics 2016, 3, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.A.; Webster, R. Geostatistical Prediction: Kriging. In Basic Steps in Geostatistics: The Variogram and Kriging; Springer Nature: Basingstoke, UK, 2015; pp. 43–69. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, Y.; Wang, X.; Liu, X.; Zhang, X.; Zhang, S. Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China. CATENA 2019, 174, 59–72. [Google Scholar] [CrossRef]
- Guo, X.; Fu, Q.; Hang, Y.; Lu, H.; Gao, F.; Si, J. Spatial variability of soil moisture in relation to land use types and topographic features on hillslopes in the black soil (mollisols) area of northeast China. Sustainability 2020, 12, 3552. [Google Scholar] [CrossRef]
- Degré, A.; Ly, S.; Charles, C. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review. Biotechnol. Agron. Société Environ. 2013, 17, 392–406. Available online: https://popups.uliege.be/1780-4507 (accessed on 11 October 2021).
- Yarak, K.; Witayangkurn, A.; Kritiyutanont, K.; Arunplod, C.; Shibasaki, R. Oil palm tree detection and health classification on high-resolution imagery using deep learning. Agriculture 2021, 11, 183. [Google Scholar] [CrossRef]
- Malinee, R.; Stratoulias, D.; Nuthammachot, N. Detection of oil palm disease in plantations in krabi province, thailand with high spatial resolution satellite imagery. Agriculture 2021, 11, 251. [Google Scholar] [CrossRef]
- Ibrahim, A.L.; Hashim, M.; AIi, M.I.; Rasib, W.; Kadir, W.H.W.; Sumari, M.R.; Haron, K. Detecting and Mapping Nutrients Concentration in Oil Palm Plantation Using Remote Sensing and Geographic Information System. In Proceedings of the PIPOC 2003 International Palm Oil Congress (Agriculture), Kuala Lumpur, Malaysia, 24–28 August 2003; pp. 261–271. [Google Scholar]
- Zhu, L.; Suomalainen, J.; Liu, J.; Hyyppä, J.; Kaartinen, H.; Haggren, H. A Review: Remote Sensing Sensors. Available online: https://books.google.co.jp/books?id=8m6QDwAAQBAJ&printsec=frontcover&hl=zh-CN#v=onepage&q&f=false (accessed on 3 November 2021).
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Shashikant, V.; Shariff, A.R.M.; Nordin, L.; Pradhan, B. NDVI of Oil Palm Trees by Landsat-5 Imagery. In Proceedings of the 33rd Conference on Remote Sensing, Pattaya, Thailand, 26–30 November 2012; p. 5. [Google Scholar]
- Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.-S.; Held, A.; Milne, T.; Tapley, I. SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Remote Sens. Environ. 2015, 156, 335–348. [Google Scholar] [CrossRef]
- Saatchi, S.S. Application of SAR Remote Sensing in Land Surface Processes Over Tropical Region. In Proceedings of the Anais VIII Simposio Brasileiro de Sensoriamento Remoto, Salvador, Brasil, 14–19 April 1996; pp. 369–374. [Google Scholar]
- Ottinger, M.; Kuenzer, C. Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review. Remote Sens. 2020, 12, 2228. [Google Scholar] [CrossRef]
- Daliman, S.; Rahman, S.A.; Abu Bakar, S.; Busu, I. Segmentation of oil palm area based on GLCM-SVM and NDVI. In Proceedings of the 2014 IEEE REGION 10 SYMPOSIUM, Kuala Lumpur, Malaysia, 14–16 April 2014; pp. 645–650. [Google Scholar] [CrossRef]
- Teng, K.C.; Koay, J.Y.; Tey, S.H.; Lim, K.S.; Ewe, H.T.; Chuah, H.T. A Dense Medium Microwave Backscattering Model for the Remote Sensing of Oil Palm. IEEE Trans. Geosci. Remote Sens. 2014, 53, 3250–3259. [Google Scholar] [CrossRef]
- Ibharim, N.; Mustapha, M.; Lihan, T.; Mazlan, A. Mapping mangrove changes in the Matang Mangrove Forest using multi temporal satellite imageries. Ocean Coast. Manag. 2015, 114, 64–76. [Google Scholar] [CrossRef]
- Woodhouse, I.H. Introduction to Microwave Remote Sensing; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Li, L.; Dong, J.; Tenku, S.N.; Xiao, X. Mapping Oil Palm Plantations in Cameroon Using PALSAR 50-m Orthorectified Mosaic Images. Remote Sens. 2015, 7, 1206–1224. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Quegan, S.; Yumiko, U.; Hu, C.; Zeng, T. Feasibility Study of C- and L-band SAR Time Series Data in Tracking Indonesian Plantation and Natural Forest Cover Changes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3692–3699. [Google Scholar] [CrossRef]
- Fadaei, H.; Ishii, R.; Suzuki, R.; Kendawang, J.J. Detection of oil palm and acacia plantation areas using object based classification in sarawak, Malaysia. In Proceedings of the 34th Asian Conference on Remote Sensing (ACRS), Bali, Indonesia, 20–24 October 2013; pp. 1–7. [Google Scholar]
- Hashim, I.; Shariff, A.; Bejo, S.; Muharam, F.; Ahmad, K. Machine-Learning Approach Using SAR Data for the Classification of Oil Palm Trees That Are Non-Infected and Infected with the Basal Stem Rot Disease. Agronomy 2021, 11, 532. [Google Scholar] [CrossRef]
- Reiche, J.; Lucas, R.; Mitchell, A.L.; Verbesselt, J.; Hoekman, D.H.; Haarpaintner, J.; Kellndorfer, J.M.; Rosenqvist, A.; Lehmann, E.A.; Woodcook, C.E.; et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Chang. 2016, 6, 120–122. [Google Scholar] [CrossRef]
- Kumar, P.; Prasad, R.; Choudhary, A.; Gupta, D.K.; Mishra, V.N.; Vishwakarma, A.K.; Singh, A.K.; Srivastava, P.K. Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data. Geocarto Int. 2018, 34, 1022–1041. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 36–56. [Google Scholar]
- Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Said, S.; Kothyari, U.; Arora, M. Vegetation effects on soil moisture estimation from ERS-2 SAR images. Hydrol. Sci. J. 2012, 57, 517–534. [Google Scholar] [CrossRef]
- Chauhan, S.; Srivastava, H.S.; Patel, P. Improved parameterization of water cloud model for hybrid-polarized backscatter simulation using interaction factor. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-4/W2, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Léonard, A.; Bériaux, E.; Defourny, P. Complementarity of linear polarizations in C-band SAR imagery to estimate leaf area index for maize and winter wheat. ESA Living Planet Symp. 2013, 12, 957–964. [Google Scholar]
- Beriaux, E.; Lucau-Danila, C.; Auquiere, E.; Defourny, P. Multiyear independent validation of the water cloud model for retrieving maize leaf area index from SAR time series. Int. J. Remote Sens. 2013, 34, 4156–4181. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Q.; Yao, S.; Wang, Q.; Zeng, J.; Zhao, S.; Ma, J. Soil Moisture Retrieval from the Chinese GF-3 Satellite and Optical Data over Agricultural Fields. Sensors 2018, 18, 2675. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Wang, G.; Chen, X.; Li, J.; Cai, Q. Estimation of soil moisture using a vegetation scattering model in wheat fields. J. Appl. Remote Sens. 2019, 13, 044503. [Google Scholar] [CrossRef]
- Park, S.-E.; Jung, Y.T.; Cho, J.-H.; Moon, H.; Han, S.-H. Theoretical Evaluation of Water Cloud Model Vegetation Parameters. Remote Sens. 2019, 11, 894. [Google Scholar] [CrossRef] [Green Version]
- Khabazan, S.; Hosseini, M.; Saradjian, M.R.; Motagh, M.; Magagi, R. Accuracy Assessment of IWCM Soil Moisture Estimation Model in Different Frequency and Polarization Bands. J. Indian Soc. Remote Sens. 2015, 43, 859–865. [Google Scholar] [CrossRef]
- Li, J.; Wang, S. Using SAR-Derived Vegetation Descriptors in a Water Cloud Model to Improve Soil Moisture Retrieval. Remote Sens. 2018, 10, 1370. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Yang, G.; Qi, X.; Wang, Y. Soil moisture retrieval in well covered farmland by Radarsat-2 SAR data. Int. Geosci. Remote Sens. Symp. 2016, 1699–1702. [Google Scholar] [CrossRef]
- Bhogapurapu, N.; Mandal, D.; Rao, Y.S.; Bhattacharya, A. Soil Moisture Retrieval Using SAR Derived Vegetation Descriptors in Water Cloud Model. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4696–4699. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, T.; Qiu, J.; Zhao, X.; Li, R.; Wang, S. Microwave-based vegetation descriptors in the parameterization of water cloud model at L-band for soil moisture retrieval over croplands. GIScience Remote Sens. 2020, 58, 48–67. [Google Scholar] [CrossRef]
- Jacome, A.; Bernier, M.; Chokmani, K.; Gauthier, Y.; Poulin, J.; De Sève, D. Monitoring Volumetric Surface Soil Moisture Content at the La Grande Basin Boreal Wetland by Radar Multi Polarization Data. Remote Sens. 2013, 5, 4919–4941. [Google Scholar] [CrossRef] [Green Version]
- Baronti, S.; del Frate, F.; Ferrazzoli, P.; Paloscia, S.; Pampaloni, P.; Schiavon, G. Sar Polarimetric features of agricultural areas. Int. J. Remote Sens. 2010, 16, 2639–2656. [Google Scholar] [CrossRef]
- Shashikant, V.; Shariff, A.M.; Wayayok, A.; Kamal, R.; Lee, Y.; Takeuchi, W. Utilizing TVDI and NDWI to Classify Severity of Agricultural Drought in Chuping, Malaysia. Agronomy 2021, 11, 1243. [Google Scholar] [CrossRef]
- Shashikant, V.; Shariff, A.R.M.; Wayayok, A.; Kamal, R.; Lee, Y.P.; Takeuchi, W. Vegetation Effects on Soil Moisture Retrieval from Water Cloud Model Using PALSAR-2 for Oil Palm Trees. Remote Sens. 2021, 13, 4023. [Google Scholar] [CrossRef]
- Kok, Z.H.; Shariff, A.R.B.M.; Khairunniza-Bejo, S.; Kim, H.-T.; Ahamed, T.; Cheah, S.S.; Wahid, S.A.A. Plot-Based Classification of Macronutrient Levels in Oil Palm Trees with Landsat-8 Images and Machine Learning. Remote Sens. 2021, 13, 2029. [Google Scholar] [CrossRef]
- Awal, M.A.; Wan Ishak, W.I. Measurement of Oil Palm LAI by Manual and LAI-2000 Method. Asian J. Sci. Res. 2007, 1, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Motohka, T.; Isoguchi, O.; Sakashita, M.; Shimada, M. ALOS-2 PALSAR-2 Cal/Val Updates. In Proceedings of the JAXA/EORC Joint PI Meeting of Global Environment Observation Mission FY2017, Tokyo, Japan, 22–26 January 2018. [Google Scholar]
- Ozdarici, A.; Conference, Z.A. A comparison of SAR filtering techniques on agricultural area identification. In Proceedings of the Imaging and Geospatial Information Society (ASPRS), San Diego, CA, USA, 26–30 April 2010. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Pulliainen, J.T.; Heiska, K.; Hyyppa, J.; Hallikainen, M.T. Backscattering Properties of Boreal Forests at the C and X-Bands. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1041–1050. [Google Scholar] [CrossRef]
- Ulaby, F.; Allen, C.; Eger, G.; Kanemasu, E. Relating the microwave backscattering coefficient to leaf area index. Remote Sens. Environ. 1984, 14, 113–133. [Google Scholar] [CrossRef]
- Prévot, L.; Champion, I.; Guyot, G. Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer. Remote Sens. Environ. 1993, 46, 331–339. [Google Scholar] [CrossRef]
- Xu, H.; Steven, M.D.; Jaggard, K.W. Monitoring leaf area of sugar beet using ERS-1 SAR data. Int. J. Remote Sens. 1996, 17, 3401–3410. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Inoue, Y.; Kowalik, W.; Gruszczynska, M. Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis. Adv. Space Res. 2007, 39, 139–148. [Google Scholar] [CrossRef]
- Charbonneau, F.; Trudel, M.; Fernandes, R. Use of Dual Polarization and Multi-Incidence SAR for soil permeability mapping. In Proceedings of the 2005 Advanced Synthetic Aperture Radar (ASAR) Workshop, St-Hubert, QC, Canada, 15–17 November 2005. [Google Scholar]
- Kim, Y.; Van Zyl, J.J. A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2519–2527. [Google Scholar] [CrossRef]
- Trudel, M.; Charbonneau, F.; Leconte, R. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Can. J. Remote Sens. 2012, 38, 514–527. [Google Scholar]
- Kim, Y.-H.; Oh, J. Comparative Analysis of the Multispectral Vegetation Indices and the Radar Vegetation Index. J. Korean Soc. Surv. Geodesy, Photogramm. Cartogr. 2014, 32, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, A.M.; Qazi, W.A.; Ahmad, S.R.; Gilani, H.; Mahmood, S.A.; Rasool, A. Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan. Environ. Monit. Assess. 2020, 192, 584. [Google Scholar] [CrossRef] [PubMed]
- Schönbrodt-Stitt, S.; Ahmadian, N.; Kurtenbach, M.; Conrad, C.; Romano, N.; Bogena, H.R.; Vereecken, H.; Nasta, P. Statistical Exploration of SENTINEL-1 Data, Terrain Parameters, and in-situ Data for Estimating the Near-Surface Soil Moisture in a Mediterranean Agroecosystem. Front. Water 2021, 3, 75. [Google Scholar] [CrossRef]
- Wang, H.; Allain-Bailhache, S.; Méric, S.; Pottier, É.; Allain, S.; Pottier, E. Soil Parameter Retrievals Over Bare Agricultural Fields Using Multi-angular RADARSAT-2 Dataset. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5666–5676. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Wang, P.; Tansey, K.; Zhou, X.; Zhang, S.; Tian, H.; Zhang, J.; Li, H. Linking an agro-meteorological model and a water cloud model for estimating soil water content over wheat fields. Comput. Electron. Agric. 2020, 179, 105833. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Heng, W. Retrieving Surface Soil Moisture over Wheat-Covered Areas Using Data from Sentinel-1 and Sentinel-2. Water 2021, 13, 1981. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Notarnicola, C.; Pasolli, L.; Pistocchi, A. Remote Sensing Comparison between SAR Soil Moisture Estimates and Hydrological Model Simulations over the Scrivia Test Site. Remote Sens. 2013, 5, 4961–4976. [Google Scholar] [CrossRef] [Green Version]
- Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean. IEEE Geosci. Remote Sens. Lett. 2011, 9, 564–568. [Google Scholar] [CrossRef]
- Joshi, N.P.; Mitchard, E.T.A.; Schumacher, J.; Johannsen, V.K.; Saatchi, S.; Fensholt, R. L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark. Remote Sens. 2015, 7, 4442–4472. [Google Scholar] [CrossRef] [Green Version]
- Goh, K.J.; Teo, C.B. Agronomic Principles and Practices of Fertilizer Management Of Oil Palm. Agron. Princ. Pract. Oil Palm Cultiv. 2011, 241–389. [Google Scholar]
- Disney, M.; Lewis, P.; Saich, P. 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sens. Environ. 2006, 100, 114–132. [Google Scholar] [CrossRef]
- Pizaña, J.M.G.; Hernández, J.M.N.; Romero, N.C. Remote Sensing-Based Biomass Estimation. Available online: https://books.google.co.jp/books?hl=zh-CN&lr=&id=Wm-QDwAAQBAJ&oi=fnd&pg=PA3&dq=Remote+Sensing-Based+Biomass+Estimation.+Environ.+Appl.+Remote+Sens.+2016&ots=CkzgeLf5eT&sig=zPDDULDOZN6dR55GnHBQjxYY76M&redir_esc=y#v=onepage&q&f=false (accessed on 3 November 2021).
- Ghasemi, N.; Sahebi, M.R.; Mohammadzadeh, A. A review on biomass estimation methods using synthetic aperture radar data. Int. J. Ofgeomatics Geosci. 2011, 1, 776–788. [Google Scholar]
- Srivastava, H.S.; Patel, P.; Sharma, Y.; Navalgund, R.R. Large-Area Soil Moisture Estimation Using Multi-Incidence-Angle RADARSAT-1 SAR Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2528–2535. [Google Scholar] [CrossRef]
- Hoekman, D.; Quinones, M.; Vissers, M. K&C Science Report—Phase 1 Tropical Forest and Wetlands Mapping, Case Study Borneo. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/50976 (accessed on 3 November 2021).
- Saradjian, M.; Hosseini, M. Soil moisture estimation by using multipolarization SAR image. Adv. Space Res. 2011, 48, 278–286. [Google Scholar] [CrossRef]
- Yadav, V.P.; Prasad, R.; Bala, R. Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data. Geocarto Int. 2019, 36, 791–802. [Google Scholar] [CrossRef]
- Satalino, G.; Mattia, F.; Balenzano, A.; Panciera, R.; Walker, J.; Walker, J. Soil moisture maps from time series of PALSAR-1 scansar data over Australia. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 719–722. [Google Scholar] [CrossRef]
- Najib, N.E.M.; Kanniah, K.D.; Cracknell, A.P.; Yu, L. Synergy of Active and Passive Remote Sensing Data for Effective Mapping of Oil Palm Plantation in Malaysia. Forests 2020, 11, 858. [Google Scholar] [CrossRef]
- Mathur, R.K.; Suresh, K.; Bhanusri, A.; Naveen, K.P.; Prasad, M.V.; Rao, B.N.; Kalidas, P. Research Highlights 2011–2015; ICAR-Indian Institute of Oil Palm Research: Andhra Pradesh, India, 2017; pp. 1–64. [Google Scholar]
- Beets, P.N.; Reutebuch, S.; Kimberley, M.O.; Oliver, G.R.; Pearce, S.H.; McGaughey, R.J. Leaf Area Index, Biomass Carbon and Growth Rate of Radiata Pine Genetic Types and Relationships with LiDAR. Forests 2011, 2, 637–659. [Google Scholar] [CrossRef] [Green Version]
- Gherboudj, I.; Magagi, R.; Berg, A.A.; Toth, B. Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data. Remote Sens. Environ. 2011, 115, 33–43. [Google Scholar] [CrossRef]
- Zribi, M.; Baghdadi, N.; Holah, N.; Fafin, O.; Guérin, C. Evaluation of a rough soil surface description with ASAR-ENVISAT radar data. Remote Sens. Environ. 2005, 95, 67–76. [Google Scholar] [CrossRef]
Date of Acquisition | Polarization | Incident Angle |
---|---|---|
17 January 2019 | HH + HV | 30.4–42.4° |
19 April 2019 | HH + HV | 41.2–53.3° |
9 July 2019 | HH + HV | 30.4–42.4° |
Model | Vegetation Descriptors, V1 and V2 |
---|---|
1 | V1 = 1, V2 = LAI |
2 | V1 = V2 = RVI |
3 | |
4 |
Vegetation Descriptor by Model | Model Coefficients | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HH | HV | ||||||||||
V1 | V2 | A | B | C | D | n | A | B | C | D | n |
1 | LAI | 0.012 | 0.001 | −26.015 | −2.864 | 96 | 0.317 | 0.013 | 22.207 | −23.866 | 96 |
RVI | RVI | 0.319 | 0.017 | −13.648 | −5.784 | 96 | 0.613 | 0.008 | 24.556 | −23.894 | 96 |
0.181 | 0.016 | −11.663 | −6.462 | 96 | 0.450 | 0.133 | 21.874 | −22.487 | 96 | ||
0.758 | 0.007 | −15.200 | −5.900 | 96 | 0.826 | 0.010 | 20.320 | −23.500 | 96 |
Polarization | RMSE (dB) | |||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
HH | 2.257 | 0.425 | 0.472 | 1.883 |
HV | 0.635 | 0.702 | 0.828 | 1.282 |
Polarization | R2 | |||
Model 1 | Model 2 | Model 3 | Model 4 | |
HH | 0.948 | 0.990 | 0.991 | 0.964 |
HV | 0.983 | 0.975 | 0.982 | 0.930 |
Vegetation Descriptor by Model | Statistics Metrics | |||
---|---|---|---|---|
HH | HV | |||
R2 | RMSE (m3/m3) | R2 | RMSE (m3/m3) | |
Model 1 | 0.901 | 0.087 | 0.949 | 0.033 |
Model 2 | 0.973 | 0.036 | 0.960 | 0.031 |
Model 3 | 0.946 | 0.049 | 0.974 | 0.049 |
Model 4 | 0.898 | 0.128 | 0.898 | 0.066 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shashikant, V.; Mohamed Shariff, A.R.; Wayayok, A.; Kamal, M.R.; Lee, Y.P.; Takeuchi, W. Comparison of Field and SAR-Derived Descriptors in the Retrieval of Soil Moisture from Oil Palm Crops Using PALSAR-2. Remote Sens. 2021, 13, 4729. https://doi.org/10.3390/rs13234729
Shashikant V, Mohamed Shariff AR, Wayayok A, Kamal MR, Lee YP, Takeuchi W. Comparison of Field and SAR-Derived Descriptors in the Retrieval of Soil Moisture from Oil Palm Crops Using PALSAR-2. Remote Sensing. 2021; 13(23):4729. https://doi.org/10.3390/rs13234729
Chicago/Turabian StyleShashikant, Veena, Abdul Rashid Mohamed Shariff, Aimrun Wayayok, Md Rowshon Kamal, Yang Ping Lee, and Wataru Takeuchi. 2021. "Comparison of Field and SAR-Derived Descriptors in the Retrieval of Soil Moisture from Oil Palm Crops Using PALSAR-2" Remote Sensing 13, no. 23: 4729. https://doi.org/10.3390/rs13234729
APA StyleShashikant, V., Mohamed Shariff, A. R., Wayayok, A., Kamal, M. R., Lee, Y. P., & Takeuchi, W. (2021). Comparison of Field and SAR-Derived Descriptors in the Retrieval of Soil Moisture from Oil Palm Crops Using PALSAR-2. Remote Sensing, 13(23), 4729. https://doi.org/10.3390/rs13234729