Towards the Assessment of Soil-Erosion-Related C-Factor on European Scale Using Google Earth Engine and Sentinel-2 Images
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Comparison to Regional Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Polykretis, C.; Alexakis, D.D.; Grillakis, M.G.; Manoudakis, S. Assessment of Intra-Annual and Inter-Annual Variabilities of Soil Erosion in Crete Island (Greece) by Incorporating the Dynamic “Nature” of R and C-Factors in RUSLE Modeling. Remote Sens. 2020, 12, 2439. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Poesen, J.; Lugato, E.; Scarpa, S.; Montanarella, L.; Borrelli, P. A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. Remote Sens. 2020, 12, 1365. [Google Scholar] [CrossRef]
- Pijl, A.; Reuter, L.; Quarella, E.; Vogel, T.; Tarolli, P. GIS-based soil erosion modelling under various steep-slope vineyard practices. Catena 2020, 193, 104604. [Google Scholar] [CrossRef]
- Lin, J.; Guan, Q.; Tian, J.; Wang, Q.; Tan, Z.; Li, Z.; Wang, N. Assessing temporal trends of soil erosion and sediment redistribution in the Hexi Corridor region using the integrated RUSLE-TLSD model. Catena 2020, 195, 104756. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Zhao, W.; Fu, B.; Qiu, Y. An Upscaling Method for Cover-Management Factor and Its Application in the Loess Plateau of China. Int. J. Environ. Res. Public Health 2013, 10, 4752–4766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Duan, X.; Li, Y.; Zhang, L.; Rong, L.; Li, R. Simulating the effects of erosion on organic carbon dynamics in soil erosion. Catena 2022, 208, 105753. [Google Scholar] [CrossRef]
- Fernandez, C.; Vega, J. Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma 2016, 273, 64–72. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Ding, J.; Fang, X.; Zhang, X. Estimation of the cover and management factor based on stratified coverage and remote sensing indices: A case study in the Loess Plateau of China. J. Soils Sediments 2017, 18, 775–790. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Almagro, A.; Thomé, T.C.; Colman, C.B.; Pereira, R.B.; Marcato Junior, J.; Rodrigues, D.B.B.; Oliveira, P.T.S. Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. Int. Soil Water Conserv. Res. 2019, 7, 325–334. [Google Scholar] [CrossRef]
- Durigon, V.L.; Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.S.; Fernandes, M.M. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. Int. J. Remote Sens. 2014, 35, 441–453. [Google Scholar] [CrossRef]
- Ayalew, D.A.; Deumlich, D.; Šarapatka, B.; Doktor, D. Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction using Spaceborne Earth Observation Data. Remote Sens. 2020, 12, 1136. [Google Scholar] [CrossRef] [Green Version]
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.V.; Di Rico, C.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the Impact of Land Cover Change on Surface Urban Heat Island through Google Earth Engine: Proposal of a Global Methodology, First Applications and Problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef] [Green Version]
- Karydas, C.; Panagos, P. The G2 erosion model: An algorithm for month-time step assessments. Environ. Res. 2018, 161, 256–267. [Google Scholar] [CrossRef]
- Silvero, N.E.Q.; Demattê, J.A.M.; Amorim, M.T.A.; dos Santos, N.V.; Rizzo, R.; Safanelli, J.L.; Poppiel, R.R.; de Sousa Mendes, W.; Bonfatti, B.R. Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sens. Environ. 2021, 252, 112117. [Google Scholar] [CrossRef]
- Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe; European Commission, European Soil Bureau: Luxembourg, 2000; p. 44. [Google Scholar]
- Schmidt, S.; Alewell, C.; Meusburger, K. Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland. Remote Sens. Environ. 2018, 211, 89–104. [Google Scholar] [CrossRef]
- Vijith, H.; Seling, L.W.; Dodge-Wan, D. Effect of cover management factor in quantification of soil loss: Case study of Sungai Akah subwatershed, Baram River basin Sarawak, Malaysia. Geocarto Int. 2018, 33, 505–521. [Google Scholar] [CrossRef]
- Aune-Lundberg, L.; Strand, G.-H. The content and accuracy of the CORINE Land Cover dataset for Norway. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102266. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Daliakopoulos, I.N.; Panagea, I.S.; Tsanis, I.K. Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece. Geocarto Int. 2018, 33, 321–338. [Google Scholar] [CrossRef]
- Borrelli, P.; Meusburger, K.; Ballabio, C.; Panagos, P.; Alewell, C. Object-oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments. Land Degrad. Dev. 2018, 29, 1270–1281. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Wendland, E. Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment. Earth Surf. Process. Landf. 2015, 40, 1524–1532. [Google Scholar] [CrossRef]
CORINE Land Cover Code | Description |
---|---|
211 | Non-irrigated arable land |
212 | Permanently irrigated land |
221 | Vineyards |
222 | Fruit trees and berry plantations |
223 | Olive groves |
231 | Pastures |
241 | Annual crops associated with permanent crops |
242 | Complex cultivation patterns |
243 | Agriculture areas with significant areas of natural vegetation |
Country | Overall | CORINE Land Cover Code | |||||||
---|---|---|---|---|---|---|---|---|---|
211 | 212 | 221 | 222 | 223 | 231 | 242 | 243 | ||
Albania | 0.145 | 0.197 | 0.125 | 0.118 | 0.098 | 0.083 | 0.22 | 0.16 | 0.157 |
Austria | 0.107 | 0.184 | - | 0.172 | - | - | 0.076 | 0.053 | 0.052 |
Belgium | 0.064 | 0.136 | - | - | 0.044 | - | 0.034 | 0.059 | 0.046 |
Bosnia & Herzogovina | 0.071 | 0.131 | 0.061 | 0.044 | - | 0.083 | 0.058 | 0.051 | |
Bulgaria | 0.185 | 0.301 | 0.212 | 0.148 | - | 0.175 | 0.126 | 0.119 | |
Croatia | 0.116 | 0.157 | 0.175 | 0.158 | - | 0.148 | 0.085 | 0.091 | 0.059 |
Cyprus | 0.389 | 0.495 | 0.44 | 0.376 | 0.292 | 0.421 | 0.288 | 0.411 | 0.369 |
Czech Republic | 0.128 | 0.171 | - | 0.211 | 0.123 | - | 0.091 | 0.083 | 0.086 |
Denmark | 0.07 | 0.089 | - | - | 0.088 | - | 0.055 | 0.057 | 0.06 |
Estonia | 0.146 | 0.19 | - | - | 0.174 | - | 0.135 | 0.131 | 0.102 |
Finland | 0.274 | 0.292 | - | - | - | 0.01 | 0.191 | 0.26 | |
France | 0.13 | 0.165 | - | 0.202 | 0.094 | - | 0.06 | 0.083 | 0.068 |
Germany | 0.073 | 0.123 | - | 0.094 | 0.052 | - | 0.056 | 0.04 | 0.071 |
Greece | 0.204 | 0.299 | 0.212 | 0.184 | 0.101 | 0.156 | 0.232 | 0.216 | 0.156 |
Hungary | 0.172 | 0.212 | - | 0.196 | 0.087 | 0.12 | 0.119 | 0.086 | |
Iceland | 0.154 | 0.04 | - | - | - | - | 0.208 | 0.215 | - |
Ireland | 0.054 | 0.11 | - | - | - | - | 0.019 | 0.06 | 0.028 |
Italy | 0.179 | 0.237 | 0.224 | 0.234 | 0.111 | 0.168 | 0.151 | 0.176 | 0.104 |
Latvia | 0.141 | 0.151 | - | - | 0.228 | - | 0.102 | 0.131 | 0.09 |
Lithuania | 0.108 | 0.152 | - | - | 0.085 | - | 0.091 | 0.127 | 0.084 |
Luxembourg | 0.062 | 0.089 | - | 0.087 | - | - | 0.031 | 0.057 | 0.045 |
Malta | 0.373 | 0.363 | - | 0.338 | - | - | 0.377 | 0.411 | 0.381 |
Montenegro | 0.093 | 0.108 | - | - | 0.067 | 0.021 | 0.18 | 0.109 | 0.087 |
Netherlands | 0.075 | 0.169 | - | - | 0.072 | - | 0.032 | 0.071 | 0.033 |
North Macedonia | 0.255 | 0.35 | 0.321 | 0.324 | 0.16 | - | 0.276 | 0.278 | 0.172 |
Norway | 0.166 | 0.238 | - | - | - | - | 0.054 | 0.169 | 0.204 |
Poland | 0.103 | 0.162 | - | - | 0.062 | - | 0.075 | 0.128 | 0.09 |
Portugal | 0.221 | 0.302 | 0.154 | 0.254 | 0.232 | 0.245 | 0.262 | 0.219 | 0.169 |
Romania | 0.154 | 0.243 | 0.137 | 0.177 | 0.073 | - | 0.124 | 0.135 | 0.084 |
Serbia | 0.165 | 0.225 | - | 0.219 | 0.137 | - | 0.156 | 0.151 | 0.098 |
Slovakia | 0.132 | 0.2 | - | 0.094 | 0.14 | - | 0.079 | 0.19 | 0.086 |
Slovenia | 0.067 | 0.114 | - | 0.045 | 0.118 | 0.062 | 0.043 | 0.053 | 0.037 |
Spain | 0.4 | 0.463 | 0.372 | 0.353 | 0.384 | 0.4 | 0.215 | 0.267 | 0.317 |
Sweden | 0.157 | 0.164 | - | - | - | - | 0.158 | 0.182 | 0.123 |
Switzerland | 0.101 | 0.059 | - | 0.098 | 0.174 | - | 0.119 | 0.047 | 0.111 |
United Kingdom | 0.049 | 0.124 | - | - | 0.018 | - | 0.03 | 0.046 | 0.027 |
Europe | - | 0.2 | 0.238 | 0.206 | 0.126 | 0.189 | 0.118 | 0.132 | 0.114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexakis, D.D.; Manoudakis, S.; Agapiou, A.; Polykretis, C. Towards the Assessment of Soil-Erosion-Related C-Factor on European Scale Using Google Earth Engine and Sentinel-2 Images. Remote Sens. 2021, 13, 5019. https://doi.org/10.3390/rs13245019
Alexakis DD, Manoudakis S, Agapiou A, Polykretis C. Towards the Assessment of Soil-Erosion-Related C-Factor on European Scale Using Google Earth Engine and Sentinel-2 Images. Remote Sensing. 2021; 13(24):5019. https://doi.org/10.3390/rs13245019
Chicago/Turabian StyleAlexakis, Dimitrios D., Stelios Manoudakis, Athos Agapiou, and Christos Polykretis. 2021. "Towards the Assessment of Soil-Erosion-Related C-Factor on European Scale Using Google Earth Engine and Sentinel-2 Images" Remote Sensing 13, no. 24: 5019. https://doi.org/10.3390/rs13245019
APA StyleAlexakis, D. D., Manoudakis, S., Agapiou, A., & Polykretis, C. (2021). Towards the Assessment of Soil-Erosion-Related C-Factor on European Scale Using Google Earth Engine and Sentinel-2 Images. Remote Sensing, 13(24), 5019. https://doi.org/10.3390/rs13245019