Retrieval of Daily Mean VIIRS SST Products in China Seas
Abstract
:1. Introduction
2. Materials and Methods
2.1. S-NPP/VIIRS SST
2.2. FY–4A/AGRI SST
2.3. In Situ SST
2.4. Quality Control
2.5. Matchups and Validation
3. Results
3.1. Case Analysis
3.2. Diurnal Variation of SST
3.3. Retrieval of Daily Mean SST
3.4. Verification of Retrieved Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kawai, Y.; Wada, A. Diurnal Sea Surface Temperature Variation and its Impact on the Atmosphere and Ocean: A Review. J. Oceanogr. 2007, 63, 721–744. [Google Scholar] [CrossRef]
- Zaiss, J.; Boyd, P.W.; Doney, S.C.; Havenhand, J.N.; Levine, N. Impact of Lagrangian Sea Surface Temperature Variability on Southern Ocean Phytoplankton Community Growth Rates. Glob. Biogeochem. Cycles 2020, 35, 1–16. [Google Scholar] [CrossRef]
- Santos, A.M.P. Fisheries Oceanography using Satellite and Airborne Remote Sensing Methods: A Review. Fish. Res. 2000, 49, 1–20. [Google Scholar] [CrossRef]
- Chen, P.; Chen, X. Evaluating the Effects of Sea Surface Temperature Variations on Fishing Ground of Anchoveta (Engraulis ringens) in the Southeast Pacific Ocean. Acta Oceanolog. Sin. 2017, 39, 79–88. [Google Scholar]
- Stuart-Menteth, A.C. A Global Study of Diurnal Warming using Satellite-derived Sea Surface Temperature. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Barton, B.I.; Lique, C.; Lenn, Y.D. Water Mass Properties Derived From Satellite Observations in the Barents Sea. J. Geophys. Res. Oceans 2020, 125, 1–18. [Google Scholar] [CrossRef]
- Béréziat, D.; Herlin, I. Coupling Dynamic Equations and Satellite Images for Modelling Ocean Surface Circulation; Springer International Publishing: Cham, Switzerland, 2014; pp. 191–205. [Google Scholar]
- Dutheil, C.; Lengaigne, M.; Bador, M.; Vialard, J.; Lefevre, J.; Jourdain, N.C.; Jullien, S.; Peltier, A.; Sultan, B.; Menkes, C. Impact of Projected Sea Surface Temperature Biases on Tropical Cyclones Projections in the South Pacific. Sci. Rep. 2020, 10, 4838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varlas, G.; Katsafados, P.; Korres, G.; Papadopoulos, A. Assessing the Impact of Argo Floats Temperature Measurements on the Numerical Weather Prediction Forecast Skill. Mediterr. Mar. Sci. 2019, 20, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Schulz-Stellenfleth, J.; Grayek, S.; Staneva, J. Impacts of the Assimilation of Satellite Sea Surface Temperature Data on Volume and Heat Budget Estimates for the North Sea. J. Geophys. Res. Oceans 2021, 126, 1–25. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Ho, C.-Y.; Lee, H.-J.; Lu, C.-Y.; Ho, C.-R. Temporal Variation and Spatial Structure of the Kuroshio-Induced Submesoscale Island Vortices Observed from GCOM-C and Himawari-8 Data. Remote Sens. 2020, 12, 883. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Minnett, P.J.; Nalli, N.R. Infrared Satellite-derived Sea Surface Skin Temperature Sensitivity to Aerosol Vertical Distribution ̶ Field Data Analysis and Model Simulations. Remote Sens. Environ. 2021, 252, 112151. [Google Scholar] [CrossRef]
- Yang, H.; Gao, Q.; Ji, H.; He, P.; Zhu, T. Sea Surface Temperature Data from Coastal Observation Stations: Quality Control and Semidiurnal Characteristics. Acta Oceanolog. Sin. 2019, 38, 31–39. [Google Scholar] [CrossRef]
- Coppo, P.; Mastrandrea, C.; Stagi, M.; Calamai, L.; Nieke, J. The Sea and Land Surface Temperature Radiometer (SLSTR) Detection Assembly Design and Performance. Proc. SPIE Int. Soc. Opt. Eng. 2013, 8889, 888914-1. [Google Scholar]
- Barton, I.J. Improving Satellite-Derived Sea Surface Temperature Accuracies Using Water Vapor Profile Data. J. Atmos. Ocean. Technol. 2011, 28, 85–93. [Google Scholar] [CrossRef]
- Mittaz, J.; Harris, A. A Physical Method for the Calibration of the AVHRR/3 Thermal IR Channels. Part II: An In-Orbit Comparison of the AVHRR Longwave Thermal IR Channels on Board MetOp-A with IASI. J. Atmos. Ocean. Technol. 2010, 28, 1072–1087. [Google Scholar] [CrossRef]
- Wick, G.A.; Bates, J.J.; Scott, D.J. Satellite and Skin-Layer Effects on the Accuracy of Sea Surface Temperature Measurements from the GOES Satellites. J. Atmos. Ocean. Technol. 2002, 19, 1834–1848. [Google Scholar] [CrossRef] [Green Version]
- Hosoda, K. Global Space-time Scales for Day-to-day Variations of Daily-Minimum and Diurnal Sea Surface Temperatures: Their Distinct Spatial Distribution and Seasonal Cycles. J. Oceanogr. 2016, 72, 1–18. [Google Scholar] [CrossRef]
- Stramma, L.; Cornillon, P.; Weller, R.A.; Price, J.F.; Briscoe, M.G. Large Diurnal Sea Surface Temperature Variability: Satellite and In Situ Measurements. J. Phys. Oceanogr. 1986, 16, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Flament, P.; Firing, J.; Sawyer, M.; Trefois, C. Amplitude and Horizontal Structure of A Large Sea Surface Warming Event During the Coastal Ocean Dynamics Experiment. J. Phys. Oceanogr. 1994, 24, 124–139. [Google Scholar]
- Gentemann, C.L.; Minnett, P.J.; Le Borgne, P.; Merchant, C.J. Multi-satellite measurements of large diurnal warming events. Geophys. Res. Lett. 2008, 35, L22602. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Dickinson, R.E. Impact of Diurnally-varying Skin Temperature on Surface Fluxes over the Tropical Pacific. Geophys. Res. Lett. 1998, 25, 1411–1414. [Google Scholar] [CrossRef]
- Masson, S.; Terray, P.; Madec, G.; Luo, J.-J.; Yamagata, T.; Takahashi, K. Impact of Intra-daily SST Variability on ENSO Characteristics in A Coupled Model. Clim. Dyn. 2011, 39, 681–707. [Google Scholar] [CrossRef] [Green Version]
- Clayson, C.A.; Bogdanoff, A.S. The Effect of Diurnal Sea Surface Temperature Warming on Climatological Air–Sea Fluxes. J. Clim. 2013, 26, 2546–2556. [Google Scholar] [CrossRef]
- Huang, A.; Zhang, Y.; Wang, Z.; Wu, T.; Huang, D.; Zhou, Y.; Zhao, Y.; Huang, Y.; Kuang, X.; Zhang, L.; et al. Extended range simulations of the extreme snow storms over southern China in early 2008 with the BCC_AGCM2.1 model. J. Geophys. Res. Atmos. 2013, 118, 8253–8273. [Google Scholar] [CrossRef]
- Achuthavarier, D.; Krishnamurthy, V. Role of Indian and Pacific SST in Indian Summer Monsoon Intraseasonal Variability. J. Clim. 2011, 24, 2915–2930. [Google Scholar] [CrossRef]
- Ouellet, P.; Savard, L.; Larouche, P. Spring oceanographic conditions and northern shrimp Pandalus borealis recruitment success in the north-western Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 2007, 339, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Hartuti, M.; Tjahjaningsih, A.; Effendy, I.; Sitorus, J. Weekly sea surface temperature from SNPP-VIIRS data using open source software. IOP C Ser. Earth Environ. 2020, 500, 012064. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Lin, G.; Nishihama, M.; Tewari, K.P.; Tilton, J.C.; Isaacman, A.R. Suomi NPP VIIRS prelaunch and on-orbit geometric calibration and characterization. J. Geophys. Res. Atmos. 2013, 118, 11508–11521. [Google Scholar] [CrossRef] [Green Version]
- Chirokova, G.; Demaria, R.; Dostalek, J.F.; Beven, D.J.L. Improving Tropical Cyclone Track and Intensity Forecasting with JPSS imager and Sounder Data. In Proceedings of the 31st Conference on Hurricanes and Tropical Meteorology 2014 American Meteorological Society, San Diego, CA, USA, 31 March–4 April 2014. [Google Scholar]
- Minnett, P.J.; Evans, R.H.; Podestá, G.P.; Kilpatrick, K.A. Sea-Surface Temperature from Suomi-NPP VIIRS: Algorithm Development and Uncertainty Estimation. In Proceedings of the SPIE-The International Society for Optical Engineering, Baltimore, MD, USA, 5–9 May 2014; p. 91110C. [Google Scholar]
- Xiong, X.; Butler, J.; Wu, A.; Chiang, K.V.; Efremova, B.; Madhavan, S.; Mcintire, J.; Oudrari, H. Comparison of MODIS and VIIRS Onboard Blackbody Performance. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XVI, Edinburgh, UK, 24–27 September 2012. [Google Scholar]
- Tu, Q.; Pan, D.; Hao, Z. Validation of S-NPP VIIRS Sea Surface Temperature Retrieved from NAVO. Remote Sens. 2015, 7, 17234–17245. [Google Scholar] [CrossRef] [Green Version]
- Cayula, J.-F.P.; May, D.A.; McKenzie, B.D.; Willis, K.D. VIIRS-derived SST at the Naval Oceanographic Office: From evaluation to operation. In Proceedings of the SPIE, Ocean Sensing and Monitoring V, Baltimore, MD, USA, 29 April–3 May 2013. [Google Scholar]
- Zhang, P.; Zhu, L.; Tang, S.; Gao, L.; Chen, L.; Zheng, W.; Han, X.; Chen, J.; Shao, J. General Comparison of FY–4A/AGRI With Other GEO/LEO Instruments and Its Potential and Challenges in Non-meteorological Applications. Front. Earth Sci. 2019, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Wang, G.; Shen, X. The FY-4 Radiometer Imager and the Application of its Data in the Satellite Meteorology. Chin. J. Nat. 2018, 40, 1–11. [Google Scholar]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The Development and Operational Application of Nonlinear Algorithms for the Measurement of Sea Surface Temperatures with the NOAA Polar-orbiting Environmental Satellites. J. Geophys. Res. Oceans 1998, 103, 27999–28012. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. In situ SST Quality Monitor (iQuam). J. Atmos. Ocean. Technol. 2014, 31, 164–180. [Google Scholar] [CrossRef]
- Ingleby, B.; Huddleston, M. Quality Control of Ocean Temperature and Salinity Profiles-Historical and Real-time Data. J. Mar. Syst. 2007, 65, 158–175. [Google Scholar] [CrossRef]
- Tu, Q.; Pan, D.; Hao, Z.; Chen, J. Observations of SST diurnal variability in the South China Sea. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2015, Toulouse, France, 21–24 September 2015; p. 96380O. [Google Scholar]
- Dash, P.; Ignatov, A.; Kihai, Y.; Sapper, J. The SST Quality Monitor (SQUAM). J. Atmos. Ocean. Technol. 2010, 27, 1899–1917. [Google Scholar] [CrossRef]
- Song, D.; Duan, Z.; Zhai, F.; He, Q. Surface diurnal warming in the East China Sea derived from satellite remote sensing. J. Oceanol. Limnol. 2018, 36, 620–629. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Donlon, C.J.; Stuart-Menteth, A.; Wentz, F.J. Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett. 2003, 30, 1140. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Wang, G.; Chen, C.; Ling, Z. Annual and Semiannual Cycles of Diurnal Warming of Sea Surface Temperature in the South China Sea. J. Geophys. Res. Oceans 2018, 123, 5797–5807. [Google Scholar] [CrossRef]
- Zhang, H.; Beggs, H.; Wang, X.H.; Kiss, A.E.; Griffin, C. Seasonal patterns of SST diurnal variation over the Tropical Warm Pool region. J. Geophys. Res. Oceans 2016, 121, 8077–8094. [Google Scholar] [CrossRef]
- Wirasatriya, A.; Kawamura, H.; Shimada, T.; Hosoda, K. Climatology of hot events in the western equatorial Pacific. J. Oceanogr. 2014, 71, 77–90. [Google Scholar] [CrossRef]
- Wirasatriya, A.; Hosoda, K.; Setiawan, J.D.; Susanto, R.D. Variability of Diurnal Sea Surface Temperature during Short Term and High SST Event in the Western Equatorial Pacific as Revealed by Satellite Data. Remote Sens. 2020, 12, 3230. [Google Scholar] [CrossRef]
- Webster, P.J.; Clayson, C.A.; Curry, J.A. Clouds, Radiation, and the Diurnal Cycle of Sea Surface Temperature in the Tropical Western Pacific. J. Clim. 1996, 9, 1712–1730. [Google Scholar] [CrossRef]
- Li, X.; Ling, T.; Zhang, Y.; Zhou, Q. A 31-year Global Diurnal Sea Surface Temperature Dataset Created by an Ocean Mixed-Layer Model. Adv. Atmos. Sci. 2018, 35, 1443–1454. [Google Scholar] [CrossRef]
- Guemas, V.; Salas-Mélia, D.; Kageyama, M.; Giordani, H.; Voldoire, A. Impact of the ocean diurnal cycle on the North Atlantic mean sea surface temperatures in a regionally coupled model. Dyn. Atmos. Oceans 2013, 60, 28–45. [Google Scholar] [CrossRef]
- Zhu, X.; Minnett, P.J.; Berkelmans, R.; Hendee, J.; Manfrino, C. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions. Cont. Shelf Res. 2014, 82, 85–98. [Google Scholar] [CrossRef]
- Weihs, R.R.; Bourassa, M.A. Modeled diurnally varying sea surface temperatures and their influence on surface heat fluxes. J. Geophys. Res. Oceans 2014, 119, 4101–4123. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.; Dash, P.; Ignatov, A.; Banzon, V.; Beggs, H.; Brasnett, B.; Cayula, J.-F.; Cummings, J.; Donlon, C.; Gentemann, C.; et al. Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE). Deep Sea Res. Part II 2012, 77–80, 21–30. [Google Scholar] [CrossRef]
- Marullo, S.; Santoleri, R.; Ciani, D.; Borgne, P.L.; Péré, S.; Pinardi, N.; Tonani, M.; Nardone, G. Combining model and geostationary satellite data to reconstruct hourly SST field over the Mediterranean Sea. Remote Sens. Environ. 2014, 146, 11–23. [Google Scholar] [CrossRef]
Month | Zone 1 | Zone 2 | Zone 3 |
---|---|---|---|
January | 0.978 | 0.981 | 0.985 |
February | 0.984 | 0.984 | 0.964 |
March | 0.983 | 0.983 | 0.985 |
April | 0.982 | 0.980 | 0.981 |
May | 0.982 | 0.984 | 0.984 |
June | 0.984 | 0.985 | 0.985 |
July | 0.986 | 0.983 | 0.979 |
August | 0.984 | 0.983 | 0.985 |
September | 0.982 | 0.984 | 0.986 |
October | 0.977 | 0.984 | 0.989 |
November | 0.981 | 0.980 | 0.989 |
December | 0.977 | 0.980 | 0.987 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; He, Q.; Chen, C. Retrieval of Daily Mean VIIRS SST Products in China Seas. Remote Sens. 2021, 13, 5158. https://doi.org/10.3390/rs13245158
Li Q, He Q, Chen C. Retrieval of Daily Mean VIIRS SST Products in China Seas. Remote Sensing. 2021; 13(24):5158. https://doi.org/10.3390/rs13245158
Chicago/Turabian StyleLi, Qianmei, Qingyou He, and Chuqun Chen. 2021. "Retrieval of Daily Mean VIIRS SST Products in China Seas" Remote Sensing 13, no. 24: 5158. https://doi.org/10.3390/rs13245158
APA StyleLi, Q., He, Q., & Chen, C. (2021). Retrieval of Daily Mean VIIRS SST Products in China Seas. Remote Sensing, 13(24), 5158. https://doi.org/10.3390/rs13245158