Estimating Actual Evapotranspiration over Croplands Using Vegetation Index Methods and Dynamic Harvested Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Localization of MODIS-Based EVI(EVI2) and ETa
2.2.1. Preparation and Generation of MODIS-Like Landsat Images VIs
- Roy et al. [54] developed transformation equations to reduce the effects of these small differences and produce a sensor-independent, long-time series of Landsat composites. These functions, which are also available on the GEE platform, were applied on Landsat images to calculate continuity-corrected Landsat (ccL) VIs and incorporate them into the ETa equation directly to derive ET-VIs (ET-EVIccL, and ET-EVI2ccL).
- The ETa equation applied in this study was originally developed using MODIS images. The second approach to reduce the effects of these differences is to translate VIs derived from Landsat images into MODIS-like VIs. For this purpose, MODIS daily products MOD09GQ (250 m, red (R), near-infrared (NIR)) and MOD09GA (500 m/L km, blue (B), zenith angle (Vz), and Quality Assessment (QA)) were downloaded. MOD09GA was resampled to 250 m to support the generation of a 250 m spatial resolution data set. EVI and EVI2 were computed after applying cloud and aerosol filtering. The resulting Landsat data was resampled to MODIS 250 m. A regression model was then estimated between matching dates to derive four conversion equations: two for calculating MODIS continuity-corrected Landsat (MccL) (EVIMccL and EVI2MccL) from Landsat 8, and two for those of Landsat 5 and 7 (data processing was conducted at the Vegetation Index and Phenology laboratory at the University of Arizona (https://vip.arizona.edu/, accessed on 17 February 2021). To characterize these empirical translation methods and their impacts on the derived ETa, we compared pairs of MODIS ET-VIs (ET-EVIMccL and ET-EVI2MccL) against non-MODIS-based ET-VIs (ET-EVIccL and ET-EVI2ccL).
2.2.2. Calculation of Vegetation Indices
2.2.3. Calculation of ETa
2.3. Crop Cover Dynamics
2.4. Comparison of Landsat VIs and ETa with Ground Data
2.5. Performance Analysis of ET-VIs
- ET-EVIccL and ET-EVI2ccL;
- ET-EVIMccL and ET-EVI2MccL;
- ET-EVIccL and ET-EVIMccL;
- ET-EVI2ccL and ET-EVI2MccL.
3. Results
3.1. Localization of MODIS-Based EVI(EVI2)
3.2. Impacts of the Static and Dynamic Cropping Areas on ETa Estimation
3.3. Comparing Scaled VIs and ETa with Reported Values
3.3.1. Evaluation of Scaled VIs with FAO-Kc
3.3.2. Evaluation of ET-VIs with ETc
3.4. Performance Analysis of ET-VIs
4. Discussion
- Uncertainties: our ET-VIs’ uncertainties are rooted in (1) errors in the derivation of ETo (limited access to field observations of ETo and the lack of well-distributed climatic stations in ZRB hampered the application of PM to estimate ETo for the whole basin; therefore, alternative climate datasets like the global gridded datasets with coarse resolution were used in this study to map ETo); (2) errors and uncertainties in ground measurements of ETc; (3) RS methods are themselves subjected to uncertainty such as parameterization, cloud cover, errors in scaling approaches, impacts of land cover, and meteorological forcing [29,76,77]. The major hindrance of applying ET-VIs is that they cannot capture stress effects or soil evaporation [78]. In the case of the ZRB, due to the cloud and aerosol contamination, some parts of the ZRB had either excessive missing images or missing pixel values due to the presence of stripes in Landsat 7 images, for example. While missing values were reconstructed by averaging introduces some errors and uncertainties to NDVI, VIs, and ETa (4), our cross-sensor transformation and translation equations could also have introduced biases since they are based on filtered data only.
- Limitations: the accuracy of the ground data for calibration or validation is the main constraint. Since ET-VI methods cannot identify early signals of moisture stress, they are therefore not useful for real-time irrigation planning. Nevertheless, on monthly time steps, they can help relate crop water requirements to crop growth and development [11]. The validation of the ETa estimates produced in this paper is hampered by the scarcity of good quality spatial data on the availability of ground truth data like observed ETa estimates, Kc values, data on agricultural water consumption from surface and groundwater, and a precise land use map to exclude trees, green spaces, and rangelands. We assume that the current modified rainfed map, as being valid for only rainfed areas over other years, could result in some misclassification of irrigated and rainfed fields, as some irrigated lands may have been converted to rainfed, while rainfed areas may have experienced irrigation expansion. Missing images in 2003 also made us exclude this year from our evaluations.
- Recommendation: RS-based approaches have the potential to be used for national and provincial water management projects, such as drought mitigation in fulfilling food security at a national scale and, on a smaller scale, irrigation management of different counties. Considering cross-sensor differences, transformation methods should be applied before ETa calculation in order to reduce the impacts of these disparities on ETa estimates. Certain spatial characteristics may be lost due to the aggregation method, such as cropping practices and rotations. Furthermore, an accurate projection of the water consumption of crops during the growing season, along with images with the finer temporal and spatial resolution are both needed. Apart from reliable field measurements and crop-specific comparisons of ET-VIs to improve the accuracy and spatiotemporal resolution of ETa estimations, further studies should evaluate hybrid approaches combining different ETa methods by considering their corresponding advantages and limitations. We recommend comparing ET-VIs with other VI and energy balance methods as well as available RS-based ETa products, such as Operationalized Simplified Surface Energy Balance (SSEBOp) [14] or Water Productivity through Open access of Remotely sensed derived data (WaPOR) [79].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tadesse, T.; Senay, G.B.; Berhan, G.; Regassa, T.; Beyene, S. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Eyshi Rezaei, E.; Nouri, H.; Gerdener, H.; Popat, E.; Frischen, J.; et al. Global-scale drought risk assessment for agricultural systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 695–712. [Google Scholar] [CrossRef] [Green Version]
- Nagler, P.L.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Nouri, H.; Jarchow, C.J.; Didan, K. Riparian Area Changes in Greenness and Water Use on the Lower Colorado River in the USA from 2000 to 2020. Remote Sens. 2021, 13, 1332. [Google Scholar] [CrossRef]
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
- Nouri, H.; Nagler, P.; Chavoshi Borujeni, S.; Barreto Munez, A.; Alaghmand, S.; Noori, B.; Galindo, A.; Didan, K. Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces. Hydrol. Process. 2020, 34, 3183–3199. [Google Scholar] [CrossRef]
- Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.; Hoekstra, A.Y. Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation. Sci. Total Environ. 2019, 653, 241–252. [Google Scholar] [CrossRef]
- McShane, R.R.; Driscoll, K.P.; Sando, R. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents. In Scientific Investigations Report 2017–5087; U.S. Geological Survey: Reston, VA, USA, 2017; 19p. [Google Scholar] [CrossRef] [Green Version]
- Vulova, S.; Meier, F.; Rocha, A.D.; Quanz, J.; Nouri, H.; Kleinschmit, B. Modeling urban evapotranspiration using remote sensing, flux footprints, and artificial intelligence. Sci. Total Environ. 2021, 786, 147293. [Google Scholar] [CrossRef] [PubMed]
- Nouri, H.; Beecham, S.; Hassanli, A.M.; Ingleton, G. Variability of drainage and solute leaching in heterogeneous urban vegetation environs. Hydrol. Earth Syst. Sci. 2013, 17, 4339–4347. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M.; Anderson, S. Remote sensing techniques for predicting evapotranspiration from mixed vegetated surfaces. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 3897–3925. [Google Scholar] [CrossRef]
- Glenn, E.P.; Nagler, P.L.; Huete, A.R. Vegetation Index Methods for Estimating Evapotranspiration by Remote Sensing. Surv. Geophys. 2010, 31, 531–555. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Cheema, M.J.M.; Immerzeel, W.W.; Miltenburg, I.J.; Pelgrum, H. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resour. Res. 2012, 48, W11512. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Kim, J.; Hogue, T.S. Evaluation of a MODIS triangle-based evapotranspiration algorithm for semi-arid regions. J. Appl. Remote Sens. 2013, 7, 73493. [Google Scholar] [CrossRef] [Green Version]
- Biggs, T.W.; Petropoulos, G.P.; Velpuri, N.M.; Marshall, M.; Glenn, E.P.; Nagler, P.L.; Messina, A. Remote Sensing of Actual Evapotranspiration from Cropland. In Remote Sensing Handbook: Remote Sensing of Water Resources, Disasters, and Urban Studies; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 59–99. [Google Scholar]
- Bastiaanssen, W.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Yebra, M.; van Dijk, A.; Leuning, R.; Huete, A.; Guerschman, J.P. Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sens. Environ. 2013, 129, 250–261. [Google Scholar] [CrossRef]
- Bellvert, J.; Adeline, K.; Baram, S.; Pierce, L.; Sanden, B.; Smart, D. Monitoring Crop Evapotranspiration and Crop Coefficients over an Almond and Pistachio Orchard Throughout Remote Sensing. Remote Sens. 2018, 10, 2001. [Google Scholar] [CrossRef] [Green Version]
- Nagler, P.; Morino, K.; Murray, R.S.; Osterberg, J.; Glenn, E. An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. I. Description of Method. Remote Sens. 2009, 1, 1273–1297. [Google Scholar] [CrossRef] [Green Version]
- French, A.N.; Hunsaker, D.J.; Sanchez, C.A.; Saber, M.; Gonzalez, J.R.; Anderson, R. Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric. Water Manag. 2020, 239, 106266. [Google Scholar] [CrossRef]
- Nagler, P.; Glenn, E.; Nguyen, U.; Scott, R.; Doody, T. Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index. Remote Sens. 2013, 5, 3849–3871. [Google Scholar] [CrossRef] [Green Version]
- Bausch, W.C.; Neale, C.M.U. Crop Coefficients Derived from Reflected Canopy Radiation: A Concept. Trans. ASAE 1987, 30, 703–709. [Google Scholar] [CrossRef]
- Rafn, E.B.; Contor, B.; Ames, D.P. Evaluation of a Method for Estimating Irrigated Crop-Evapotranspiration Coefficients from Remotely Sensed Data in Idaho. J. Irrig. Drain. Eng. 2008, 134, 722–729. [Google Scholar] [CrossRef]
- Reyes-González, A.; Kjaersgaard, J.; Trooien, T.; Hay, C.; Ahiablame, L. Estimation of Crop Evapotranspiration Using Satellite Remote Sensing-Based Vegetation Index. Adv. Meteorol. 2018, 2018, 4525021. [Google Scholar] [CrossRef]
- Nagler, P.L.; Cleverly, J.; Glenn, E.; Lampkin, D.; Huete, A.; Wan, Z. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens. Environ. 2005, 94, 17–30. [Google Scholar] [CrossRef]
- Murray, R.S.; Nagler, P.; Morino, K.; Glenn, E. An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. II. Application to the Lower Colorado River, U.S. Remote Sens. 2009, 1, 1125–1138. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Glenn, E.; Beecham, S.; Chavoshi Boroujeni, S.; Sutton, P.; Alaghmand, S.; Noori, B.; Nagler, P. Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods. Remote Sens. 2016, 8, 492. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.; DIDAN, K.; MIURA, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Ramón-Reinozo, M.; Ballari, D.; Cabrera, J.J.; Crespo, P.; Carrillo-Rojas, G. Altitudinal and temporal evapotranspiration dynamics via remote sensing and vegetation index-based modelling over a scarce-monitored, high-altitudinal Andean páramo ecosystem of Southern Ecuador. Environ. Earth Sci. 2019, 78, 340. [Google Scholar] [CrossRef]
- Nouri, H.; Chavoshi Borujeni, S.; Alaghmand, S.; Anderson, S.; Sutton, P.; Parvazian, S.; Beecham, S. Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands. Sustainability 2018, 10, 2826. [Google Scholar] [CrossRef] [Green Version]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Nagler, P.; Scott, R.; Westenburg, C.; Cleverly, J.; Glenn, E.; Huete, A. Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens. Environ. 2005, 97, 337–351. [Google Scholar] [CrossRef]
- Nagler, P.L.; Glenn, E.P.; Kim, H.; Emmerich, W.; Scott, R.L.; Huxman, T.E.; Huete, A.R. Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. J. Arid Environ. 2007, 70, 443–462. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us about the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [Green Version]
- Nagler, P.L.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Jarchow, C.J.; Gómez-Sapiens, M.M.; Nouri, H.; Herrmann, S.M.; Didan, K. Ecohydrological responses to surface flow across borders: Two decades of changes in vegetation greenness and water use in the riparian corridor of the Colorado River delta. Hydrol. Process. 2020, 34, 4851–4883. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Ghazaryan, G.; Moradi, R.; Dubovyk, O.; Siebert, S. Crop harvested area, not yield, drives variability in crop production in Iran. Environ. Res. Lett. 2021, 16, 64058. [Google Scholar] [CrossRef]
- Rahimzadegan, M.; Janani, A. Estimating evapotranspiration of pistachio crop based on SEBAL algorithm using Landsat 8 satellite imagery. Agric. Water Manag. 2019, 217, 383–390. [Google Scholar] [CrossRef]
- Tofigh, S.; Rahimi, D.; Zakerinejad, R. A comparison of actual evapotranspiration estimates based on Remote Sensing approaches with a classical climate data driven method. AUC Geogr. 2020, 55, 165–182. [Google Scholar] [CrossRef]
- Country Programming Framework (CPF) 2012–2016 for Iran’s Agriculture Sector; MOJA: Tehran, Iran, 2012; Available online: http://www.fao.org/fileadmin/user_upload/faoweb/iran/docs/CPF_Iran_FAO_2012-2016.pdf (accessed on 11 August 2021).
- Salemi, H.; Toomanian, N.; Jalali, A.; Nikouei, A.; Khodagholi, M.; Rezaei, M. Determination of Net Water Requirement of Crops and Gardens in Order to Optimize the Management of Water Demand in Agricultural Sector. In Standing Up to Climate Change; Mohajeri, S., Horlemann, L., Besalatpour, A.A., Raber, W., Eds.; Springer: Cham, Switzerland, 2020; pp. 331–360. [Google Scholar]
- Gohari, A.; Eslamian, S.; Abedi-Koupaei, J.; Massah Bavani, A.; Wang, D.; Madani, K. Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Sci. Total Environ. 2013, 442, 405–419. [Google Scholar] [CrossRef]
- Safavi, H.R.; Esfahani, M.K.; Zamani, A.R. Integrated Index for Assessment of Vulnerability to Drought, Case Study: Zayandehrood River Basin, Iran. Water Resour. Manag. 2014, 28, 1671–1688. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Publisher Correction: Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2020, 7, 274. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Allen, R.G. Self-Calibrating Method for Estimating Solar Radiation from Air Temperature. J. Hydrol. Eng. 1997, 2, 56–67. [Google Scholar] [CrossRef]
- Meza, I.; Eyshi Rezaei, E.; Siebert, S.; Ghazaryan, G.; Nouri, H.; Dubovyk, O.; Gerdener, H.; Herbert, C.; Kusche, J.; Popat, E.; et al. Drought risk for agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk management. Sci. Total Environ. 2021, 799, 149505. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- QGIS Geographic Information System. 2021. Available online: http://www.qgis.org (accessed on 2 February 2021).
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; DIDAN, K.; MIURA, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Kim, Y.; Didan, K. 2-band enhanced vegetation index without a blue band and its application to AVHRR data. In Remote Sensing and Modeling of Ecosystems for Sustainability IV; Optical Engineering + Applications; Gao, W., Ustin, S.L., Eds.; SPIE: San Diego, CA, USA, 2007; p. 667905. [Google Scholar]
- Maxwell, S.K.; Sylvester, K.M. Identification of “ever-cropped” land (1984–2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study. Remote Sens. Environ. 2012, 121, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Nagler, P.L.; Glenn, E.P.; Didan, K.; Osterberg, J.; Jordan, F.; Cunningham, J. Wide-Area Estimates of Stand Structure and Water Use of Tamarix spp. on the Lower Colorado River: Implications for Restoration and Water Management Projects. Restor Ecol. 2008, 16, 136–145. [Google Scholar] [CrossRef]
- Singh Rawat, K.; Kumar Singh, S.; Bala, A.; Szabó, S. Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agric. Water Manag. 2019, 213, 922–933. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Da Silva, H.J.F.; Lucio, P.S.; Brown, I.F. Trend analysis of the reference evapotranspiration for the southwestern Amazon, Brazil. J. Hyperspectral Remote Sens. 2016, 6, 270–282. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Karamouz, M.; Rasouli, K.; Nazif, S. Development of a Hybrid Index for Drought Prediction: Case Study. J. Hydrol. Eng. 2009, 14, 617–627. [Google Scholar] [CrossRef]
- Vazifedoust, M.; van Dam, J.C.; Bastiaanssen, W.G.M.; Feddes, R.A. Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. Int. J. Remote Sens. 2009, 30, 2523–2545. [Google Scholar] [CrossRef]
- Mohammadian, M.; Arfania, R.; Sahour, H. Evaluation of SEBS Algorithm for Estimation of Daily Evapotranspiration Using Landsat-8 Dataset in a Semi-Arid Region of Central Iran. Open J. Geol. 2017, 07, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Arast, M.; Ranjbar, A.; Mousavi, S.H.; Abdollahi, K. Assessment of the Relationship Between NDVI-Based Actual Evapotranspiration by SEBS. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 1051–1062. [Google Scholar] [CrossRef]
- Kim, Y. Spectral compatibility of vegetation indices across sensors: Band decomposition analysis with Hyperion data. J. Appl. Remote Sens. 2010, 4, 43520. [Google Scholar] [CrossRef]
- Didan, K. Multi-Satellite Earth Science Data Record for Studying Global Vegetation Trends and Changes. In Proceedings of the International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; Available online: https://measures.arizona.edu/documents/dataviewer/k_didan_igarss_2010.pdf (accessed on 10 August 2021).
- Obata, K.; Miura, T.; Yoshioka, H.; Huete, A.; Vargas, M. Spectral Cross-Calibration of VIIRS Enhanced Vegetation Index with MODIS: A Case Study Using Year-Long Global Data. Remote Sens. 2016, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Jarchow, C.J.; Didan, K.; Barreto-Muñoz, A.; Nagler, P.L.; Glenn, E.P. Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico. Sensors 2018, 18, 1546. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Mohammadi Shad, Z. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Duchemin, B. Combining Satellite Remote Sensing Data with the FAO-56 Dual Approach for Water Use Mapping In Irrigated Wheat Fields of a Semi-Arid Region. Remote Sens. 2010, 2, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Sarvari, H.; Rakhshanifar, M.; Tamošaitienė, J.; Chan, D.W.; Beer, M. A Risk Based Approach to Evaluating the Impacts of Zayanderood Drought on Sustainable Development Indicators of Riverside Urban in Isfahan-Iran. Sustainability 2019, 11, 6797. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A.; Mirchi, A.; Pirmoradian, R.; Mirabbasi, R.; Tourian, M.J.; Haghighi, A.T.; Madani, K. Battling Water Limits to Growth: Lessons from Water Trends in the Central Plateau of Iran. Environ. Manag. 2021, 68, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Romaguera, M.; Krol, M.; Salama, M.; Su, Z.; Hoekstra, A. Application of a Remote Sensing Method for Estimating Monthly Blue Water Evapotranspiration in Irrigated Agriculture. Remote Sens. 2014, 6, 10033–10050. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Pan, N.; Tian, H.; Friedlingstein, P.; Sitch, S.; Shi, H.; Arora, V.K.; Haverd, V.; Jain, A.K.; Kato, E.; et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci. 2020, 24, 1485–1509. [Google Scholar] [CrossRef] [Green Version]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- FAO. WaPOR Database Methodology; FAO: Rome, Italy, 2020; ISBN 978-92-5-132981-8. [Google Scholar]
Long-Term Average ETa | Reported | Percentage of ETa Difference from ETc | |||||||
---|---|---|---|---|---|---|---|---|---|
County | ET-EVIccL | ET-EVI2ccL | ET-EVIMccL | ET-EVI2MccL | ETc | ET-EVIccL | ET-EVI2ccL | ET-EVIMccL | ET-EVI2MccL |
1 | 778 | 772 | 752 | 745 | 602 | 29 | 28 | 25 | 24 |
2 | 645 | 646 | 621 | 621 | 565 | 14 | 14 | 10 | 10 |
3 | 656 | 657 | 632 | 632 | 568 | 15 | 16 | 11 | 11 |
4 | 845 | 812 | 824 | 794 | 774 | 9 | 5 | 6 | 2 |
5 | 792 | 779 | 763 | 751 | 705 | 12 | 11 | 8 | 6 |
6 | 678 | 680 | 673 | 673 | 632 | 7 | 8 | 7 | 7 |
7 | 979 | 945 | 937 | 907 | 732 | 34 | 29 | 28 | 24 |
8 | 666 | 672 | 653 | 658 | 607 | 10 | 11 | 8 | 8 |
9 | 914 | 877 | 877 | 842 | 733 | 25 | 20 | 20 | 15 |
10 | 861 | 837 | 816 | 795 | 691 | 25 | 21 | 18 | 15 |
11 | 672 | 685 | 658 | 670 | 570 | 18 | 20 | 15 | 17 |
12 | 876 | 856 | 844 | 826 | 724 | 21 | 18 | 17 | 14 |
Basin | 778 | 762 | 752 | 738 | 643 | 21 | 19 | 17 | 15 |
Long-Term Average ETa | Reported | Percentage of ETa Difference from ETc | |||||||
---|---|---|---|---|---|---|---|---|---|
NDVI Threshold | ET-EVIccL | ET-EVI2ccL | ET-EVIMccL | ET-EVI2MccL | ETc | ET-EVIccL | ET-EVI2ccL | ET-EVIMccL | ET-EVI2MccL |
MVC_0.4 | 715 | 700 | 691 | 678 | 643 | 11 | 9 | 7 | 6 |
MVC_0.5 | 778 | 762 | 752 | 738 | 643 | 21 | 19 | 17 | 15 |
MVC_0.6 | 835 | 818 | 808 | 792 | 643 | 30 | 27 | 26 | 23 |
ET-EVIMccL | ET-EVI2MccL | ET-EVIccL | ET-EVI2ccL | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
County | Z | S | P | Z | S | P | Z | S | P | Z | S | P |
1 | 0.56 | 0.60 | 0.58 | −0.07 | −0.20 | 0.94 | 1.33 | 1.40 | 0.18 | 0.91 | 0.75 | 0.36 |
2 | 0.63 | 2.28 | 0.53 | 0.84 | 1.93 | 0.40 | 1.33 | 3.47 | 0.18 | 0.42 | 0.66 | 0.67 |
3 | 0.91 | 1.05 | 0.36 | 0.63 | 0.65 | 0.53 | 1.47 | 1.36 | 0.14 | 0.84 | 0.73 | 0.40 |
4 | −0.98 | −1.33 | 0.33 | −1.47 | −2.22 | 0.14 | −0.28 | −0.34 | 0.78 | −1.12 | −1.75 | 0.26 |
5 | 2.24 | 5.75 | 0.03 | 1.47 | 3.85 | 0.14 | 2.73 | 5.84 | 0.01 | 1.61 | 3.89 | 0.11 |
6 | 3.64 | 7.90 | 0.00 | 3.29 | 6.76 | 0.00 | 3.71 | 8.79 | 0.00 | 3.64 | 7.74 | 0.00 |
7 | −0.07 | −0.07 | 0.94 | −1.47 | −1.92 | 0.14 | 0.84 | 0.95 | 0.40 | −1.05 | −1.48 | 0.29 |
8 | 1.75 | 2.31 | 0.08 | 0.70 | 1.26 | 0.48 | 2.17 | 3.22 | 0.03 | 0.70 | 1.32 | 0.48 |
9 | 1.75 | 3.74 | 0.08 | 1.47 | 2.40 | 0.14 | 2.31 | 4.58 | 0.02 | 1.40 | 2.52 | 0.16 |
10 | −0.14 | −0.61 | 0.89 | −0.56 | −1.07 | 0.58 | 0.00 | −0.16 | 1.00 | −0.28 | −1.02 | 0.78 |
11 | 2.03 | 3.91 | 0.04 | 1.33 | 3.51 | 0.18 | 2.38 | 4.99 | 0.02 | 1.26 | 3.21 | 0.21 |
12 | −0.84 | −1.40 | 0.40 | −1.33 | −2.46 | 0.18 | −0.49 | −1.08 | 0.62 | −1.47 | −2.19 | 0.14 |
Basin | −0.07 | −0.08 | 0.94 | −0.35 | −0.77 | 0.73 | 0.35 | 0.89 | 0.73 | 0.00 | −0.03 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, N.; Nouri, H.; Didan, K.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Salemi, H.; Opp, C.; Siebert, S.; Nagler, P. Estimating Actual Evapotranspiration over Croplands Using Vegetation Index Methods and Dynamic Harvested Area. Remote Sens. 2021, 13, 5167. https://doi.org/10.3390/rs13245167
Abbasi N, Nouri H, Didan K, Barreto-Muñoz A, Chavoshi Borujeni S, Salemi H, Opp C, Siebert S, Nagler P. Estimating Actual Evapotranspiration over Croplands Using Vegetation Index Methods and Dynamic Harvested Area. Remote Sensing. 2021; 13(24):5167. https://doi.org/10.3390/rs13245167
Chicago/Turabian StyleAbbasi, Neda, Hamideh Nouri, Kamel Didan, Armando Barreto-Muñoz, Sattar Chavoshi Borujeni, Hamidreza Salemi, Christian Opp, Stefan Siebert, and Pamela Nagler. 2021. "Estimating Actual Evapotranspiration over Croplands Using Vegetation Index Methods and Dynamic Harvested Area" Remote Sensing 13, no. 24: 5167. https://doi.org/10.3390/rs13245167
APA StyleAbbasi, N., Nouri, H., Didan, K., Barreto-Muñoz, A., Chavoshi Borujeni, S., Salemi, H., Opp, C., Siebert, S., & Nagler, P. (2021). Estimating Actual Evapotranspiration over Croplands Using Vegetation Index Methods and Dynamic Harvested Area. Remote Sensing, 13(24), 5167. https://doi.org/10.3390/rs13245167