A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Materials
2.2. Rainfall and Air Temperature Records
2.3. Data Acquisition
2.4. Data Processing and Indices Extraction
2.5. Data Analysis Methods
3. Results
3.1. Stay Green Stages Classification Results
3.2. Indices Dynamics Analysis Results
3.3. Stay Green Rates Dynamics Results
3.4. Yield Regression Results
3.5. SGR Dynamics in Visual Stay Green Grades
4. Discussion
4.1. Stay Green Stages Detection
4.2. Indices Dynamic Analysis
4.3. Indices SGR Dynamic Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dowla, M.A.N.N.; Edwards, I.; O’Hara, G.; Islam, S.; Ma, W. Developing Wheat for improved yield and adaptation under a changing climate: Optimization of a few key genes. Engineering 2018, 4, 514–522. [Google Scholar] [CrossRef]
- Hyles, J.; Bloomfield, M.T.; Hunt, J.R.; Trethowan, R.M.; Trevaskis, B. Phenology and related traits for wheat adaptation. Heredity 2020, 125, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.A.; Orford, S.; Lage, J.; Griffiths, S. Capturing and selecting senescence variation in wheat. Front. Plant Sci. 2021, 12, 638738. [Google Scholar] [CrossRef]
- Joshi, S.; Choukimath, A.; Isenegger, D.; Panozzo, J.; Spangenberg, G.; Kant, S. Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Front. Plant Sci. 2019, 10, 1285. [Google Scholar] [CrossRef] [Green Version]
- Chapman, E.A.; Orford, S.; Lage, J.; Griffiths, S. Delaying or delivering: Identification of novel NAM-1 alleles which delay senescence to extend wheat grain fill duration. J. Exp. Bot. 2021, 72, 7710–7728. [Google Scholar] [CrossRef] [PubMed]
- Christopher, J.T.; Christopher, M.J.; Borrell, A.K.; Fletcher, S.; Chenu, K. Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. J. Exp. Bot. 2016, 67, 5159–5172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, N.M.; Gorafi, Y.S.A.; Abdelrahman, M.; Abdellatef, E.; Tsujimoto, H. Stay-Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals. Int. J. Mol. Sci. 2019, 20, 5837. [Google Scholar] [CrossRef] [Green Version]
- Munaiz, E.D.; Martinez, S.; Kumar, A.; Caicedo, M.; Ordas, B. The Senescence (Stay-Green)-An Important Trait to Exploit Crop Residuals for Bioenergy. Energies 2020, 13, 790. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Zhang, Y.; Zhang, Y.; Fan, S.; Kong, L. Source-sink modifications affect leaf senescence and grain mass in wheat as revealed by proteomic analysis. BMC Plant Biol. 2020, 20, 257. [Google Scholar] [CrossRef]
- Sade, N.; Rubio-Wilhelmi, M.D.M.; Umnajkitikorn, K.; Blumwald, E. Stress-induced senescence and plant tolerance to abiotic stress. J. Exp. Bot. 2018, 69, 845–853. [Google Scholar] [CrossRef]
- Sultana, N.; Islam, S.; Juhasz, A.; Ma, W. Wheat leaf senescence and its regulatory gene network. Crop J. 2021, 9, 703–717. [Google Scholar] [CrossRef]
- Scossa, F.; Alseekh, S.; Fernie, A.R. Integrating multi-omics data for crop improvement. J. Plant Physiol. 2021, 257, 153352. [Google Scholar] [CrossRef] [PubMed]
- Cortes, L.T.; Zhang, Z.; Yu, J. Status and prospects of genome-wide association studies in plants. Plant Genome. 2021, 14, e20077. [Google Scholar] [CrossRef]
- Song, P.; Wang, J.; Guo, X.; Yang, W.; Zhao, C. High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. Crop J. 2021, 9, 633–645. [Google Scholar] [CrossRef]
- Moreira, F.F.; Oliveira, H.R.; Volenec, J.J.; Rainey, K.M.; Brito, L.F. Integrating high-throughput phenotyping and statistical genomic methods to genetically improve longitudinal traits in crops. Front. Plant Sci. 2020, 11, 681. [Google Scholar] [CrossRef]
- Cao, X.; Yu, K.; Zhao, Y.; Zhang, H. Current status of high-throughput plant phenotyping for abiotic stress by imaging spectroscopy: A review. Spectrosc. Spect. Anal. 2020, 40, 3365–3372. [Google Scholar] [CrossRef]
- Guo, W.; Carroll, M.E.; Singh, A.; Swetnam, T.L.; Merchant, N.; Sarkar, S.; Singh, A.K.; Ganapathysubramanian, B. UAS-based plant phenotyping for research and breeding applications. Plant Phenomics. 2021, 2021, 9840192. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Feng, L.; Chen, S.; Zhang, C.; Zhang, Y.; He, Y. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. Comput. Electron. Agric. 2021, 182, 106033. [Google Scholar] [CrossRef]
- Clemente, A.A.; Maciel, G.M.; Silva Siquieroli, A.C.; de Araujo Gallis, R.B.; Pereira, L.M.; Duarte, J.G. High-throughput phenotyping to detect anthocyanins, chlorophylls, and carotenoids in red lettuce germplasm. Int. J. Appl. Earth Obs. 2021, 103, 102533. [Google Scholar] [CrossRef]
- Haghshenas, A.; Emam, Y. Image-based tracking of ripening in wheat cultivar mixtures: A quantifying approach parallel to the conventional phenology. Comput. Electron. Agric. 2019, 156, 318–333. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, X.; Wang, K.; Cheng, T.; Tian, Y.; Wang, J.; Zhu, Y.; Hu, Y.; Niu, Q.; Gui, L.; et al. Detection of phenology using an improved shape model on time-series vegetation index in wheat. Comput. Electron. Agric. 2020, 173, 105398. [Google Scholar] [CrossRef]
- Brown, T.B.; Hultine, K.R.; Steltzer, H.; Denny, E.G.; Denslow, M.W.; Granados, J.; Henderson, S.; Moore, D.; Nagai, S.; SanClements, M.; et al. Using phenocams to monitor our changing Earth: Toward a global phenocam network. Front. Ecol. Environ. 2016, 14, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Bukowiecki, J.; Rose, T.; Ehlers, R.; Kage, H. High-throughput prediction of whole season green area index in winter wheat with an airborne multispectral sensor. Front. Plant Sci. 2020, 10, 1798. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Zhang, P.; Zhou, X.; Wang, Z.; Xu, Z.; Mao, W.; Li, W.; Huo, Z.; Guo, W.; Yun, F. Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law. Sci. Rep. 2020, 10, 929. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of ensemble learning to predict wheat grain yield based on uav-multispectral reflectance. Remote Sens. 2021, 13, 2338. [Google Scholar] [CrossRef]
- Kefauver, S.C.; Vicente, R.; Vergara-Diaz, O.; Fernandez-Gallego, J.A.; Kerfal, S.; Lopez, A.; Melichar, J.P.E.; Serret Molins, M.D.; Araus, J.L. Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barle. Front. Plant Sci. 2017, 8, 1733. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of China. Agric. Forest Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Munoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef]
- Mishra, P.; Polder, G.; Vilfan, N. Close Range Spectral imaging for disease detection in plants using autonomous platforms: A review on recent studies. Curr. Robot. Rep. 2020, 1, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Liedtke, J.D.; Hunt, C.H.; George-Jaeggli, B.; Laws, K.; Watson, J.; Potgieter, A.B.; Cruickshank, A.; Jordan, D.R. High-throughput phenotyping of dynamic canopy traits associated with stay-green in grain sorghum. Plant Phenomics. 2020, 2020, 4635153. [Google Scholar] [CrossRef]
- Rebetzke, G.J.; Jimenez-Berni, J.A.; Bovill, W.D.; Deery, D.M.; James, R.A. High-throughput phenotyping technologies allow accurate selection of stay-green. J. Exp. Bot. 2016, 67, 4919–4924. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.S.; Reynolds, M.P. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J. Exp. Bot. 2012, 63, 3789–3798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montazeaud, G.; Karatogma, H.; Ozturk, I.; Roumet, P.; Ecarnot, M.; Crossa, J.; Ozer, E.; Ozdemir, F.; Lopes, M.S. Predicting wheat maturity and stay-green parameters by modeling spectral reflectance measurements and their contribution to grain yield under rainfed conditions. Field Crop. Res. 2016, 196, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, J.; Yu, K.; Aasen, H.; Walter, A.; Liebisch, F.; Hund, A. Spectral vegetation indices to track senescence dynamics in diverse wheat germplasm. Front. Plant Sci. 2020, 10, 1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.; Azam, F.I.; Li, H.; Chang, X.; Li, B.; Jing, R. Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica. 2017, 213, 246. [Google Scholar] [CrossRef] [Green Version]
- Christopher, M.; Chenu, K.; Jennings, R.; Fletcher, S.; Butler, D.; Borrell, A.; Christopher, J. QTL for stay-green traits in wheat in well-watered and water-limited environments. Field Crop. Res. 2018, 217, 32–44. [Google Scholar] [CrossRef]
- Jang, G.; Kim, J.; Yu, J.; Kim, H.; Kim, Y.; Kim, D.; Kim, K.; Lee, C.W.; Chung, Y.S. Review: Cost-effective unmanned aerial vehicle (UAV) platform for field plant breeding application. Remote Sens. 2020, 12, 998. [Google Scholar] [CrossRef] [Green Version]
- Tattaris, M.; Reynolds, M.P.; Chapman, S.C. A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front. Plant Sci. 2016, 7, 1131. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kushwaha, S.; Delvento, C.; Liatukas, Z.; Vivekanand, V.; Svensson, J.T.; Henriksson, T.; Brazauskas, G.; Chawade, A. Affordable phenotyping of winter wheat under field and controlled conditions for drought tolerance. Agronomy 2020, 10, 882. [Google Scholar] [CrossRef]
- Varela, S.; Pederson, T.; Bernacchi, C.J.; Leakey, A.D.B. Understanding growth dynamics and yield prediction of sorghum using high temporal resolution Uav imagery time series and machine learning. Remote Sens. 2021, 13, 1763. [Google Scholar] [CrossRef]
- Zhou, J.; Yungbluth, D.; Vong, C.N.; Scaboo, A.; Zhou, J. Estimation of the maturity date of soybean breeding lines using UAV-based multispectral imagery. Remote Sens. 2019, 11, 2075. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Huang, W.; Huang, S.; Cui, B.; Dong, Y.; Guo, A.; Ren, Y.; Jin, Y. Recognition of banana fusarium wilt based on UAV remote sensing. Remote Sens. 2020, 12, 938. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. Isprs J. Photogramm. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, X.; Wu, Y.; Zhu, Y.; Cao, Q.; Liu, X.; Cao, W. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods. Comput. Electron. Agric. 2021, 185, 106138. [Google Scholar] [CrossRef]
- Selvaraj, M.G.; Valderrama, M.; Guzman, D.; Valencia, M.; Ruiz, H.; Acharjee, A. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (Manihot esculentaCrantz). Plant Methods 2020, 16, 87. [Google Scholar] [CrossRef]
- Niazian, M.; Niedbala, G. machine learning for plant breeding and biotechnology. Agriculture 2020, 10, 436. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; de Ridder, D. Machine learning in plant science and plant breeding. Iscience 2021, 24, 101890. [Google Scholar] [CrossRef]
- Muharam, F.M.; Nurulhuda, K.; Zulkafli, Z.; Tarmizi, M.A.; Abdullah, A.N.H.; Che Hashim, M.F.; Mohd Zad, S.N.; Radhwane, D.; Ismail, M.R. UAV- and Random-Forest-AdaBoost (RFA)-based estimation of rice plant traits. Agronomy 2021, 11, 915. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, L.; Li, M.; Wang, Y.; Sheng, D.; Liu, J.; Wang, C. Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy. Infrared Phys. Technol. 2018, 95, 88–92. [Google Scholar] [CrossRef]
- Menesatti, P.; Angelini, C.; Pallottino, F.; Antonucci, F.; Aguzzi, J.; Costa, C. RGB color calibration for quantitative image analysis: The “3D Thin-Plate Spline” warping approach. Sensors 2012, 12, 7063–7079. [Google Scholar] [CrossRef] [Green Version]
- Sunoj, S.; Igathinathane, C.; Saliendra, N.; Hendrickson, J.; Archer, D. Color calibration of digital images for agriculture and other applications. Isprs J. Photogramm. 2018, 146, 221–234. [Google Scholar] [CrossRef]
- Poncet, A.M.; Knappenberger, T.; Brodbeck, C.; Fogle, M., Jr.; Shaw, J.N.; Ortiz, B.V. Multispectral UAS data accuracy for different radiometric calibration methods. Remote Sens. 2019, 11, 1917. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Danielson, B.; Clare, S.; Koenig, S.; Campos-Vargas, C.; Sanchez-Azofeifa, A. Radiometric calibration assessments for UAS-borne multispectral cameras: Laboratory and field protocols. Isprs J. Photogramm. 2019, 149, 132–145. [Google Scholar] [CrossRef]
- Behmann, J.; Steinruecken, J.; Pluemer, L. Detection of early plant stress responses in hyperspectral images. Isprs J. Photogramm. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Christopher, J.T.; Veyradier, M.; Borrell, A.K.; Harvey, G.; Fletcher, S.; Chenu, K. Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics. Funct. Plant Biol. 2014, 41, 1035–1048. [Google Scholar] [CrossRef]
- Stratonovitch, P.; Semenov, M.A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. 2015, 66, 3599–3609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, N.; Islam, M.R. Heat stress effects and management in wheat. A review. Agron. Sustain. Dev. 2017, 37, 37. [Google Scholar] [CrossRef]
Date | Altitude (m) | Ground Resolution (cm/pixel) | Speed (m/s) | Overlap | Phenology | ||||
---|---|---|---|---|---|---|---|---|---|
RGB | MSI | RGB | MSI | RGB | MSI | RGB | MSI | ||
22 April | 25 | 26 | 0.683 | 1.11 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Heading Stage |
30 April | 25 | 26 | 0.686 | 1.20 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Anthesis Stage |
4 May | 25 | 26 | 0.688 | 1.12 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Watery Ripe Stage |
8 May | 25 | 26 | 0.687 | 1.15 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Watery Ripe Stage |
12 May | 25 | 26 | 0.687 | 1.15 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Watery Ripe Stage |
17 May | 25 | 26 | 0.685 | 1.15 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Watery Ripe Stage |
20 May | 25 | 26 | 0.684 | 1.23 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | / |
24 May | 25 | 26 | 0.684 | 1.20 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Mealy ripe stage |
26 May | 25 | 26 | 0.684 | 1.29 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Mealy ripe stage |
28 May | 25 | 26 | 0.684 | 1.23 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Mealy ripe stage |
30 May | 25 | 26 | 0.686 | 1.22 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Kernel Hard Stage |
1 June | 25 | 26 | 0.686 | 1.17 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | Kernel Hard Stage |
4 June | 25 | 26 | 0.684 | 0.98 | 1.9–2.1 | 1.5–1.7 | 75–85% | 85–90% | / |
Type | INDEX NAME | Acronym | Formula | Reference |
---|---|---|---|---|
SIs in MSI | Normalized difference red edge index | NDRE | (Rnir − Rre)/(Rnir + Rre) | [43] |
Normalized difference vegetation index | NDVI | (Rnir − Rr)/(Rnir + Rr) | [32] | |
Green normalized difference vegetation index | GNDVI | (Rnir − Rg)/(Rnir + Rg) | [44] | |
Blue normalized difference vegetation index | BNDVI | (Rnir − Rb)/(Rnir + Rb) | [44] | |
Normalized difference red edge red index | NDREI | (Rre − Rr)/(Rre + Rr) | [44] | |
Normalized difference red edge green index | GNDREI | (Rre − Rg)/(Rre + Rg) | / | |
Normalized difference red edge blue index | BNDREI | (Rre − Rb)/(Rre + Rb) | / | |
Red edge chlorophyll Index | CIRE | (Rnir/Rre) − 1 | [45] | |
Anthocyanin reflectance index1 | ARI1 | (1/Rg) − (1/Rnir) | [46] | |
Anthocyanin reflectance index2 | ARI2 | [(1/Rg) − (1/Rnir)] × Rnir | [46] | |
Optimized soil adjusted vegetation index | OSAVI | 1.16 × (Rnir − Rr)/(Rnir + Rr + 0.16) | [47] | |
CIs in RGB, MSI | Normalized green red difference index | NGRDI | (Rg − Rr)/(Rg + Rr) | [48] |
Normalized green blue difference index | NGBDI | (Rg − Rb)/(Rg + Rb) | [49] | |
Norm red | NormR | Rr/(Rg + Rr + Rb) | [44] | |
Norm green | NormG | Rg/(Rg + Rr + Rb) | [44] | |
Norm blue | NormB | Rb/(Rg + Rr + Rb) | [48] | |
Green leaf index | GLI | (2 × Rg − Rr − Rb)/(2*Rg + Rr + Rb) | [48] | |
Green red ratio | GR | Rg/Rr | / | |
Excess green index | ExG | 2 × Rg − Rr − Rb | [43] | |
Visible atmospherically resistant index | VARI | (Rg − Rr)/(Rg + Rr − Rb) | [48] | |
Excess red index | ExR | 1.4 × Rr − Rg | [48] |
Feature | Stage | SVM | QDA | KNN | EL | ||||
---|---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | ||
RGB_CIs | S1 | 95.10% | 94.00% | 93.70% | 91.00% | 96.90% | 94.00% | 93.70% | 93.00% |
S2 | 95.10% | 100.00% | 93.70% | 100.00% | 88.30% | 96.00% | 92.30% | 100% | |
S3 | 92.00% | 92.00% | 96.90% | 98.00% | 84.60% | 92.00% | 90.60% | 96.00% | |
S4 | 96.90% | 98.00% | 96.30% | 98.00% | 96.00% | 98.00% | 96.60% | 98.00% | |
AVE | 94.80% | 96.00% | 95.10% | 96.80% | 91.40% | 95.00% | 93.30% | 96.80% | |
MSI_CIs | S1 | 90.90% | 87.00% | 75.10% | 73.00% | 85.40% | 68.00% | 80.60% | 73.00% |
S2 | 92.60% | 95.00% | 92.90% | 99.00% | 79.70% | 78.00% | 81.70% | 90.00% | |
S3 | 94.00% | 97.00% | 92.00% | 97.00% | 89.70% | 92.00% | 88.90% | 92.00% | |
S4 | 95.40% | 96.00% | 93.40% | 96.00% | 94.00% | 97.00% | 94.30% | 95.00% | |
AVE | 93.20% | 93.80% | 88.40% | 91.30% | 87.20% | 83.80% | 86.40% | 87.50% | |
MSI_SIs | S1 | 100% | 100% | 99.40% | 99.00% | 97.10% | 99.00% | 98.60% | 100% |
S2 | 98.30% | 98.00% | 95.70% | 98.00% | 92.60% | 95.00% | 96.60% | 100% | |
S3 | 96.60% | 97.00% | 94.60% | 96.00% | 91.70% | 94.00% | 92.60% | 96.00% | |
S4 | 97.40% | 98.00% | 95.10% | 97.00% | 93.40% | 93.00% | 96.60% | 97.00% | |
AVE | 98.10% | 98.30% | 96.20% | 97.50% | 93.70% | 95.30% | 96.10% | 98.30% | |
MSI_CIs + SIs | S1 | 99.70% | 100% | 99.70% | 100% | 98.60% | 97.00% | 100.00% | 100% |
S2 | 98.90% | 99.00% | 96.90% | 100% | 94.30% | 97.00% | 97.70% | 99.00% | |
S3 | 98.00% | 98.00% | 94.90% | 96.00% | 91.70% | 96.00% | 94.00% | 95.00% | |
S4 | 97.70% | 98.00% | 95.70% | 97.00% | 94.60% | 98.00% | 96.60% | 98.00% | |
AVE | 98.60% | 98.80% | 96.80% | 98.30% | 94.80% | 97.00% | 97.10% | 98.00% |
Index | Date | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22 April | 30 April | 4 May | 8 May | 12 May | 17 May | 20 May | 24 May | 26 May | 28 May | 30 May | 1 June | 4 June | |
NormR | 0.27 ± 0.013 | 0.31 ± 0.009 | 0.31 ± 0.010 | 0.32 ± 0.010 | 0.32 ± 0.009 | 0.33 ± 0.011 | 0.34 ± 0.012 | 0.34 ± 0.015 | 0.36 ± 0.013 | 0.38 ± 0.013 | 0.40 ± 0.016 | 0.40 ± 0.013 | 0.42 ± 0.014 |
NormG | 0.44 ± 0.014 | 0.42 ± 0.011 | 0.41 ± 0.008 | 0.41 ± 0.009 | 0.40 ± 0.009 | 0.40 ± 0.010 | 0.40 ± 0.011 | 0.40 ± 0.012 | 0.39 ± 0.012 | 0.39 ± 0.011 | 0.38 ± 0.012 | 0.36 ± 0.010 | 0.36 ± 0.009 |
NormB | 0.29 ± 0.010 | 0.27 ± 0.011 | 0.28 ± 0.010 | 0.27 ± 0.010 | 0.28 ± 0.009 | 0.27 ± 0.009 | 0.26 ± 0.011 | 0.25 ± 0.011 | 0.25 ± 0.011 | 0.23 ± 0.012 | 0.22 ± 0.013 | 0.23 ± 0.011 | 0.23 ± 0.011 |
NGRDI | 0.24 ± 0.035 | 0.16 ± 0.022 | 0.15 ± 0.022 | 0.13 ± 0.022 | 0.11 ± 0.021 | 0.10 ± 0.026 | 0.09 ± 0.028 | 0.073 ± 0.033 | 0.044 ± 0.030 | 0.011 ± 0.028 | −0.025 ± 0.032 | −0.048 ± 0.026 | −0.079 ± 0.026 |
NGBDI | 0.20 ± 0.027 | 0.22 ± 0.028 | 0.20 ± 0.024 | 0.20 ± 0.023 | 0.18 ± 0.023 | 0.19 ± 0.023 | 0.22 ± 0.028 | 0.22 ± 0.027 | 0.23 ± 0.029 | 0.25 ± 0.030 | 0.26 ± 0.032 | 0.22 ± 0.029 | 0.22 ± 0.026 |
GLI | 0.22 ± 0.026 | 0.19 ± 0.021 | 0.17 ± 0.017 | 0.16 ± 0.017 | 0.15 ± 0.017 | 0.14 ± 0.020 | 0.15 ± 0.023 | 0.14 ± 0.024 | 0.13 ± 0.024 | 0.11 ± 0.022 | 0.098 ± 0.024 | 0.070 ± 0.020 | 0.048 ± 0.019 |
GR | 1.65 ± 0.13 | 1.40 ± 0.075 | 1.35 ± 0.060 | 1.31 ± 0.059 | 1.25 ± 0.060 | 1.23 ± 0.066 | 1.21 ± 0.068 | 1.16 ± 0.079 | 1.10 ± 0.066 | 1.02 ± 0.057 | 0.95 ± 0.062 | 0.91 ± 0.050 | 0.86 ± 0.047 |
ExG | 90.84 ± 11.25 | 70.87 ± 9.45 | 69.61 ± 8.91 | 53.15 ± 5.90 | 57.99 ± 5.88 | 61.28 ± 6.87 | 59.48 ± 6.42 | 54.23 ± 6.30 | 55.16 ± 7.19 | 49.16 ± 7.34 | 35.34 ± 7.36 | 31.65 ± 8.06 | 21.89 ± 8.00 |
VARI | 0.41 ± 0.062 | 0.26 ± 0.035 | 0.24 ± 0.038 | 0.21 ± 0.037 | 0.18 ± 0.036 | 0.16 ± 0.043 | 0.14 ± 0.044 | 0.11 ± 0.052 | 0.065 ± 0.044 | 0.016 ± 0.040 | −0.034 ± 0.045 | −0.068 ± 0.037 | −0.11 ± 0.037 |
ExR | 13.49 ± 3.28 | 10.92 ± 2.88 | 11.95 ± 4.91 | 12.48 ± 4.84 | 17.59 ± 6.81 | 21.48 ± 9.70 | 23.36 ± 9.14 | 26.74 ± 10.73 | 37.20 ± 11.73 | 47.03 ± 11.87 | 49.51 ± 11.87 | 67.57 ± 11.95 | 76.0 ± 10.39 |
Index | Date | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22 April | 30 April | 4 May | 8 May | 12 May | 17 May | 20 May | 24 May | 26 May | 28 May | 30 May | 1 June | 4 June | |
NDRE | 0.66 ± 0.039 | 0.60 ± 0.054 | 0.59 ± 0.057 | 0.58 ± 0.051 | 0.57 ± 0.053 | 0.52 ± 0.062 | 0.51 ± 0.058 | 0.42 ± 0.066 | 0.39 ± 0.064 | 0.35 ± 0.067 | 0.29 ± 0.063 | 0.256 ± 0.055 | 0.190 ± 0.040 |
NDVI | 0.93 ± 0.015 | 0.89 ± 0.021 | 0.89 ± 0.024 | 0.86 ± 0.027 | 0.85 ± 0.033 | 0.83 ± 0.042 | 0.83 ± 0.043 | 0.75 ± 0.064 | 0.73 ± 0.066 | 0.67 ± 0.079 | 0.60 ± 0.089 | 0.532 ± 0.087 | 0.408 ± 0.084 |
GNDVI | 0.85 ± 0.022 | 0.82 ± 0.031 | 0.81 ± 0.035 | 0.79 ± 0.032 | 0.78 ± 0.035 | 0.75 ± 0.044 | 0.75 ± 0.040 | 0.68 ± 0.050 | 0.66 ± 0.048 | 0.63 ± 0.053 | 0.60 ± 0.051 | 0.576 ± 0.044 | 0.524 ± 0.040 |
BNDVI | 0.93 ± 0.010 | 0.91 ± 0.014 | 0.91 ± 0.015 | 0.89 ± 0.016 | 0.89 ± 0.019 | 0.88 ± 0.024 | 0.88 ± 0.023 | 0.84 ± 0.031 | 0.84 ± 0.030 | 0.82 ± 0.034 | 0.79 ± 0.038 | 0.776 ± 0.036 | 0.730 ± 0.037 |
NDREI | 0.73 ± 0.029 | 0.66 ± 0.031 | 0.66 ± 0.029 | 0.60 ± 0.032 | 0.58 ± 0.036 | 0.58 ± 0.042 | 0.58 ± 0.047 | 0.51 ± 0.055 | 0.49 ± 0.055 | 0.44 ± 0.061 | 0.39 ± 0.067 | 0.331 ± 0.066 | 0.242 ± 0.065 |
GNDREI | 0.44 ± 0.015 | 0.44 ± 0.015 | 0.42 ± 0.015 | 0.41 ± 0.015 | 0.39 ± 0.015 | 0.39 ± 0.018 | 0.39 ± 0.018 | 0.37 ± 0.018 | 0.37 ± 0.019 | 0.37 ± 0.020 | 0.38 ± 0.021 | 0.379 ± 0.022 | 0.374 ± 0.023 |
BNDREI | 0.73 ± 0.022 | 0.70 ± 0.026 | 0.69 ± 0.022 | 0.66 ± 0.024 | 0.65 ± 0.023 | 0.66 ± 0.023 | 0.68 ± 0.024 | 0.66 ± 0.025 | 0.67 ± 0.026 | 0.67 ± 0.028 | 0.66 ± 0.031 | 0.655 ± 0.033 | 0.631 ± 0.031 |
CIRE | 4.22 ± 0.76 | 3.22 ± 0.73 | 3.22 ± 0.73 | 2.93 ± 0.61 | 2.89 ± 0.62 | 2.30 ± 0.56 | 2.22 ± 0.51 | 1.52 ± 0.41 | 1.39 ± 0.37 | 1.14 ± 0.35 | 0.85 ± 0.28 | 0.720 ± 0.236 | 0.484 ± 0.142 |
ARI1 | 19.25 ± 4.11 | 16.75 ± 3.38 | 16.30 ± 3.17 | 13.21 ± 2.44 | 13.35 ± 2.29 | 10.73 ± 2.32 | 11.68 ± 2.32 | 8.57 ± 1.68 | 8.32 ± 1.57 | 8.34 ± 1.59 | 7.79 ± 1.40 | 7.143 ± 1.249 | 7.027 ± 1.295 |
ARI2 | 8.50 ± 1.68 | 6.90 ± 1.47 | 6.33 ± 1.39 | 5.59 ± 1.10 | 5.11 ± 1.08 | 4.28 ± 1.01 | 4.39 ± 0.98 | 3.06 ± 0.70 | 2.91 ± 0.63 | 2.61 ± 0.59 | 2.37 ± 0.49 | 2.15 ± 0.377 | 1.82 ± 0.290 |
OSAVI | 0.79 ± 0.019 | 0.76 ± 0.025 | 0.74 ± 0.030 | 0.74 ± 0.030 | 0.71 ± 0.037 | 0.71 ± 0.048 | 0.69 ± 0.046 | 0.63 ± 0.065 | 0.61 ± 0.064 | 0.55 ± 0.071 | 0.49 ± 0.079 | 0.441 ± 0.073 | 0.332 ± 0.069 |
NormR | 0.22 ± 0.014 | 0.26 ± 0.014 | 0.25 ± 0.013 | 0.28 ± 0.014 | 0.28 ± 0.016 | 0.29 ± 0.018 | 0.30 ± 0.022 | 0.33 ± 0.025 | 0.34 ± 0.027 | 0.37 ± 0.030 | 0.40 ± 0.032 | 0.432 ± 0.034 | 0.472 ± 0.030 |
NormG | 0.56 ± 0.019 | 0.51 ± 0.019 | 0.52 ± 0.016 | 0.48 ± 0.015 | 0.49 ± 0.015 | 0.49 ± 0.016 | 0.49 ± 0.020 | 0.47 ± 0.022 | 0.46 ± 0.023 | 0.44 ± 0.026 | 0.41 ± 0.028 | 0.390 ± 0.028 | 0.354 ± 0.026 |
NormB | 0.22 ± 0.011 | 0.23 ± 0.013 | 0.23 ± 0.012 | 0.23 ± 0.011 | 0.23 ± 0.010 | 0.22 ± 0.010 | 0.21 ± 0.010 | 0.21 ± 0.010 | 0.20 ± 0.011 | 0.19 ± 0.011 | 0.18 ± 0.011 | 0.178 ± 0.012 | 0.174 ± 0.009 |
NGRDI | 0.44 ± 0.039 | 0.32 ± 0.037 | 0.35 ± 0.034 | 0.26 ± 0.035 | 0.26 ± 0.038 | 0.26 ± 0.043 | 0.25 ± 0.052 | 0.17 ± 0.059 | 0.15 ± 0.062 | 0.094 ± 0.067 | 0.013 ± 0.072 | −0.051 ± 0.074 | -0.142 ± 0.067 |
NGBDI | 0.43 ± 0.031 | 0.38 ± 0.037 | 0.39 ± 0.031 | 0.36 ± 0.030 | 0.36 ± 0.024 | 0.38 ± 0.025 | 0.39 ± 0.027 | 0.39 ± 0.026 | 0.40 ± 0.028 | 0.40 ± 0.031 | 0.38 ± 0.035 | 0.370 ± 0.036 | 0.340 ± 0.031 |
GLI | 0.43 ± 0.032 | 0.35 ± 0.034 | 0.37 ± 0.028 | 0.31 ± 0.028 | 0.31 ± 0.027 | 0.31 ± 0.030 | 0.31 ± 0.036 | 0.27 ± 0.041 | 0.26 ± 0.044 | 0.23 ± 0.050 | 0.17 ± 0.056 | 0.119 ± 0.058 | 0.044 ± 0.055 |
GR | 2.73 ± 0.28 | 2.04 ± 0.18 | 2.14 ± 0.17 | 1.77 ± 0.14 | 1.78 ± 0.15 | 1.75 ± 0.16 | 1.69 ± 0.18 | 1.47 ± 0.17 | 1.39 ± 0.17 | 1.24 ± 0.16 | 1.05 ± 0.15 | 0.923 ± 0.143 | 0.764 ± 0.116 |
100 × ExG | 4.27 ± 0.90 | 4.25 ± 1.05 | 4.40 ± 0.95 | 4.45 ± 0.84 | 4.19 ± 0.58 | 5.68 ± 1.13 | 5.21 ± 0.89 | 5.97 ± 1.19 | 5.87 ± 1.20 | 5.33 ± 1.26 | 4.36 ± 1.43 | 3.443 ± 1.566 | 1.349 ± 1.685 |
VARI | 0.62 ± 0.050 | 0.46 ± 0.050 | 0.49 ± 0.048 | 0.38 ± 0.050 | 0.38 ± 0.056 | 0.37 ± 0.063 | 0.34 ± 0.074 | 0.24 ± 0.081 | 0.20 ± 0.084 | 0.12 ± 0.088 | 0.018 ± 0.094 | −0.063 ± 0.095 | −0.179 ± 0.085 |
100 × ExR | −1.57 ± 0.35 | −1.09 ± 0.40 | −1.23 ± 0.34 | −0.65 ± 0.33 | −0.60 ± 0.30 | −0.93 ± 0.44 | −0.71 ± 0.50 | 0.13 ± 0.94 | 0.47 ± 1.08 | 1.46 ± 1.35 | 3.36 ± 1.82 | 5.106 ± 2.203 | 8.073 ± 2.358 |
SGR (%) | 30 April | 4 May | 8 May | 12 May | 17 May | 20 May | 24 May | 26 May | 28 May | 30 May | 1 June | 4 June |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MSI | ||||||||||||
SG_NDRE | 90.37/4.30 | 90.18/4.63 | 87.13/4.05 | 86.23/4.32 | 78.19/6.36 | 76.76/6.31 | 62.73/7.89 | 59.19/8.50 | 52.51/9.19 | 43.40/8.95 | 38.77/8.64 | 27.14/5.66 |
SG_NDVI | 96.01/1.55 | 96.06/1.90 | 92.80/2.18 | 91.86/2.68 | 89.94/3.87 | 89.26/4.20 | 80.73/6.28 | 77.72/7.33 | 72.28/8.36 | 64.21/9.25 | 57.20/9.33 | 43.98/8.99 |
SG_NDREI | 90.66/3.11 | 90.87/2.92 | 82.09/3.45 | 80.27/3.55 | 79.84/4.49 | 79.28/5.31 | 69.63/6.29 | 66.60/6.70 | 60.58/7.70 | 53.66/8.15 | 45.55/8.54 | 33.44/8.71 |
SG_CIRE | 75.96/7.25 | 75.77/7.47 | 69.40/6.32 | 68.20/6.69 | 54.37/7.76 | 52.61/7.91 | 35.87/6.94 | 33.08/7.24 | 27.13/7.15 | 20.39/6.43 | 17.56/6.65 | 11.81/4.20 |
SG_ARI2 | 81.30/7.76 | 74.39/7.39 | 66.06/6.65 | 60.18/5.82 | 50.40/7.15 | 51.79/7.56 | 36.22/5.77 | 34.49/5.97 | 31.02/5.71 | 28.27/5.58 | 25.91/5.57 | 22.01/4.75 |
SG_NormR | 83.05/4.39 | 85.66/4.54 | 76.27/4.48 | 76.52/3.89 | 75.39/4.36 | 73.25/4.35 | 66.45/4.19 | 63.93/4.20 | 59.15/4.18 | 54.04/4.18 | 50.50/4.59 | 46.14/4.14 |
SG_NGRDI | 73.06/6.78 | 78.57/6.35 | 59.43/6.85 | 60.01/6.63 | 58.91/8.05 | 54.97/10.14 | 39.66/11.94 | 32.94/13.28 | 20.92/14.67 | 1.95/15.41 | −11.91/17.51 | −32.65/16.30 |
SG_GLI | 80.26/5.57 | 85.20/4.91 | 70.80/5.23 | 71.55/4.90 | 72.91/6.00 | 72.98/7.29 | 62.98/8.63 | 60.04/9.21 | 52.73/10.74 | 38.59/12.28 | 27.57/12.99 | 10.05/12.67 |
SG_GR | 74.94/6.39 | 78.81/6.23 | 65.11/5.79 | 65.29/5.00 | 64.30/5.27 | 62.15/5.45 | 53.90/5.22 | 50.79/5.18 | 45.34/5.16 | 38.55/5.03 | 33.93/5.24 | 28.15/4.62 |
SG_VARI | 74.37/6.54 | 79.14/6.18 | 60.63/6.91 | 61.03/6.68 | 58.73/7.91 | 54.20/9.44 | 38.14/11.44 | 31.87/12.23 | 19.24/13.58 | 2.19/15.22 | −10.70/15.86 | −29.24/14.39 |
RGB | ||||||||||||
SG_NormR | 88.48/2.60 | 87.76/2.45 | 85.20/2.70 | 83.87/2.77 | 82.42/2.50 | 80.00/2.85 | 78.35/2.97 | 74.79/3.19 | 71.25/3.65 | 68.15/4.10 | 67.33/4.34 | 64.90/4.47 |
SG_NGRDI | 69.33/5.26 | 62.55/5.50 | 55.01/6.03 | 46.44/5.65 | 41.99/7.48 | 37.59/8.70 | 30.05/11.57 | 17.73/11.29 | 3.68/11.88 | −11.32/14.65 | −21.06/12.27 | −33.94/12.15 |
SG_GLI | 88.69/5.34 | 79.35/5.49 | 76.96/5.63 | 67.42/5.06 | 66.51/6.49 | 70.12/7.34 | 65.82/8.16 | 60.47/8.31 | 53.74/8.09 | 45.30/9.55 | 32.46/8.61 | 22.13/8.75 |
SG_GR | 85.40/3.93 | 82.48/3.88 | 79.64 ± 4.00 | 76.44/4.26 | 74.86/3.57 | 73.38/3.63 | 70.72/3.71 | 66.83/3.80 | 62.49/4.16 | 58.06/4.61 | 55.35/4.78 | 52.33/5.15 |
SG_VARI | 64.44/5.05 | 59.60/5.14 | 51.34/5.63 | 44.08/5.38 | 39.20/6.81 | 33.72/7.77 | 26.73/10.37 | 15.30/9.81 | 3.13/10.09 | −9.15/12.11 | −17.52/10.35 | −27.92/10.01 |
SGR | S1 (30 April) | S2 (12 May) | S3 (24 May) | S4 (1 June) |
---|---|---|---|---|
MSI | ||||
SG_NDRE | 85.48–97.75% | 80.22–94.49% | 51.40–78.48% | 22.46–47.52% |
SG_NDVI | 93.46–98.49% | 85.62–95.69% | 71.47–89.95% | 46.17–71.33% |
SG_NDREI | 84.70–95.01% | 72.23–85.75% | 59.41–78.61% | 31.84–56.76% |
SG_CIRE | 67.64–86.32% | 57.84–73.85% | 25.99–49.23% | 7.24–28.90% |
SG_ARI2 | 69.00–89.51% | 49.01–66.66% | 25.39–39.98% | 15.50–32.69% |
SG_NormR | 76.36–89.93% | 70.57–82.41% | 58.26–74.99% | 42.02–56.35% |
SG_NGRDI | 59.79–82.60% | 46.64–73.62% | 24.63–62.80% | −38.91–9.23% |
SG_GLI | 73.83–91.20% | 62.40–81.00% | 51.11–81.60% | 12.57–50.34% |
SG_GR | 65.48–84.36% | 56.72–73.53% | 44.17–64.99% | 23.24–41.64% |
SG_VARI | 61.50–84.22% | 48.50–77.00% | 15.43–53.46% | −34.96–9.34% |
RGB | ||||
SG_NormR | 83.74–91.40% | 78.90–88.19% | 72.30–81.70% | 60.97–73.42% |
SG_NGRDI | 58.63–76.92% | 34.21–53.04% | 4.84–46.21% | −44.27–−5.27% |
SG_GLI | 81.32–96.82% | 58.62–78.56% | 45.91–79.39% | 20.13–47.65% |
SG_GR | 72.84–93.06% | 59.40–87.73% | 63.28–77.81% | 46.24–60.07% |
SGR | MLR | SVR | ||||||
---|---|---|---|---|---|---|---|---|
Rc | RMSEC (t/ha) | Rp | RMSEP (t/ha) | Rc | RMSEC (t/ha) | Rp | RMSEP (t/ha) | |
MSI | ||||||||
SG_NDRE | 0.885 | 1.05 | 0.856 | 0.97 | 0.881 | 1.07 | 0.858 | 0.96 |
SG_NDVI | 0.857 | 1.16 | 0.802 | 1.12 | 0.851 | 1.19 | 0.798 | 1.13 |
SG_NDREI | 0.796 | 1.37 | 0.731 | 1.28 | 0.789 | 1.39 | 0.710 | 1.32 |
SG_CIRE | 0.860 | 1.15 | 0.838 | 1.03 | 0.856 | 1.17 | 0.831 | 1.06 |
SG_ARI2 | 0.797 | 1.36 | 0.780 | 1.18 | 0.793 | 1.38 | 0.766 | 1.22 |
SG_NormR | 0.814 | 1.31 | 0.720 | 1.31 | 0.799 | 1.36 | 0.684 | 1.39 |
SG_NGRDI | 0.790 | 1.38 | 0.668 | 1.43 | 0.781 | 1.41 | 0.647 | 1.47 |
SG_GLI | 0.813 | 1.31 | 0.744 | 1.30 | 0.806 | 1.34 | 0.734 | 1.31 |
SG_GR | 0.797 | 1.36 | 0.698 | 1.37 | 0.785 | 1.40 | 0.656 | 1.45 |
SG_VARI | 0.787 | 1.39 | 0.666 | 1.41 | 0.773 | 1.43 | 0.623 | 1.50 |
RGB | ||||||||
SG_NormR | 0.857 | 1.16 | 0.835 | 1.08 | 0.843 | 1.22 | 0.818 | 1.13 |
SG_NGRDI | 0.733 | 1.53 | 0.710 | 1.42 | 0.703 | 1.61 | 0.607 | 1.60 |
SG_GLI | 0.794 | 1.37 | 0.789 | 1.19 | 0.778 | 1.42 | 0.774 | 1.23 |
SG_GR | 0.803 | 1.34 | 0.782 | 1.22 | 0.795 | 1.37 | 0.756 | 1.28 |
SG_VARI | 0.749 | 1.50 | 0.716 | 1.41 | 0.721 | 1.57 | 0.632 | 1.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Liu, Y.; Yu, R.; Han, D.; Su, B. A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat Population. Remote Sens. 2021, 13, 5173. https://doi.org/10.3390/rs13245173
Cao X, Liu Y, Yu R, Han D, Su B. A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat Population. Remote Sensing. 2021; 13(24):5173. https://doi.org/10.3390/rs13245173
Chicago/Turabian StyleCao, Xiaofeng, Yulin Liu, Rui Yu, Dejun Han, and Baofeng Su. 2021. "A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat Population" Remote Sensing 13, no. 24: 5173. https://doi.org/10.3390/rs13245173
APA StyleCao, X., Liu, Y., Yu, R., Han, D., & Su, B. (2021). A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat Population. Remote Sensing, 13(24), 5173. https://doi.org/10.3390/rs13245173