Retrieval of Urban Aerosol Optical Depth from Landsat 8 OLI in Nanjing, China
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Study Datasets
2.2.1. Landsat 8 OLI
2.2.2. MODIS Datasets
2.2.3. CE-318 Data
3. Methods and Processes
3.1. Retrieval Principle
3.1.1. DT Algorithm
3.1.2. DB Algorithm
3.2. Process of Retrieval
4. Results
4.1. Retrieval AODs
4.2. Accuracy Validation
4.3. Spatiotemporal Analysis of AODs
4.3.1. Characteristics of Spatial Distribution
4.3.2. Characteristics of Seasonal Distribution
5. Discussion
5.1. Evaluation of Algorithms
5.2. A Case Analysis of 27 February 2017
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.H.; Woodward, A.; Vardoulakis, S.; Kovats, S.; Wilkinson, P.; Li, L.P.; Xu, L.; Li, J.; Yang, J.; Li, J.; et al. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response. Sci. Total Environ. 2017, 578, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change–global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.F.; Xie, S.D. Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm. Atmos. Environ. 2018, 177, 222–233. [Google Scholar] [CrossRef]
- Luo, F.L.; Jing, J.L.; Wang, A.N.; Liang, L.S. Research on PM2.5 mass concentration retrieval method based on Himawari-8 in Beijing. Int. Arch. Photo. Remote Sens. Spat. Inform. Sci. 2020, 903–910. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L.; Thai, P.K.; Liu, X.T.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- She, L.; Xue, Y.; Yang, X.H.; Leys, J.; Guang, J.; Che, Y.H.; Fan, C.; Xie, Y.Q.; Li, Y. Joint retrieval of aerosol optical depth and surface reflectance over land using geostationary satellite data. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1489–1501. [Google Scholar] [CrossRef]
- Zhao, S.H.; Wang, Q.; Li, Y.; Liu, S.; Wang, Z.T.; Zhu, L.; Wang, Z.F. An overview of satellite remote sensing technology used in China’s environmental protection. Earth Sci. Inform. 2017, 10, 137–148. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Lin, C.Q.; Li, Y.; Yuan, Z.B.; Lau, A.K.H.; Li, C.C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Stowe, L.L.; Carey, R.M.; Pellegrino, P.P. Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data. Geophys. Res. Lett. 1992, 19, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D.; Gordon, H.R.; Nakajima, T.; Lenoble, J.; Frouin, R.; Grassl, H.; Herman, B.M.; King, M.D.; Teillet, P.M. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res. Atmos. 1997, 102, 16815–16830. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens. 2007, 9, 1357–1381. [Google Scholar] [CrossRef]
- Tanre, D.; Deschamps, P.Y.; Devaux, C.; Herman, M. Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data. J. Geophys. Res. Atmos. 1988, 93, 15955–15964. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.Q.; Hou, W.Z.; Li, D.H.; Zhang, Y.H. Dynamic model in retrieving aerosol optical depth from polarimetric measurements of PARASOL. J. Remote Sens. 2015, 19, 25–33. [Google Scholar] [CrossRef]
- Deuzé, J.L.; Bréon, F.M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. Atmos. 2001, 106, 4913–4926. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G. Aerosol optical thickness (AOT) retrieval over land using satellite image-based algorithm. Air Qual. Atmos. Health 2009, 2, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Husar, R.B.; Stowe, L.L.; Prospero, J.M. Characterization of tropospheric aerosols over the oceans with the NOAA Advanced Very High Resolution Radiometer optical thickness operational product. J. Geophys. Res. 1997, 102, 16889–16910. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Tanré, D.; Kaufman, Y.J.; Herman, M.; Mattoo, S.; Kaufman, Y.J. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. Atmos. 1997, 102, 16971–16988. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Levy, R.C.; Remer, L.A.; Mattoo, S.; Shi, Y.X.; Wang, C.X. Dust aerosol retrieval over the oceans with the MODIS/VIIRS Dark-Target algorithm: 1. Dust detection. Earth Space Sci. 2020, 7, e2020EA001221. [Google Scholar] [CrossRef]
- Griggs, M. Measurements of Atmospheric Aerosol Optical Thickness over Water Using ERTS-1 Data. J. Air Pollut. Contr. Assoc. 1975, 25, 622–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Member, S.; Herman, J.R. Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Hsu, N.C.; Lee, J.; Sayer, A.M.; Kim, W.; Bettenhausen, C.; Tsay, S.C. VIIRS Deep blue aerosol products over land: Extending the EOS long-term aerosol data records. J. Geophys. Res. Atmos. 2019, 124, 4026–4053. [Google Scholar] [CrossRef]
- Tian, X.P.; Sun, L.; Liu, Q.; Li, X.H. Retrieval of high-resolution aerosol optical depth using Landsat 8 OLI data over Beijing. J. Remote Sens. 2018, 22, 51–63. [Google Scholar] [CrossRef]
- Remer, L.A.; Levy, R.C.; Mattoo, S.; Tanré, D.; Gupta, P.; Shi, Y.; Sawyer, V.; Munchak, L.A.; Zhou, Y.P.; Kim, M.; et al. The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future. Remote Sens. 2020, 12, 2900. [Google Scholar] [CrossRef]
- MOD04_3K—MODIS/Terra Aerosol 5-Min L2 Swath 3 km. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD04_3K (accessed on 20 November 2020).
- MOD04_L2—MODIS/Terra Aerosol 5-Min L2 Swath 10 km. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD04_L2 (accessed on 20 November 2020).
- Ali, M.A.; Assiri, M. Analysis of AOD from MODIS-Merged DT-DB Products Over the Arabian Peninsula. Earth Syst. Environ. 2019, 3, 625–636. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, J.; Li, X.H. Retrieving aerosol optical depth over Nanjing City based on TM image. Remote Sens. Land Res. 2013, 25, 90–96. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wang, J.; Bu, L.B. Analysis of a haze event over Nanjing, China based on multi-source data. Atmosphere 2019, 10, 338. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Cao, N.W.; Wang, P.; Yan, P.; Yang, S.B.; Xie, Y.H.; Sun, H.B.; Jing, Q.Q. Comprehensive observation and analysis of atmospheric aerosols in Nanjing. J. Remote Sens. 2017. [Google Scholar] [CrossRef]
- He, D.; Yi, G.H.; Zhang, T.B.; Miao, G.Q.; Li, J.J.; Bie, X.J. Temporal and spatial characteristics of EVI and its response to climatic factors in recent 16 years based on grey relational analysis in inner Mongolia Autonomous Region, China. Remote Sens. 2018, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Huang, B.; He, Q. An evaluation of four MODIS collection 6 aerosol products in a humid subtropical region. Remote Sens. 2017, 9, 1173. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, J.; Levy, R.C.; Xu, X.G.; Reid, J.S. MODIS retrieval of aerosol optical depth over turbid coastal water. Remote Sens. 2017, 9, 595. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Xu, H.; Li, K.T.; Li, D.H.; Xie, Y.S.; Li, L.; Zhang, Y.; Gu, X.F.; Zhao, W.; Tian, Q.J.; et al. Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: An overview of Sun-Sky Radiometer Observation Network (SONET) measurements. Bull. Am. Meteorol. Soc. 2018, 99, 739–755. [Google Scholar] [CrossRef]
- Chen, X.F.; de Leeuw, G.; Arola, A.; Liu, S.; Liu, Y.; Li, Z.Q.; Zhang, K.N. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method. Remote Sens. Environ. 2020, 249, 112006. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Kong, X.; He, K.; Xu, H.; Mu, J. Assessment of the radiation effect of aerosols on maize production in China. Sci. Total Environ. 2020, 720, 137567. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.M. Remote Sensing of Secondary Development Language IDL, 1st ed.; Science Press: Beijing, China, 2014; pp. 259–268. [Google Scholar]
- Ou, Y.; Chen, F.; Zhao, W.; Yan, X.; Zhang, Q. Landsat 8-based inversion methods for aerosol optical depths in the Beijing area. Atmos. Pollut. Res. 2017, 8, 267–274. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.C.; Li, R.R.; Flynn, L. The MODIS 2.1-um channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1286–1298. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, F.J. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanré, D.; Ilya, S.; Holben, B.N. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.H.; Zhu, Z.M.; Gong, W.; Zhu, Z.R.; Sun, K.; Wang, L.C.; Huang, Y.S.; Mao, F.Y.; Shen, H.F.; Li, Z.W.; et al. Estimation of ultrahigh resolution PM2. 5 concentrations in urban areas using 160 m Gaofen-1 AOD retrievals. Remote Sens. Environ. 2018, 216, 91–104. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.Q.; et al. Atmospheric correction inter-comparison exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.; Wu, S.L.; Yang, A.X.; Ao, K.; Wu, J.H.; Wu, J.J.; Gong, X.S.; Wang, H.B.; Liu, Q.H. An Atmospheric Correction Method over Bright and Stable Surfaces for Moderate to High Spatial-Resolution Optical Remotely Sensed Imagery. Remote Sens. 2020, 12, 733. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.B.; Roy, D.P.; Zhang, H.K.; Vermote, E.F.; Huang, H.Y. Evaluation of Landsat-8 and Sentinel-2A aerosol optical depth retrievals across Chinese cities and implications for medium spatial resolution urban aerosol monitoring. Remote Sens. 2019, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Quan, J.N.; Tie, X.X.; Li, X.; Liu, Q.; Gao, Y.; Zhao, D.L. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Sci. Total Environ. 2015, 502, 578–584. [Google Scholar] [CrossRef]
NO. | Date | Sun Azimuth/° | Sun Elevation/° | Cloud Cover/% |
---|---|---|---|---|
1 | 26 January 2017 | 151.15062084 | 34.19452163 | 0.34 |
2 | 11 February 2017 | 148.0587874 | 38.19634554 | 1.32 |
3 | 27 February 2017 | 144.85057672 | 43.34543572 | 0.07 |
4 | 15 March 2017 | 141.36907046 | 49.1376125 | 6.56 |
5 | 18 May 2017 | 117.74536226 | 67.53314607 | 6.64 |
6 | 3 June 2017 | 111.04282914 | 68.76291498 | 20.81 |
7 | 21 July 2017 | 112.61577102 | 66.19745905 | 1.12 |
8 | 9 October 2017 | 151.7207534 | 48.03354145 | 0.07 |
9 | 25 October 2017 | 155.92686162 | 42.93886184 | 2.94 |
10 | 26 November 2017 | 158.86919055 | 34.38221672 | 0.19 |
11 | 12 December 2017 | 158.05640022 | 31.87864414 | 1.35 |
12 | 14 February 2018 | 147.48708276 | 39.00225977 | 42.66 |
13 | 3 April 2018 | 136.38614904 | 55.9694311 | 0.67 |
14 | 19 April 2018 | 130.86012652 | 61.18349238 | 0.31 |
15 | 6 June 2018 | 109.90574006 | 68.67714514 | 4.79 |
16 | 12 October 2018 | 152.44923434 | 47.11180374 | 7.69 |
17 | 28 October 2018 | 156.35582213 | 42.05850301 | 0.06 |
18 | 13 November 2018 | 158.39021026 | 37.46081743 | 17.92 |
19 | 29 November 2018 | 158.75873172 | 33.82648143 | 20.33 |
Meteorological Element | Ma’anshan Site | Nanjing Site |
---|---|---|
26 February 2017 | 27 February 2017 | |
Average temperature (°C) | 10.18 | 9.3 |
Minimum temperature (°C) | 6.2 | 4.7 |
Maximum temperature (°C) | 16.9 | 16 |
Average relative humidity (%) | 50.25 | 47.75 |
Average wind speed for 2 mins (m/s) | 2.03 | 1.98 |
Maximum wind speed (m/s) | 3.2 | 4.5 |
Maximum wind speed direction (/°) | 237 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Hao, Z.; Chen, J.; He, D.; Tian, Q.; Mao, Z.; Pan, D. Retrieval of Urban Aerosol Optical Depth from Landsat 8 OLI in Nanjing, China. Remote Sens. 2021, 13, 415. https://doi.org/10.3390/rs13030415
Jin Y, Hao Z, Chen J, He D, Tian Q, Mao Z, Pan D. Retrieval of Urban Aerosol Optical Depth from Landsat 8 OLI in Nanjing, China. Remote Sensing. 2021; 13(3):415. https://doi.org/10.3390/rs13030415
Chicago/Turabian StyleJin, Yangyang, Zengzhou Hao, Jian Chen, Dong He, Qingjiu Tian, Zhihua Mao, and Delu Pan. 2021. "Retrieval of Urban Aerosol Optical Depth from Landsat 8 OLI in Nanjing, China" Remote Sensing 13, no. 3: 415. https://doi.org/10.3390/rs13030415
APA StyleJin, Y., Hao, Z., Chen, J., He, D., Tian, Q., Mao, Z., & Pan, D. (2021). Retrieval of Urban Aerosol Optical Depth from Landsat 8 OLI in Nanjing, China. Remote Sensing, 13(3), 415. https://doi.org/10.3390/rs13030415