Secular Changes in Atmospheric Turbidity over Iraq and a Possible Link to Military Activity
Abstract
:1. Introduction
Definition of the Problem and Addressed Questions
2. Theoretical Estimation: The Impact of Anthropogenic Signal on AOD
3. Estimation of AOD Using Satellite Data: General Methodology
3.1. Study Periods
3.2. Study Area
3.3. Building a Database: The Iraq War in Official Reports and Publicly Available Sources
3.4. Satellite-Retrieved AOD Data
3.5. Decoupling Regional Synoptic and Local Anthropogenic Impact
3.6. Searching for a Possible Local Pollution Source Contribution to AOD
4. Results
4.1. AOD Change during Synoptically Calm vs. Stormy Periods
4.2. Seasonal Pattern of AOD
4.3. Possible Contribution of Local Sources to AOD
4.4. Pollution Level by Means of Ground-Monitoring Sites
5. Discussion
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The World Meteorological Organization Definitions to Dust/Sand Storms. Available online: https://cloudatlas.wmo.int/dust-storm-or-sandstorm.html (accessed on 10 May 2020).
- Sivakumar, M.V.K.; Das, H.P.; Brunini, O. Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. In Increasing Climate Variability and Change; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Middleton, N.; Kang, U. Sand and dust storms: Impact mitigation. Sustainability 2017, 9, 1053. [Google Scholar] [CrossRef] [Green Version]
- Goudie, A.S.; Middleton, N.J. Desert Dust in the Global System; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- López, G.; Batlles, F.J. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study. Ann. Geophys. 2004, 22, 2657–2668. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Kutiel, H.; Furman, H. Dust storms in the Middle East: Sources of origin and their temporal characteristics. Indoor Built Environ. 2003, 12, 419–426. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, 1–35. [Google Scholar] [CrossRef]
- Sissakian, V.; Al-Ansari, N.; Knutsson, S. Sand and dust storm events in Iraq. Nat. Sci. 2013, 5, 1084–1094. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, E. Frequency and severity of drought and dust storms. Can. J. Agric. Econ. 1990, 38, 695–700. [Google Scholar] [CrossRef]
- Tsiouri, V.; Kakosimos, K.E.; Kumar, P. Concentrations, sources and exposure risks associated with particulate matter in the Middle East Area—A review. Air Qual. Atmos. Health 2015, 8, 67–80. [Google Scholar] [CrossRef]
- Notaro, M.; Yu, Y.; Kalashnikova, O.V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. J. Geophys. Res. Atmos. 2015, 120, 10229–10249. [Google Scholar] [CrossRef]
- Sotoudeheian, S.; Salim, R.; Arhami, M. Impact of Middle Eastern dust sources on PM10 in Iran: Highlighting the impact of Tigris-Euphrates basin sources and Lake Urmia desiccation. J. Geophys. Res. Atmos. 2016, 121, 14018–14034. [Google Scholar] [CrossRef]
- Chin, M.; Diehl, T.; Tan, Q.; Prospero, J.M.; Kahn, R.A.; Remer, L.A.; Yu, H.; Sayer, A.M.; Bian, H.; Geogdzhayev, I.V.; et al. Multi-decadal aerosol variations from 1980 to 2009: A perspective from observations and a global model. Atmos. Chem. Phys. 2014, 14, 3657–3690. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R.; Gillette, D.A.; Kirkpatrick, J.S.; Heller, J. Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmos. Environ. 2001, 35, 4315–4330. [Google Scholar] [CrossRef]
- Pu, B.; Ginoux, P. The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria. Atmos. Chem. Phys. 2016, 16, 13431–13448. [Google Scholar] [CrossRef] [Green Version]
- Parolari, A.J.; Li, D.; Bou-Zeid, E.; Katul, G.G.; Assouline, S. Climate, not conflict, explains extreme Middle East dust storm. Environ. Res. Lett. 2016, 11, 114013. [Google Scholar] [CrossRef] [Green Version]
- Flohr, P.; Fleitmann, D.; Zorita, E.; Sadekov, A.; Cheng, H.; Bosomworth, M.; Edwards, L.; Matthews, W.; Matthews, R. Late Holocene droughts in the Fertile Crescent recorded in a speleothem from northern Iraq. Geophys. Res. Lett. 2017, 44, 1528–1536. [Google Scholar] [CrossRef] [Green Version]
- Klingmüller, K.; Pozzer, A.; Metzger, S.; Stenchikov, G.L.; Lelieveld, J. Aerosol optical depth trend over the Middle East. Atmos. Chem. Phys. 2016, 16, 5063–5073. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Beirle, S.; Hörmann, C.; Stenchikov, G.; Wagner, T. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East. Sci. Adv. 2015, 1, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2014. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef] [Green Version]
- Oliver, F.W. Dust-storms in Egypt and their relation to the war period, as noted in Maryut, 1939-45. Geogr. J. 1945, 106, 26–49. [Google Scholar] [CrossRef]
- Cachorro, V.; Tanré, D. The correlation between particle mass loading and extinction: Application to desert dust aerosol content estimation. Remote Sens. Environ. 1997, 60, 187–194. [Google Scholar] [CrossRef]
- Moosmüller, H.; Varma, R.; Arnott, W.P.; Kuhns, H.D.; Etyemezian, V.R.; Gillies, J.A. Scattering cross section emission factors for visibility and radiative transfer applications: Military vehicles traveling on unpaved roads. J. Air Waste Manag. Assoc. 2005, 55, 1743–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, J.A.; Kuhns, H.D.; Engelbrecht, J.P.; Uppapalli, S.; Etyemezian, V.R.; Nikolich, G. Particulate emissions from U.S. Department of Defense artillery backblast testing. J. Air Waste Manag. Assoc. 2007, 57, 551–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, J.A.; Etyemezian, V.R.; Kuhns, H.D.; Moosmuller, H.; Engelbrecht, J.P.; King, J.; Uppapalli, S.; Nikolich, G.; McAlpine, J.; Gillette, D.; et al. Particulate Matter Emissions for Dust from Unique Military Activities; SERDP Project SI-1399, 2007 Annual Report; Desert Research Institute: Reno, NV, USA, December 2007. [Google Scholar]
- Gillies, J.A.; Etyemezian, V.R.; Kuhns, H.D.; Moosmuller, H.; Engelbrecht, J.P.; King, J.; Uppapalli, S.; Nikolich, G.; McAlpine, J.; Zhu, D.; et al. Particulate Matter Emissions Factors for Dust from Unique Military Activities; SERDP Project SI-1399, Final Report; Desert Research Institute: Reno, NV, USA, June 2010. [Google Scholar]
- Caldwell, T.G.; McDonald, E.V.; Young, M. Soil disturbance and unsaturated hydraulic response at the US Army National Training Center, Ft. Irwin, California. J. Arid Environ. 2008, 67, 456–472. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Houssos, E.; Rashki, A.; Francois, P.; Legrand, M.; Goto, D.; Bartzokas, A.; Kambezidis, H.; Takemura, T. The Caspian Sea–Hindu Kush Index (CasHKI): A regulatory factor for dust activity over southwest Asia. Glob. Planet. Chang. 2015, 137, 10–23. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Climatology of the Middle East dust events. Aeolian Res. 2013, 10, 103–109. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Kalashnikova, O.V.; Garay, M.J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 2016, 121, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Al-Dabbas, M.A.; Ayad, A.M.; Al-Khafaji, R.M. Dust storms loads analyses—Iraq. Arab. J. Geosci. 2012, 5, 121–131. [Google Scholar] [CrossRef]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. Synoptic analysis of dust storms in the Middle East. Asia-Pac. J. Atmos. Sci. 2013, 49, 279–286. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Ghafarian, P.; Owlad, E. Temporal variations in the frequency and concentration of dust events over Iran based on surface observations. Int. J. Climatol. 2016, 36, 2050–2062. [Google Scholar] [CrossRef]
- Abdi Vishkaee, F.; Flamant, C.; Cuesta, J.; Oolman, L.; Flamant, P.; Khalesifard, H.R. Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study. J. Geophys. Res. 2012, 117, D03201. [Google Scholar] [CrossRef] [Green Version]
- Francis, D.B.K.; Flamant, C.; Chaboureau, J.-P.; Banks, J.; Cuesta, J.; Brindley, H.; Oolman, L. Dust emission and transport over Iraq associated with the summer Shamal winds. Aeolian Res. 2017, 24, 15–31, ISSN 1875-9637. [Google Scholar] [CrossRef]
- Rajab, J.M.; Abdulfattah, I.S.; Mossa, H.A.; Sleeman, S.Y. Spatial and temporal distributions of outgoing longwave radiation over Iraq: 2007–2016. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012030. Volume 454. [Google Scholar] [CrossRef]
- Köppen, W. Translated by Volken, E.; Brönnimann, S. “Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet” [The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world]. Meteorol. Z. 1884, (published 2011). 20, 351–360. [Google Scholar]
- Houssos, E.E.; Chronis, T.; Fotiadi, A.; Hossain, F. Atmospheric circulation characteristics favoring dust outbreaks over the Solar Village, Central Saudi Arabia. Mon. Weather Rev. 2015, 143, 3263–3275. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Houssos, E.; Solmon, F.; Legrand, M.; Rashki, A.; Dumka, U.; Francois, P.; Gautam, R.; Singh, R. Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall. Atmos. Res. 2017, 201, 189–205. [Google Scholar] [CrossRef]
- Donnay, K.; Filimonov, V. Views to a war: Systematic differences in media and military reporting of the war in Iraq. EPJ Data Sci. 2014, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Sundberg, R.; Melander, E. Introducing the UCDP georeferenced event dataset. J. Peace Res. 2013, 50, 523–532. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.J. Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data. Atmos. Chem. Phys. 2006, 6, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Munchak, L.A.; Mattoo, S.; Patadia, F.; Remer, L.A.; Holz, R.E. Towards a long-term global aerosol optical depth record: Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmos. Meas. Tech. 2015, 8, 4083–4110. [Google Scholar] [CrossRef] [Green Version]
- Chudnovsky, A.A.; Kostinski, A.; Lyapustin, A.; Koutrakis, P. Spatial scales of pollution from variable resolution satellite imaging. Environ. Pollut. 2013, 172, 131–138. [Google Scholar] [CrossRef]
- Kishcha, P.; Wang, S.H.; Lin, N.H.; da Silva, A.; Lin, T.H.; Lin, P.H.; Liu, G.R.; Starobinets, B.; Alpert, P. Differentiating between local and remote pollution over Taiwan. Aerosol Air Qual. Res. 2018, 18, 1788–1798. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.M.; Gouveia, C.M.; Barriopedro, D. The intense 2007–2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agric. Meteorol. 2010, 150, 1245–1257. [Google Scholar] [CrossRef]
- Qian, N.; Wan, Z.-H. Sediment Dynamics; Science Press: Beijing, China, 1983. [Google Scholar]
- Zhang, J.-X.; Liu, H. A vertical 2-D numerical simulation of suspended sediment transport. J. Hydrodyn. Ser. B 2007, 19, 217–224. [Google Scholar] [CrossRef]
- Almazroui, M. Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula; Center of Excellence for Climate Change Research (CECCR), King Abdulaziz University: Jadeh, Saudi Arabia, 2013; pp. 1–12. [Google Scholar]
- Chudnovsky, A.; Koutrakis, P.; Kostinski, A.; Proctor, S.; Garshick, E. Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997–2010. J. Air Waste Manag. Assoc. 2017, 67, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Attiya, A.A.; Jones, B.G.; Marx, S.K. Spatial–temporal analysis of Aerosol Index (AI) distribution and some climatic factors: Case study from Iraq, 1980–2015. Modeling Earth Syst. Environ. 2019, 5, 203–216. [Google Scholar] [CrossRef]
- Soleimani, Z.; Teymouri, P.; Darvishi Boloorani, A.; Mesdaghinia, A.; Middleton, N.; Griffin, D.W. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos. Environ. 2019, 117187. [Google Scholar] [CrossRef]
- Mehta, M.; Singh, N. Anshumali Global trends of columnar and vertically distributed properties of aerosols with emphasis on dust, polluted dust and smoke—Inferences from 10-year long CALIOP observations. Remote Sens. Environ. 2018, 208, 120–132. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Muraleedharan, P.M.; Babu, C.P. Mid-troposphere transport of Middle-East dust over the Arabian Sea and its effect on rainwater composition and sensitive ecosystems over India. Sci. Rep. 2017, 7, 13676. [Google Scholar] [CrossRef] [Green Version]
- Jish Prakash, P.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. 2015, 15, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Wei, J.; Pu, B.; Yang, Z.-L.; Parajuli, S.P. High summertime aerosol loadings over the Arabian Sea and their transport pathways. J. Geophys. Res. Atmos. 2018, 123, 10568–10590. [Google Scholar] [CrossRef]
- Vinjamuri, K.S.; Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Broday, D.M.; Mall, R.K.; Latif, M.T. Vertical distribution of smoke aerosols over upper Indo-Gangetic Plain. Environ. Pollut. 2020, 257, 113377. [Google Scholar] [CrossRef] [PubMed]
- Rinker, J.P. Retrospective Geospatial Modeling of Pm10 Exposures from Open Burning at Joint Base Balad, Iraq. Thesis AFIT/GIH/ENV/11-M03. Available online: www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA (accessed on 31 March 2011).
- Misak, R.; Al-Ajmi, D.; Al-Enezi, A. War-induced soil degradation, depletion, and destruction (the case of ground fortifications in the terrestrial environment of Kuwait). In Environmental Consequences of War and Aftermath; Handbook of Environmental Chemistry book series; Springer: Berlin/Heidelberg, Germany; Volume 3U, pp. 125–139.
- Tanaka, T.Y.; Kurosaki, Y.; Chiba, M.; Matsumura, T.; Nagai, T.; Yamazaki, A.; Uchiyama, A.; Tsunematsu, N.; Kai, K. Possible transcontinental dust transport from North Africa and the Middle East to East Asia. Atmos. Environ. 2005, 39, 3901–3909. [Google Scholar] [CrossRef]
- Tazaki, K.; Wakimoto, R.; Minami, Y.; Yamamoto, M.; Miyata, K.; Sato, K.; Saji, I.; Chaerun, S.K.; Zhou, G.; Morishita, T.; et al. Transport of carbon-bearing dusts from Iraq to Japan during Iraq’s War. Atmos. Environ. 2004, 38, 2091–2109. [Google Scholar] [CrossRef] [Green Version]
- U.S. Institute of Medicine. Long-Term Health Consequences of Exposure to Burn Pits in Iraq and Afghanistan; National Academies Press: Washington, DC, USA, 2011. Available online: https://lccn.loc.gov/2012392162 (accessed on 31 March 2011).
- Hofer, J.; Althausen, D.; Abdullaev, S.F.; Makhmudov, A.N.; Nazarov, B.I.; Schettler, G.; Engelmann, R.; Baars, H.; Fomba, K.W.; Müller, K.; et al. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: Case studies. Atmos. Chem. Phys. 2017, 17, 14559–14577. [Google Scholar] [CrossRef] [Green Version]
- Judd, L.M.; Al-Saadi, J.A.; Valin, L.C.; Pierce, R.B.; Yang, K.; Janz, S.J.; Kowalewski, M.G.; Szykman, J.J.; Tiefengraber, M.; Mueller, M. The dawn of geostationary air quality monitoring: Case studies from Seoul and Los Angeles. Front. Environ. Sci. 2018, 6, 85. [Google Scholar] [CrossRef]
- Chudnovsky, A.; Ben-Dor, E.; Kostinski, A.B.; Koren, I. Mineral content analysis of atmospheric dust using hyperspectral information from space. Geophys. Res. Lett. 2009, 36, L15811. [Google Scholar] [CrossRef] [Green Version]
- Chudnovsky, A.; Kostinski, A.; Herrmann, L.; Koren, I.; Nutesku, G.; Ben-Dor, E. Hyperspectral spaceborne imaging of dust-laden flows: Anatomy of Saharan storm from the Bodele depression. Remote Sens. Environ. 2011, 115, 1013–1024. [Google Scholar] [CrossRef]
- El-Gamily, H. Utilization of multi-dates LANDSAT_TM data to detect and quantify the environmental damages in the southeastern region of Kuwait from 1990 to 1991. Int. J. Remote Sens. 2007, 28, 1773–1788. [Google Scholar] [CrossRef]
- Al-Dousari, A.M.; Al-Awadhi, J. Dust fallout in norther Kuwait: Major sources and characteristics. Kuwait J. Sci. 2012, 39, 171–187. [Google Scholar]
- Koch, M.; El-Baz, F. Identifying the effects of the Gulf War on the geomorphic features of Kuwait by remote sensing and GIS (Review). Photogramm. Eng. Remote Sens. 1998, 64, 739–747. [Google Scholar]
- Husain, T. Terrestrial and atmospheric environment during and after the Gulf War. Environ. Int. 1998, 24, 189–196. [Google Scholar] [CrossRef]
- Pearce, F. Devastation in the desert. New Sci. 1995, 146, 40–43. [Google Scholar]
Dataset | Parameters Used | Link to Data Source |
---|---|---|
MODIS AOD at 10 km MOD04_L2 | SDS AOD_550_Dark_Target_Deep_Blue_Combined | https://neo.sci.gsfc.nasa.gov/ https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD04_L2/; https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD04_L2/ |
MOD021KM | Level 1 calibrated radiances | https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD04_L2--61,MCD19A2N--6,MCD19A2--6,MOD021KM--61 |
Anthropogenic sources | Locations, roads, military force movements, battle data layers were created or downloaded in a shape format and uploaded using ArcGIS environment |
|
Airports in Iraq, Humanitarian data exchange | Airports (large, medium, and small), heliports and air bases (total 77 locations) | https://data.humdata.org/dataset/ourairports-irq |
PM10 particle concentrations | Measured at Balad military air base during 2004–2009 | https://apps.dtic.mil/dtic/tr/fulltext/u2/a539684.pdf |
AOD Change (%) | AOD Stdev Change (%) | |||||
---|---|---|---|---|---|---|
% Change between Period 1 and Period 2 | % Change between Period 2 and Period 3 | The Percent Difference between Both Periods | % Change between Period 1 and Period 2 | % Change between Period 2 and Period 3 | The Percent Difference between Both Periods | |
Winter | 39 | −27 | 12 | 57 | −44 | 13 |
Spring | 13.5 | −28 | −14.5 | 3 | −29 | −26 |
Summer | 27 | −24 | 3 | 48 | −44 | 4 |
Fall | 25 | −12.3 | 12.7 | 38.5 | −12 | 26.5 |
AOD Change (%) | AOD Stdev Change (%) | |||||
---|---|---|---|---|---|---|
% Change between Period 1 and Period 2 | % Change between Period 2 and Period 3 | The Percent Difference between Both Periods | % Change between Period 1 and Period 2 | % Change between Period 2 and Period 3 | The Percent Difference between Both Periods | |
Winter | 37 | −22 | 15 | 35 | −38 | −3 |
Spring | 17 | −22 | −5 | 6.4 | −14 | −7.6 |
Summer | 19.5 | −22 | −2.5 | 32 | −26 | 6 |
Fall | 26 | −11.5 | 14.5 | 11 | −3 | 8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chudnovsky, A.; Kostinski, A. Secular Changes in Atmospheric Turbidity over Iraq and a Possible Link to Military Activity. Remote Sens. 2020, 12, 1526. https://doi.org/10.3390/rs12091526
Chudnovsky A, Kostinski A. Secular Changes in Atmospheric Turbidity over Iraq and a Possible Link to Military Activity. Remote Sensing. 2020; 12(9):1526. https://doi.org/10.3390/rs12091526
Chicago/Turabian StyleChudnovsky, Alexandra, and Alexander Kostinski. 2020. "Secular Changes in Atmospheric Turbidity over Iraq and a Possible Link to Military Activity" Remote Sensing 12, no. 9: 1526. https://doi.org/10.3390/rs12091526
APA StyleChudnovsky, A., & Kostinski, A. (2020). Secular Changes in Atmospheric Turbidity over Iraq and a Possible Link to Military Activity. Remote Sensing, 12(9), 1526. https://doi.org/10.3390/rs12091526