Deriving Water Quality Parameters Using Sentinel-2 Imagery: A Case Study in the Sado Estuary, Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Data
2.2.1. CDOM Absorption Coefficient
2.2.2. Chlorophyll-a
2.2.3. Suspended Particulate Matter
2.2.4. Turbidity
2.3. Sentinel-2 MSI Data
2.4. Statistical Indicators
2.5. Time-Series Analysis
3. Results
3.1. Study Area Characterization
3.2. S2-MSI Match-Ups
3.3. Spatio-Temporal Analysis: Sado Estuary Case Study
4. Discussion
4.1. Algorithms Intercomparison Exercise
4.2. Spatio-Temporal Analysis
4.3. Applicability of Satellite RS Products to WFD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 5. Transitional and Coastal Waters—Typology, Reference Conditions and Classification Systems; European Commission: Brussels, Belgium, 2003; Volume 5. [Google Scholar]
- IOCCG. Reports and Monographs of the International Ocean Colour Coordinating Group Earth Observations in Support of Global Water Quality Monitoring; No. 17; IOCCG: Dartmouth, NS, Canada, 2018. [Google Scholar]
- Day, J.; Yáñez-Arancibia, A.; Kemp, W.; Crump, B.; Kemp, M. Chapter Nineteen: Human Impact And Management of Coastal And Estuarine Ecosystems, Estuar. Ecol. In Human Impact and Management of Coastal and Estuarine Ecosystems, 2nd ed.; Wiley-Blackwell: Singapore, 2013; Volume 1, pp. 483–496. ISBN 9780471755678. [Google Scholar]
- Karydis, M.; Kitsiou, D. Marine water quality monitoring: A review. Mar. Pollut. Bull. 2013, 77, 23–36. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2018, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Werdell, P.J.; McKinna, L.I.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef]
- Moses, W.J.; Sterckx, S.; Montes, M.J.; De Keukelaere, L.; Knaeps, E. Atmospheric Correction for Inland Waters. In Bio-optical Modeling and Remote Sensing of Inland Waters; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 69–100. [Google Scholar]
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R.V. Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary Applications. Water 2020, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Braga, F.; Scarpa, G.M.; Brando, V.E.; Manfè, G.; Zaggia, L. COVID-19 lockdown measures reveal human impact on water transparency in the Venice Lagoon. Sci. Total Environ. 2020, 736, 139612. [Google Scholar] [CrossRef] [PubMed]
- Caballero, I.; Fernández, R.; Escalante, O.M.; Mamán, L.; Navarro, G. New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Potes, M.; Costa, M.J.; Da Silva, J.C.B.; Silva, A.M.; Morais, M. Remote sensing of water quality parameters over Alqueva Reservoir in the south of Portugal. Int. J. Remote Sens. 2011, 32, 3373–3388. [Google Scholar] [CrossRef]
- Sent, G.; de Sa, C.V.; Dogliotti, A.I. Remote Sensing for Water Quality Studies: Test of Suspended Particulate Matter and Turbidity Algorithms for Portuguese Transitional and Inland Waters. Master’s Thesis, Universidade de Lisboa, Lisbon, Portugal, 2020. [Google Scholar]
- Brito, A.C.; Garrido-Amador, P.; Gameiro, C.; Nogueira, M.; Moita, M.T.; Cabrita, M.T. Integrating in Situ and Ocean Color Data to Evaluate Ecological Quality under the Water Framework Directive. Water 2020, 12, 3443. [Google Scholar] [CrossRef]
- Cristina, S.; Icely, J.; Goela, P.C.; DelValls, T.A.; Newton, A. Using remote sensing as a support to the implementation of the European Marine Strategy Framework Directive in SW Portugal. Cont. Shelf. Res. 2015, 108, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Harmel, T.; Chami, M.; Tormos, T.; Reynaud, N.; Danis, P.-A. Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sens. Environ. 2018, 204, 308–321. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Giardino, C.; Brando, V.E.; Gege, P.; Pinnel, N.; Hochberg, E.; Knaeps, E.; Reusen, I.; Doerffer, R.; Bresciani, M.; Braga, F.; et al. Imaging Spectrometry of Inland and Coastal Waters: State of the Art, Achievements and Perspectives. Surv. Geophys. 2019, 40, 401–429. [Google Scholar] [CrossRef] [Green Version]
- Neto, J.; Caçador, I.; Caetano, M.; Chaínho, P.; Costa, L.; Gonçalves, A.; Pereira, L.; Pinto, L.; Ramos, J.; Seixas, S. Capítulo 16: Estuários. In Rios de Portugal—Comunidades, Processos e Alterações; Coimbra University Press: Coimbra, Portugal, 2019; pp. 381–421. [Google Scholar]
- Reserva Natural do Estuário do Sado—Informação. Available online: http://www2.icnf.pt/portal/ap/resource/ap/rnes/rnes-net-%0Afinal.pdf (accessed on 26 November 2020).
- Ferreira, J.G.; Abreu, P.F.; Bettencourt, A.M.; Bricker, S.B.; Marques, J.C.; Meio, J.J.; Newton, A.; Norbe, A.; Patricio, J.; Rocha, F.; et al. Water Framework Directive—Transitional and Coastal Waters Proposal for the Definition of Water Bodies; MONAE: Amora, Portugal, 2005; p. 38. [Google Scholar]
- Coutinho, M.T.C.P. Comunidade Fitoplanctónica do Estuário do Sado. Estrutura, Dinâmica e Aspectos Ecológicos; Instituo nacional de investigação agrária e das pescas, IPIMAR: Lisboa, Portugal, 2003; p. 323. [Google Scholar]
- Brito, P.; Amorim, A.; Andrade, C.; Freitas, M.C.; Monteiro, J. Assessment of morphological change in estuarine systems—A tool to evaluate responses to future sea level rise. The case of the Sado Estuary (Portugal). In Proceedings of the II Congresso sobre Planejamento e Gestão da Zonas Costeiras dos Países de Expressão Portuguesa, Recife, Brasil, 12–19 October 2003. [Google Scholar]
- Sousa, F.; Lourenço, I. Oceanografia Física do Estuário do Sad; Universidade de Lisboa: Lisbon, Portugal, 1980. [Google Scholar]
- Biguino, B.; Sousa, F.; Brito, A.C. Variability of Currents and Water Column Structure in a Temperate Estuarine System (Sado Estuary, Portugal). Water 2021, 13, 187. [Google Scholar] [CrossRef]
- Mitchell, B.G.; Kahru, M.; Wieland, J.; Stramska, M. Ocean Optics Protocols for Satellite Ocean Colour Sensor Validation, Revision 2. In Determination of Spectral Absorption Coefficients of Particles, Dissolved Material and Phytoplankton for Discrete Water Samples; NASA Tech: Greenbelt, MD, USA, 2002; pp. 125–153. [Google Scholar]
- UNESCO. The practical salinity scale 1978 and the international equation of state seawater 1980. Tenth report of the joint panel on oceanographic tables and standards. UNESCO Tech. Pap. Mar. Sci. 1981, 36, 1–22. [Google Scholar]
- Kraay, G.W.; Zapata, M.; Veldhuis, M.J.W. Separation of Chlorophylls c1c2, AND c3 of Marine Phytoplankton by Reversed-Phase-C18-High-Performance Liquid Chromatography1. J. Phycol. 1992, 28, 708–712. [Google Scholar] [CrossRef]
- Brotas, V.; Plante-Cuny, M.R. Identification et quantification des pigments chlorophylliens et carotenoides des sediments marins: Un protocole d’analyse par HPLC. Oceanol. Acta 1996, 19, 623–634. [Google Scholar]
- Van Der Linde, D.W. Protocol for determination of Total Suspended Matter in oceans and coastal zones. JCR Tech. Note 1998, 98, 182. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. ACOLITE processing for Sentinel-2 and Landsat-8: Atmospheric correction and aquatic applications. In Proceedings of the Ocean Optics Conference 2016, Victoria, BC, Canada, 23–28 October 2016. [Google Scholar]
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. Eur. Sp. Agency 2016, 740, 9–13. [Google Scholar]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric correction in presence of sun glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Warren, M.; Simis, S.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Tiwari, S.P.; Shanmugam, P. An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters. Estuar. Coast. Shelf. Sci. 2011, 93, 396–402. [Google Scholar] [CrossRef]
- Mannino, A.; Russ, M.E.; Hooker, S.B. Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W. Consistency evaluation of landsat-7 and landsat-8 for improved monitoring of colored dissolved organic matter in complex water. Geocarto Int. 2020, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q.; Zheng, Y.; Huang, L. Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements. J. Appl. Remote Sens. 2017, 11, 036007. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Saprygin, V.; Povazhnyi, V. Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters—The Azov Sea case study. Remote Sens. Environ. 2012, 121, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Gons, H.J.; Rijkeboer, M.; Ruddick, K.G. Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters. J. Plankton Res. 2004, 27, 125–127. [Google Scholar] [CrossRef] [Green Version]
- Nechad, B.; Ruddick, K.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote. Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Siswanto, E.; Tang, J.; Yamaguchi, H.; Ahn, Y.-H.; Ishizaka, J.; Yoo, S.; Kim, S.-W.; Kiyomoto, Y.; Yamada, K.; Chiang, C.; et al. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas. J. Oceanogr. 2011, 67, 627–650. [Google Scholar] [CrossRef]
- Dogliotti, A.; Ruddick, K.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Nechad, B.; Ruddick, K.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters. Remote Sens. Ocean Sea Ice Large Water Reg. 2009, 747. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Mélin, F.; Vantrepotte, V.; Clerici, M.; D’Alimonte, D.; Zibordi, G.; Berthon, J.-F.; Canuti, E. Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea. Prog. Oceanogr. 2011, 91, 229–244. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Sá, C.; D’Alimonte, D.; Brito, A.; Kajiyama, T.; Mendes, C.; Vitorino, J.; Oliveira, P.; da Silva, J.; Brotas, V. Validation of standard and alternative satellite ocean-color chlorophyll products off Western Iberia. Remote Sens. Environ. 2015, 168, 403–419. [Google Scholar] [CrossRef]
- Jolliff, J.K.; Kindle, J.C.; Shulman, I.; Penta, B.; Friedrichs, M.A.; Helber, R.; Arnone, R.A. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Mar. Syst. 2009, 76, 64–82. [Google Scholar] [CrossRef]
- IOCCG. Reports of the International Ocean-Colour Coordinating Group. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters; IOCCG: Dartmouth, NS, Canada, 2000. [Google Scholar]
- Pereira-Sandoval, M.; Ruescas, A.; Urrego, P.; Ruiz-Verdú, A.; Delegido, J.; Tenjo, C.; Soria-Perpinyà, X.; Vicente, E.; Soria, J.; Moreno, J. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sens. 2019, 11, 1469. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, P.; Ramon, F.; Deschamps, D. Ocean Colour Climate Change (OC CCI)-Phase One; ESA: Frascaty, Italy, 2016. [Google Scholar]
- Wang, M. Atmospheric correction of Ocean Color RS observations. In IOCCG Summer Lecture Series; IOCCG: Dartmouth, NS, Canada, 2014; pp. 1–58. [Google Scholar]
- Babin, M.; Morel, A.; Fournier-Sicre, V.; Fell, F.; Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 2003, 48, 843–859. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.A.; Brando, V.E.; Schaepman, M.E. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Goela, P.C.; Icely, J.; Cristina, S.; Newton, A.; Moore, G.; Cordeiro, C. Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing. Cont. Shelf. Res. 2013, 52, 119–132. [Google Scholar] [CrossRef]
- Qin, P.; Simis, S.G.; Tilstone, G.H. Radiometric validation of atmospheric correction for MERIS in the Baltic Sea based on continuous observations from ships and AERONET-OC. Remote Sens. Environ. 2017, 200, 263–280. [Google Scholar] [CrossRef] [Green Version]
- Simis, S.; Stelzer, K.; Müller, D.; Selmes, N. Copernicus Global Land Operations ‘Cryosphere and Water’. 2020, p. 46. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS2_ATBD_LWQ300_1km_v1.3.1_I1.12.pdf (accessed on 26 November 2020).
- Röttgers, R.; Heymann, K.; Krasemann, H. Suspended matter concentrations in coastal waters: Methodological improvements to quantify individual measurement uncertainty. Estuarine Coast. Shelf Sci. 2014, 151, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.D. Light and Water; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Jouanneau, J.; Garcia, C.; Oliveira, A.; Rodrigues, A.; Dias, J.; Weber, O. Dispersal and deposition of suspended sediment on the shelf off the Tagus and Sado estuaries, S.W. Portugal. Prog. Oceanogr. 1998, 42, 233–257. [Google Scholar] [CrossRef]
- Santos, L.; Pinto, A.; Filipe, O.; Cunha, Â.; Santos, E.B.H.; Almeida, A. Insights on the Optical Properties of Estuarine DOM—Hydrological and Biological Influences. PLoS ONE 2016, 11, e0154519. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, A.; Bricaud, A.; Benner, R.; Para, J.; Sempéré, R.; Prieur, L.; Bélanger, S.; Babin, M. Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: Relationship with hydrographic characteristics. Biogeosciences 2012, 9, 925–940. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.C.; Brotas, V.; Caetano, M.; Coutinho, T.P.; Bordalo, A.A.; Icely, J.; Neto, J.M.; Serôdio, J.; Moita, T.; Garnel, M.T.C.D.J.M. Defining phytoplankton class boundaries in Portuguese transitional waters: An evaluation of the ecological quality status according to the Water Framework Directive. Ecol. Indic. 2012, 19, 5–14. [Google Scholar] [CrossRef]
- European Commision. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- APA. Plano de Gestão de Região Hidrográfica 2016/2021—Relatório de Caracterização—Região Hidrográfica do Sado e Mira (RH6); APA: Amadora, Portugal, 2014. [Google Scholar]
- Bowers, D.; Brett, H. The relationship between CDOM and salinity in estuaries: An analytical and graphical solution. J. Mar. Syst. 2008, 73, 1–7. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Ekroos, A.; Hallikainen, M. The role of remote sensing technology in the EU water framework directive (WFD). Environ. Sci. Policy 2004, 7, 267–276. [Google Scholar] [CrossRef]
- Yang, X. Remote sensing and GIS applications for estuarine ecosystem analysis: An overview. Int. J. Remote Sens. 2005, 26, 5347–5356. [Google Scholar] [CrossRef]
AC Processor | Flag | Meaning |
---|---|---|
C2RCC | Rtosa_OOS | The input spectrum to the atmospheric correction neural net was out of the scope of the training range and the inversion is likely to be wrong. |
Rtosa_OOR | The input spectrum to the atmospheric correction neural net out of training range | |
Rhow_OOS | The Rhow input spectrum to the Inherent Optical Properties (IOP) neural net is probably not within the training range of the neural net and the inversion is likely to be wrong. | |
Rhow_OOR | One of the inputs to the IOP retrieval neural net is out of training range | |
Cloud risk | High downwelling transmission indicates cloudy conditions | |
Polymer | !bitmask & 1023 = 0 | Invalid pixel |
Algorithm | Equation | Type of Algorithm | MSI Bands Involved (nm) | Reference |
---|---|---|---|---|
acdom(m−1) | ||||
TS443 | Empirical | 490, 665 | [36] | |
TS412 | Empirical | 490, 665 | [36] | |
MAs | (443) = ln[(− 0.4247)/2.453]/(−13.586) | Empirical | 490, 560 | [37] |
MAM | (443) = ln[(− 0.4363)/2.221]/(−13.126) | Empirical | 490, 560 | [37] |
CZ | (440) = 0.2987x–1.369, x = Rrs B1/Rrs B3 | Empirical | 490, 665 | [38] |
CH | (440) = 28.966e−2.015x, x = Rrs 560 nm/Rrs 665 nm | Empirical | 560, 665 | [39] |
KU | Empirical | 560, 665 | [40] | |
Chlorophyll-a | ||||
C2RCC | - | Neural network | [32] | |
OC3 | Empirical | 443, 490, 560 | [17] | |
2-Band | Semi-analytical | 665, 705 | [41] | |
Gons et al. (2005) (GS) | Semi-analytical | 665, 705, 783 | [42] | |
Suspended Particulate Matter | ||||
C2RCC | - | Neural network | [32] | |
Nechad | Semi-analytical, single band | 665, 705, 740, 783, 865 | [43] | |
Siswanto | Empirical | 560, 665, 490 | [44] | |
Turbidity | ||||
Dogliotti | Semi-analytical, single band | 665, 865 | [45] | |
Nechad | Semi-analytical, single band | 665, 705, 740, 783, 865 | [46] |
T (°C) | Salinity | Chl-a (mg/m3) | SPM (mg/L) | aCDOM 443 nm (m−1) | Turbidity (NTU) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | ||
Winter | A | 14.3 | 0.9 | 35.89 | 0.40 | 0.90 | 0.26 | 1.14 | 0.46 | 0.21 | 0.05 | 1.10 | 0.33 |
B | 12.9 | 2.4 | 32.45 | 1.95 | 1.45 | 0.92 | 2.61 | 1.13 | 0.38 | 0.07 | 2.14 | 0.81 | |
Estuary | 13.4 | 2.1 | 33.76 | 2.29 | 1.25 | 0.78 | 2.19 | 1.19 | 0.36 | 0.10 | 1.84 | 0.85 | |
Spring | A | 15.5 | 1.2 | 35.02 | 0.89 | 2.09 | 1.33 | 1.71 | 0.75 | 0.16 | 0.09 | - | - |
B | 17.4 | 2.0 | 29.13 | 5.13 | 3.54 | 5.85 | 8.40 | 7.74 | 0.37 | 0.12 | - | - | |
Estuary | 16.7 | 1.9 | 30.91 | 5.04 | 3.03 | 4.79 | 6.09 | 7.00 | 0.26 | 0.15 | - | - | |
Summer | A | 18.7 | 1.0 | 36.02 | 0.27 | 1.66 | 0.35 | 2.06 | 1.06 | 0.15 | 0.12 | 1.30 | 0.86 |
B | 23.3 | 0.9 | 35.23 | 1.42 | 4.21 | 2.41 | 8.37 | 4.42 | 0.47 | 0.15 | 6.58 | 4.49 | |
Estuary | 17.7 | 4.0 | 35.46 | 1.25 | 3.34 | 3.66 | 5.74 | 4.94 | 0.31 | 0.20 | 4.28 | 3.86 | |
Autumn | A | 17.7 | 2.2 | 35.91 | 0.15 | 1.47 | 1.29 | 1.80 | 0.46 | 0.14 | 0.09 | 1.31 | 0.49 |
B | 20.6 | 4.3 | 34.14 | 2.83 | 1.59 | 0.53 | 3.91 | 1.69 | 0.42 | 0.11 | 3.03 | 1.38 | |
Estuary | 18.9 | 3.3 | 34.73 | 2.42 | 1.55 | 0.81 | 3.21 | 1.72 | 0.30 | 0.18 | 2.46 | 1.41 | |
Year | A | 16.1 | 2.3 | 35.57 | 0.78 | 1.70 | 1.29 | 1.55 | 0.73 | 0.16 | 0.10 | 1.11 | 0.44 |
B | 17.4 | 4.2 | 32.31 | 4.30 | 3.40 | 3.75 | 5.99 | 4.95 | 0.41 | 0.13 | 4.59 | 3.92 | |
Estuary | 17.0 | 3.7 | 33.36 | 3.87 | 3.05 | 3.43 | 4.97 | 4.74 | 0.29 | 0.17 | 3.81 | 3.75 |
AC Processor | Algorithm | Equation | R2 | RMSE | URMS | BIAS | APD (%) | RPD (%) | N | |
---|---|---|---|---|---|---|---|---|---|---|
CDOM | AC-C2RCC | C2RCC (443 nm) | Y = 0.4x + 0.22 | 0.201 | 0.170 | 0.167 | 0.032 | 99.019 | 70.360 | 21 |
TS (443 nm) | Y = 0.9x + 0.05 | 0.471 | 0.151 | 0.149 | 0.027 | 63.571 | 40.000 | 21 | ||
TS (412 nm) | Y = 1.6x + 0.18 | 0.563 | 0.701 | 0.447 | 0.540 | 143.856 | 134.141 | 21 | ||
MAS (443 nm) | Y = 0.1x + 0.01 | 0.427 | 0.319 | 0.142 | −0.285 | 78.199 | −78.199 | 20 | ||
MAM (443 nm) | Y = 0.3x + 0.1 | 0.325 | 0.182 | 0.124 | −0.133 | 63.744 | −8.546 | 20 | ||
CZ (443 nm) | Y = 0.4x − 0.004 | 0.462 | 0.226 | 0.117 | −0.194 | 57.911 | −51.400 | 21 | ||
CH (443 nm) | Y = 0.6x − 0.08 | 0.294 | 0.265 | 0.169 | −0.204 | 74.368 | −68.336 | 21 | ||
KU (420 nm) | Y = 0.7x − 0.05 | 0.446 | 0.283 | 0.199 | −0.201 | 50.334 | −40.553 | 21 | ||
Polymer | TS (443 nm) | Y = 0.8x + 0.06 | 0.608 | 0.106 | 0.105 | −0.013 | 46.612 | 19.630 | 21 | |
TS (412 nm) | Y = 1.4x + 0.21 | 0.651 | 0.516 | 0.303 | 0.418 | 106.388 | 101.800 | 21 | ||
MAS (443 nm) | Y = 0.1x + 0.01 | 0.607 | 0.342 | 0.152 | −0.306 | 85.400 | −85.400 | 20 | ||
MAM (443 nm) | Y = 0.2x + 0.09 | 0.515 | 0.229 | 0.133 | −0.187 | 68.307 | −27.708 | 21 | ||
CZ (443 nm) | Y = 0.3x + 0.003 | 0.582 | 0.245 | 0.114 | −0.217 | 62.152 | −60.788 | 21 | ||
CH (443 nm) | Y = 0.7x − 0.07 | 0.376 | 0.220 | 0.159 | −0.152 | 66.332 | −55.218 | 21 | ||
KU (420 nm) | Y = 0.8x − 0.04 | 0.529 | 0.231 | 0.187 | −0.135 | 41.981 | −31.224 | 21 | ||
Acolite | TS (443 nm) | Y = 0.4x + 0.3 | 0.561 | 0.142 | 0.106 | 0.095 | 117.027 | 114.796 | 19 | |
TS (412 nm) | Y = 0.8x + 0.89 | 0.672 | 0.787 | 0.165 | 0.770 | 258.640 | 258.640 | 19 | ||
MAS (443 nm) | Y = 0.1x + 0.09 | 0.620 | 0.261 | 0.139 | −0.222 | 74.266 | −35.156 | 19 | ||
MAM (443 nm) | Y = 0.1x + 0.09 | 0.620 | 0.262 | 0.138 | −0.222 | 73.605 | −36.073 | 19 | ||
CZ (443 nm) | Y = 0.2x + 0.1 | 0.565 | 0.213 | 0.123 | −0.174 | 70.461 | −18.879 | 19 | ||
CH (443 nm) | Y = 0.6x + 0.31 | 0.153 | 0.578 | 0.291 | 0.499 | 306.715 | 304.302 | 19 | ||
KU (420 nm) | Y = 0.6x + 0.8 | 0.182 | 0.673 | 0.310 | 0.598 | 244.380 | 243.929 | 19 | ||
Chlorophyll-a | AC-C2RCC | Chla-C2RCC | Y = 4.9x − 1.33 | 0.223 | 0.714 | 0.672 | 0.242 | 281.060 | 243.552 | 13 |
OC3 | Y = 11.0x − 2.49 | 0.259 | 0.885 | 0.519 | 0.717 | 749.362 | 733.932 | 13 | ||
GS | Y = 0.4x − 0.07 | 0.625 | 0.565 | 0.205 | −0.527 | 66.985 | −66.985 | 13 | ||
2-Band | Y = 4.4x + 1.6 | 0.608 | 0.765 | 0.126 | 0.754 | 493.038 | 493.038 | 13 | ||
Polymer | Polymer | Y = 2.5x + 0.67 | 0.365 | 0.503 | 0.228 | 0.448 | 221.230 | 216.124 | 13 | |
OC3 | Y = 2.8x + 1.27 | 0.294 | 0.603 | 0.260 | 0.543 | 309.703 | 304.136 | 13 | ||
GS | - | - | - | - | - | - | - | - | ||
2-Band | - | - | - | - | - | - | - | - | ||
Acolite | OC3 | Y = 2.6x + 0.63 | 0.217 | 0.5151 | 0.229 | 0.461 | 224.311 | 224.311 | 11 | |
GS | Y = −0.2x + 1.14 | 0.0004 | 0.327 | 0.306 | −0.115 | 61.556 | −1.586 | 11 | ||
2-Band | Y = −1.4x + 13.07 | 0.0003 | 1.044 | 0.233 | 1.018 | 1116.360 | 1116.360 | 11 | ||
SPM | AC-C2RCC | SPM-C2RCC | Y = 2.2x − 0.59 | 0.467 | 25.696 | 3.927 | 3.025 | 107.691 | 88.159 | 23 |
N (665 nm) | Y = 0.8x + 1.82 | 0.443 | 1.688 | 1.344 | 1.020 | 56.509 | 46.041 | 23 | ||
N (705 nm) | Y = 0.8x + 1.03 | 0.470 | 1.343 | 1.307 | 0.3111 | 35.319 | 17.718 | 23 | ||
N (740 nm) | Y = 0.8x + 0.91 | 0.493 | 1.259 | 1.248 | 0.170 | 31.814 | 12.884 | 23 | ||
N (783 nm) | Y = 0.8x + 1.21 | 0.498 | 1.443 | 1.292 | 0.642 | 43.561 | 30.144 | 23 | ||
N (865 nm) | Y = 0.5x + 2.11 | 0.503 | 1.237 | 1.079 | 0.606 | 47.695 | 37.523 | 23 | ||
SI | Y = 0.7x + 0.62 | 0.409 | 1.416 | 1.373 | −0.343 | 32.926 | −8.814 | 23 | ||
Polymer | N (665 nm) | Y = 0.7x + 2.12 | 0.536 | 1.611 | 1.102 | 1.175 | 57.332 | 53.049 | 23 | |
N (705 nm) | Y = 0.7x + 0.85 | 0.568 | 1.055 | 1.018 | −0.274 | 26.082 | −2.703 | 23 | ||
N (740 nm) | Y = 0.4x + 2.17 | 0.229 | 1.427 | 1.421 | 0.129 | 42.072 | 18.463 | 23 | ||
N (783 nm) | Y = 0.8x + 2.94 | 0.475 | 2.521 | 1.279 | 2.173 | 95.546 | 94.803 | 23 | ||
N (865 nm) | Y = 0.7x + 0.94 | 0.253 | 1.593 | 1.540 | 0.409 | 57.568 | 6.599 | 21 | ||
SI | Y = 0.5x + 1.05 | 0.589 | 1.198 | 1.002 | −0.658 | 21.122 | −14.695 | 23 | ||
Acolite | N (665 nm) | Y = 1.1x + 3.57 | 0.489 | 1.256 | 1.198 | 3.849 | 153.309 | 153.309 | 20 | |
N (705 nm) | Y = 1.2x + 3.28 | 0.516 | 1.391 | 1.230 | 3.838 | 152.629 | 152.629 | 20 | ||
N (740 nm) | Y = 2.0x + 10.27 | 0.196 | 2.409 | 1.513s | 13.444 | 526.817 | 526.817 | 20 | ||
N (783 nm) | Y = 1.6x + 11.81 | 0.133 | 2.829 | 1.759 | 13.804 | 554.024 | 554.024 | 20 | ||
N (865 nm) | Y = 2.2x + 15.72 | 0.503 | 1.496 | 1.330 | 19.432 | 780.628 | 780.628 | 20 | ||
SI | Y = 0.7x + 1.75 | 0.548 | 0.928 | 0.928 | 0.644 | 35.952 | 31.502 | 20 | ||
Turbidity | AC-C2RCC | N (665 nm) | Y = 0.5x + 1.00 | 0.762 | 1.563 | 1.508 | −0.412 | 28.999 | −0.165 | 15 |
N (705 nm) | Y = 0.5x + 0.77 | 0.805 | 1.581 | 1.450 | −0.630 | 29.688 | −11.269 | 15 | ||
N (740 nm) | Y = 0.6x + 0.38 | 0.837 | 1.706 | 1.393 | −0.985 | 37.970 | −31.209 | 15 | ||
N (783 nm) | Y = 0.6x + 0.43 | 0.841 | 1.479 | 1.280 | −0.742 | 33.400 | −22.474 | 15 | ||
N (865 nm) | Y = 0.4x + 0.23 | 0.838 | 2.344 | 1.717 | − 1.597 | 53.064 | −53.064 | 15 | ||
DO | Y = 0.5x + 0.56 | 0.793 | 1.790 | 1.522 | −0.943 | 37.657 | −26.332 | 15 | ||
Polymer | N (665 nm) | Y = 0.5x + 1.43 | 0.692 | 1.714 | 1.699 | −0.220 | 31.803 | 15.192 | 15 | |
N (705 nm) | Y = 0.4x + 0.58 | 0.761 | 2.093 | 1.717 | −1.198 | 44.136 | −36.130 | 15 | ||
N (740 nm) | Y = 0.3x + 1.05 | 0.806 | 2.245 | 1.966 | −1.085 | 38.869 | −14.188 | 15 | ||
N (783 nm) | Y = 0.4x + 2.12 | 0.462 | 2.029 | 2.009 | 0.290 | 69.471 | 53.834 | 15 | ||
N (865 nm) | Y = 0.4x + 0.44 | 0.656 | 2.716 | 1.957 | −1.883 | 51.924 | −49.191 | 11 | ||
DO | Y = 0.4x + 0.95 | 0.715 | 1.893 | 1.725 | −0.781 | 29.646 | −13.270 | 15 | ||
Acolite | N (665 nm) | Y = 0.2x + 1.48 | 0.747 | 2.577 | 2.370 | −1.013 | 47.825 | 3.754 | 13 | |
N (705 nm) | Y = 0.2 + 1.55 | 0.744 | 2.570 | 2.385 | −0.957 | 50.436 | 9.282 | 13 | ||
N (740 nm) | Y = 0.2x + 4.14 | 0.282 | 2.983 | 2.464 | 1.680 | 182.207 | 173.672 | 13 | ||
N (783 nm) | Y = 0.2x + 4.38 | 0.258 | 3.137 | 2.485 | 1.915 | 199.765 | 193.217 | 13 | ||
N (865 nm) | Y = 0.2x + 5.86 | 0.186 | 4.319 | 2.567 | 3.474 | 296.190 | 292.246 | 13 | ||
DO | Y = 0.1x + 0.97 | 0.340 | 2.858 | 2.418 | −1.742 | 53.563 | −30.192 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sent, G.; Biguino, B.; Favareto, L.; Cruz, J.; Sá, C.; Dogliotti, A.I.; Palma, C.; Brotas, V.; Brito, A.C. Deriving Water Quality Parameters Using Sentinel-2 Imagery: A Case Study in the Sado Estuary, Portugal. Remote Sens. 2021, 13, 1043. https://doi.org/10.3390/rs13051043
Sent G, Biguino B, Favareto L, Cruz J, Sá C, Dogliotti AI, Palma C, Brotas V, Brito AC. Deriving Water Quality Parameters Using Sentinel-2 Imagery: A Case Study in the Sado Estuary, Portugal. Remote Sensing. 2021; 13(5):1043. https://doi.org/10.3390/rs13051043
Chicago/Turabian StyleSent, Giulia, Beatriz Biguino, Luciane Favareto, Joana Cruz, Carolina Sá, Ana Inés Dogliotti, Carla Palma, Vanda Brotas, and Ana C. Brito. 2021. "Deriving Water Quality Parameters Using Sentinel-2 Imagery: A Case Study in the Sado Estuary, Portugal" Remote Sensing 13, no. 5: 1043. https://doi.org/10.3390/rs13051043
APA StyleSent, G., Biguino, B., Favareto, L., Cruz, J., Sá, C., Dogliotti, A. I., Palma, C., Brotas, V., & Brito, A. C. (2021). Deriving Water Quality Parameters Using Sentinel-2 Imagery: A Case Study in the Sado Estuary, Portugal. Remote Sensing, 13(5), 1043. https://doi.org/10.3390/rs13051043