When Small Is Not Beautiful: The Unexpected Impacts of Trees and Parcel Size on Metered Water-Use in a Semi-Arid City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Consumption Data
2.3. Response Variable
2.4. Explanatory Variables
2.5. Correlation Analysis
2.6. Random Forest for Variable Selection
2.7. Regression Modeling
3. Results
3.1. Correlation Analysis
3.2. OLS Regression
4. Discussion
4.1. Bio-Physical Composition and Urban Structure Greatly Affected Water Use
4.2. Higher Socio-Economic Status Was Associated with More Water Use
4.3. Trees Were Associated with Less Water Consumption
4.4. Policy Implications
4.5. Misalignment in Spatial Scales Hinders Our Understanding of Social and Lifestyle Effects
4.6. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colorado Climate Plan 2015 Regional Assessment|USDA Climate Hubs. Available online: https://www.climatehubs.usda.gov/hubs/northern-plains/topic/colorado-climate-plan-2015-regional-assessment (accessed on 18 November 2020).
- Lukas, J.; Barsugli, J.; Doesken, N.; Rangwala, I.; Wolter, K. Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation; University of Colorado Boulder: Boulder, CO, USA, 2014; p. 2. [Google Scholar]
- Colorado Water Conservation Board. Colorado’s Water Plan; Colorado Water Conservation Board: Denver, CO, USA, 2015. [Google Scholar]
- Hanak, E.; Browne, M.K. Linking Housing Growth to Water Supply: New Planning Frontiers in the American West. J. Am. Plan. Assoc. 2006, 72, 154–166. [Google Scholar] [CrossRef]
- Tinker, A.; Bame, S.; Burt, R.; Speed, M. Impact of “Non-Behavioral Fixed Effects” on Water Use: Weather and Economic Construction Differences on Residential Water Use in Austin, Texas. Electron. Green J. 2005, 1. [Google Scholar] [CrossRef]
- Kenney, D.S.; Klein, R.A.; Clark, M.P. Use and Effectiveness of Municipal Water Restrictions During Drought in Colorado1. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 77–87. [Google Scholar] [CrossRef]
- House-Peters, L.; Pratt, B.; Chang, H. Effects of Urban Spatial Structure, Sociodemographics, and Climate on Residential Water Consumption in Hillsboro, Oregon1. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 461–472. [Google Scholar] [CrossRef]
- Pincetl, S.; Porse, E.; Mika, K.B.; Litvak, E.; Manago, K.F.; Hogue, T.S.; Gillespie, T.; Pataki, D.E.; Gold, M. Adapting Urban Water Systems to Manage Scarcity in the 21st Century: The Case of Los Angeles. Environ. Manag. 2019, 63, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Balling, R.C.; Gober, P.; Jones, N. Sensitivity of residential water consumption to variations in climate: An intraurban analysis of Phoenix, Arizona. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Wentz, E.A.; Gober, P. Determinants of Small-Area Water Consumption for the City of Phoenix, Arizona. Water Resour. Manag. 2007, 21, 1849–1863. [Google Scholar] [CrossRef]
- Harlan, S.L.; Yabiku, S.T.; Larsen, L.; Brazel, A.J. Household Water Consumption in an Arid City: Affluence, Affordance, and Attitudes. Soc. Nat. Resour. 2009, 22, 691–709. [Google Scholar] [CrossRef]
- Ghavidelfar, S.; Shamseldin, A.Y.; Melville, B.W. A Multi-Scale Analysis of Single-Unit Housing Water Demand Through Integration of Water Consumption, Land Use and Demographic Data. Water Resour. Manag. 2017, 31, 2173–2186. [Google Scholar] [CrossRef]
- US Census Bureau. Glossary. Available online: https://www.census.gov/programs-surveys/geography/about/glossary.html (accessed on 15 February 2021).
- Stoker, P.; Rothfeder, R. Drivers of urban water use. Sustain. Cities Soc. 2014, 12, 1–8. [Google Scholar] [CrossRef]
- Jansen, A.; Schulz, C. Water Demand and the Urban Poor: A Study of the Factors Influencing Water Consumption Among Households in Cape Town, South Africa. S. Afr. J. Econ. 2006, 74, 593–609. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Parandvash, G.H.; Shandas, V. Spatial Variations of Single-Family Residential Water Consumption in Portland, Oregon. Urban Geogr. 2010, 31, 953–972. [Google Scholar] [CrossRef]
- Sanchez, G.M.; Smith, J.W.; Terando, A.; Sun, G.; Meentemeyer, R.K. Spatial Patterns of Development Drive Water Use. Water Resour. Res. 2018, 54, 1633–1649. [Google Scholar] [CrossRef]
- McCarthy, H.R.; Pataki, D.E. Drivers of Variability in Water Use of Native and Non-Native Urban Trees in the Greater Los Angeles Area. Urban Ecosyst. 2010, 13, 393–414. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, J.F.; McPherson, E.G.; Schroeder, H.W.; Rowntree, R.A. Assessing the Benefits and Costs of the Urban Forest. J. Arboric. 1992, 18, 227–234. [Google Scholar]
- Olmos, K.C.; Loge, F.J. Offsetting water conservation costs to achieve net-zero water use. J. AWWA 2013, 105, E62–E72. [Google Scholar] [CrossRef]
- Jorgensen, B.; Graymore, M.; O’Toole, K. Household water use behavior: An integrated model. J. Environ. Manag. 2009, 91, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Corbella, H.M.; Pujol, D.S.I. What lies behind domestic water use? A review essay on the drivers of domestic water consumption. Boletín Asoc. Geógrafos Españoles 2009, 50, 297–314. [Google Scholar]
- Newton, P.; Meyer, D. Exploring the Attitudes-Action Gap in Household Resource Consumption: Does “Environmental Lifestyle” Segmentation Align with Consumer Behaviour? Sustainability 2013, 5, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Bollinger, B.; Burkhardt, J.; Gillingham, K. Peer Effects in Water Conservation: Evidence from Consumer Migration; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar]
- Yang, J.; Wang, Z.-H. Optimizing urban irrigation schemes for the trade-off between energy and water consumption. Energy Build. 2015, 107, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Renwick, M.E.; Green, R.D. Do residential water demand side management policies measure up? An analysis of eight California water agencies. J. Environ. Econ. Manag. 2000, 40, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S. Managing Water Demands for a Rapidly Growing City in Semi-Arid Environment: Study of Las Vegas, Nevada. Int. J. Water Resour. Arid Environ. 2016, 5, 35–42. [Google Scholar]
- 2020 Strategic Plan—Create Our Five-Year Road Map 2020. Available online: https://ourcity.fcgov.com/2020strategicplan?tool=quick_poll (accessed on 2 November 2020).
- Demographic Information||Comprehensive Planning. Available online: https://www.fcgov.com/planning/trends.php (accessed on 18 November 2020).
- National Oceanic and Atmospheric Administration. National Weather Service Climate. Available online: https://w2.weather.gov/climate/xmacis.php?wfo=bou (accessed on 18 November 2020).
- About Fort Collins|Visit Fort Collins. Available online: https://www.visitftcollins.com/maps-info/about-fort-collins/ (accessed on 5 October 2020).
- Water Efficiency Plan||2015. Utilities. Available online: https://www.fcgov.com/utilities/residential/conserve/water-efficiency/water-efficiency-plan (accessed on 2 November 2020).
- Zhou, W.; Troy, A. An object-oriented approach for analyzing and characterizing urban landscape at the parcel level. Int. J. Remote Sens. 2008, 29, 3119–3135. [Google Scholar] [CrossRef]
- Beck, S.M.; McHale, M.R.; Hess, G.R. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management. Environ. Manag. 2016, 58, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-62935-8. [Google Scholar]
- Tapestry Segmentation—Esri Demographics|Documentation. Available online: https://doc.arcgis.com/en/esri-demographics/data/tapestry-segmentation.htm (accessed on 3 November 2020).
- Larimer County Assessor’s Office. Available online: https://www.larimer.org/assessor (accessed on 5 December 2019).
- De Carvalho, M.; Marques, F.J. spearmanCI: Jackknife Euclidean / Empirical Likelihood Inference for Spearman Rho. N. Am. Actuar. J. 2012, 16, 487–492. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Severson, J.P.; Hagen, C.A.; Maestas, J.D.; Naugle, D.E.; Forbes, J.T.; Reese, K.P. Effects of conifer expansion on greater sage-grouse nesting habitat selection. J. Wildl. Manag. 2017, 81, 86–95. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Murphy, M.A.; Evans, J.S.; Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 2010, 91, 252–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 12 December 2019).
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 12 April 2020).
- Burkhardt, J.; Chan, N.W. What is the value of conformity? Evidence from home landscaping and water conservation. Am. J. Agric. Econ. 2021. under review. [Google Scholar]
- Ozan, L.A.; Alsharif, K.A. The Effectiveness of Water Irrigation Policies for Residential Turfgrass. Land Use Policy 2013, 31, 378–384. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. The effects of street tree planting on Urban Heat Island mitigation in Montreal. Sustain. Cities Soc. 2016, 27, 122–128. [Google Scholar] [CrossRef]
- McPherson, E.G.; Dougherty, E. Selecting Trees for Shade in the Southwest. J. Arboric. 1989, 9, 35–43. [Google Scholar]
- Cariñanos, P.; Calaza-Martínez, P.; O’Brien, L.; Calfapietra, C. The Cost of Greening: Disservices of Urban Trees. In The Urban Forest: Cultivating Green Infrastructure for People and the Environment; Pearlmutter, D., Calfapietra, C., Samson, R., O’Brien, L., Krajter Ostoić, S., Sanesi, G., del Amo, R.A., Eds.; Future City; Springer International Publishing: Cham, Switzerland, 2017; pp. 79–87. ISBN 978-3-319-50280-9. [Google Scholar]
- Litvak, E.; Pataki, D.E. Evapotranspiration of urban lawns in a semi-arid environment: An in situ evaluation of microclimatic conditions and watering recommendations. J. Arid Environ. 2016, 134, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Qaiser, K.; Ahmad, S.; Johnson, W.; Batista, J. Evaluating the impact of water conservation on fate of outdoor water use: A study in an arid region. J. Environ. Manag. 2011, 92, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Watering Newly Planted Trees and Shrubs. Available online: https://extension.umn.edu/planting-and-growing-guides/watering-newly-planted-trees-and-shrubs (accessed on 15 February 2021).
- Litvak, E.; Bijoor, N.S.; Pataki, D.E. Adding Trees to Irrigated Turfgrass Lawns May Be a Water-Saving Measure in Semi-Arid Environments. Ecohydrology 2014, 7, 1314–1330. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; (University of California, Davis, Davis, CA, USA). Personal communication, 2020.
- Pataki, D.E.; (University of California, Davis, Davis, CA, USA). Personal communication, 2020.
- Bush, S.E.; Pataki, D.E.; Hultine, K.R.; West, A.G.; Sperry, J.S.; Ehleringer, J.R. Wood Anatomy Constrains Stomatal Responses to Atmospheric Vapor Pressure Deficit in Irrigated, Urban Trees. Oecologia 2008, 156, 13–20. [Google Scholar] [CrossRef]
- Olmstead, S.M.; Stavins, R.N. Comparing price and nonprice approaches to urban water conservation. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
Time Period | Total Gallons (L) | Gallons/Day (L/Day) |
---|---|---|
January | 3983.36 (15,078.66) | 128.50 (486.43) |
February | 3724.79 (14,099.86) | 128.44 (486.20) |
March | 4088.88 (15,478.09) | 131.90 (499.30) |
April | 4314.89 (16,333.64) | 143.83 (544.46) |
May | 6968.23 (26,377.62) | 224.78 (850.88) |
June | 13,211.25 (50,010.02) | 440.38 (1667.02) |
July | 16,032.09 (60,688.06) | 517.16 (1957.66) |
August | 14,151.63 (53,569.75) | 456.50 (1728.04) |
September | 11,229.00 (42,506.39) | 374.30 (1416.88) |
October | 7108.23 (26,907.58) | 229.30 (867.99) |
November | 4461.60 (16,888.99) | 148.72 (562.97) |
December | 4177.59 (15,813.90) | 134.76 (510.12) |
Variable | Scale Obtained | Min | Mean | Max |
---|---|---|---|---|
Population Density per hectare (10,000 m2) | Census block group Census block group Census block group | 1.66 | 17.57 | 68.87 |
% White | 33.71 | 83.87 | 97.95 | |
% Black/African American | 0.00 | 0.99 | 6.16 | |
% Hispanic/Latino | Census block group Census block group | 0.00 | 10.21 | 63.21 |
% Asian | 0.00 | 2.34 | 16.14 | |
% College Graduates | Census block group Census block group Census block group Census block group | 2.69 | 20.29 | 34.41 |
House Density per hectare (10,000 m2) | 0.68 | 7.23 | 29.51 | |
% Owner | 0.65 | 23.13 | 42.78 | |
% Renter | 1.63 | 15.98 | 53.66 | |
% Single Person Households | Census block group Census block group | 1.47 | 9.30 | 38.76 |
% 3+ Person Households | 0.00 | 2.30 | 11.69 | |
% Family Households | Census block group | 2.21 | 23.13 | 35.52 |
% Married Households | Census block group | 0.72 | 18.51 | 31.47 |
Median Household Income ($) | Census block group | 15,833 | 66,311 | 124,643 |
Parcel Size in ft2 (m2) | Household | 1066 (99) | 9410 (874) | 840,129 (78,050) |
% Trees (in irrigatable space) | Household | 0.00 | 48.66 | 100.00 |
% Herbaceous (in irrigatable space) | Household | 0.00 | 48.25 | 100.00 |
Age of Home (years) | Household | 2 | 40.67 | 152 |
Home Value ($) | Household | 96,100 | 423,365 | 2100,000 |
% Herbaceous * % Trees | Household | 0 | 1925 | 2500 |
Vegetation/Parcel size | Household | 0.02 | 0.61 | 0.99 |
Distance to Historic Center in mi (km) | Household | 0.17 (0.27) | 3.01 (4.84) | 5.95 (9.58) |
LST (°F) | 100 m2 (resampled to 30 m2) | 80.68 | 92.52 | 101.39 |
NDVI | 100 m2 (resampled to 30 m2) | 0.13 | 0.46 | 0.72 |
Category | Variable | Scale Obtained | Parcel Count |
---|---|---|---|
Affluent Estates | Census block group | 1367 | |
Upscale Avenues | Census block group | 1896 | |
Uptown Individuals | Census block group | 49 | |
Family Landscapes | Census block group | 2319 | |
GenXurban | Census block group | 4999 | |
Lifestyle Classification | Middle Ground | Census block group | 8247 |
Senior Styles | Census block group | 91 | |
Rustic Outposts | Census block group | 151 | |
Midtown Singles | Census block group | 901 | |
Next Wave | Census block group | 17 | |
Scholars and Patriots | Census block group | 4134 | |
East | Household | 3184 | |
Northeast | Household | 2829 | |
Lawn Orientation | North | Household | 3341 |
Northwest | Household | 2643 | |
West | Household | 3439 | |
Southwest | Household | 2878 | |
South | Household | 3293 | |
Southeast | Household | 2564 |
Variable | Coefficient | Std. Error | p Value | Cohen’s F |
---|---|---|---|---|
Intercept | −4.506e-01 | 2.543e-01 | 0.0764 | - |
Vegetation/Parcel size | −1.573e+00 | 5.310e-02 | <2e-16 | 0.302 |
Parcel Size | −1.329e-05 | 4.423e-07 | <2e-16 | 0.229 |
Distance to Historic Center | 7.718e-02 | 7.674e-03 | <2e-16 | 0.227 |
Home Value | 1.386e-06 | 5.656e-08 | <2e-16 | 0.214 |
Home Age | −5.240e-03 | 4.213e-04 | <2e-16 | 0.098 |
% Trees | −3.807e-03 | 3.201e-04 | <2e-16 | 0.075 |
% 3+ Person HH | −2.551e-02 | 3.226e-03 | 2.73e-15 | 0.062 |
% College Graduates | 1.025e-02 | 1.422e-03 | 5.74e-13 | 0.043 |
% Family HH | 4.992e-03 | 1.990e-03 | 0.0121 | 0.040 |
LST | 1.271e-02 | 2.463e-03 | 2.48e-07 | 0.038 |
% Owner | −4.830e-03 | 1.446e-03 | 0.0008 | 0.035 |
% Black/Afr. Am. Pop | −2.678e-02 | 4.996e-03 | 7.06e-08 | 0.035 |
% Asian Pop | 7.134e-03 | 2.377e-03 | 0.0027 | 0.018 |
House Density | 6.026e-03 | 2.189e-03 | 0.0059 | 0.014 |
NDVI | 7.944e-01 | 9.624e-02 | <2e-16 | 0.009 |
% Hispanic/Latino Pop | 3.748e-03 | 9.922e-04 | 0.0002 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasmussen, S.; Warziniack, T.; Neel, A.; O’Neil-Dunne, J.; McHale, M. When Small Is Not Beautiful: The Unexpected Impacts of Trees and Parcel Size on Metered Water-Use in a Semi-Arid City. Remote Sens. 2021, 13, 998. https://doi.org/10.3390/rs13050998
Rasmussen S, Warziniack T, Neel A, O’Neil-Dunne J, McHale M. When Small Is Not Beautiful: The Unexpected Impacts of Trees and Parcel Size on Metered Water-Use in a Semi-Arid City. Remote Sensing. 2021; 13(5):998. https://doi.org/10.3390/rs13050998
Chicago/Turabian StyleRasmussen, Shaundra, Travis Warziniack, Abbye Neel, Jarlath O’Neil-Dunne, and Melissa McHale. 2021. "When Small Is Not Beautiful: The Unexpected Impacts of Trees and Parcel Size on Metered Water-Use in a Semi-Arid City" Remote Sensing 13, no. 5: 998. https://doi.org/10.3390/rs13050998
APA StyleRasmussen, S., Warziniack, T., Neel, A., O’Neil-Dunne, J., & McHale, M. (2021). When Small Is Not Beautiful: The Unexpected Impacts of Trees and Parcel Size on Metered Water-Use in a Semi-Arid City. Remote Sensing, 13(5), 998. https://doi.org/10.3390/rs13050998