Changes in the End-of-Summer Snow Line Altitude of Summer-Accumulation-Type Glaciers in the Eastern Tien Shan Mountains from 1994 to 2016
Abstract
:1. Introduction
2. Study Site
3. Data and Methods
3.1. Data
3.1.1. Optical Satellite Data
3.1.2. Digital Elevation Model
3.1.3. Mass Balance Data
3.1.4. Meteorological Data
3.2. Methods
3.2.1. Broadband Albedo Retrieval
3.2.2. Snow-Cover Mapping for Individual Glaciers
3.2.3. Snow Line Altitude Determination
3.3. Uncertainty
4. Results
4.1. Comparison of Measured Values and Retrieved Values
4.1.1. Snow-Cover Ratio vs. Accumulation Area Ratio
4.1.2. Snow Line Altitude vs. Equilibrium Line Altitude
4.2. Changes in the End-of-Summer Snow-Cover Ratio
4.3. Multi-Year Variations in the End-of-Summer Snow Line Altitude
4.4. Changes in Climatic Conditions
5. Discussion
5.1. Relationship between the Equilibrium Line Altitude Calculated Using the Glaciology Method and the Snow Line Altitude Delineated from Remote Sensing Images
5.2. The Impact of Climate on Snow Line Altitude Changes
5.3. The Impact of Morpho-Topographic Variables on the Snow Line Altitude
5.4. Uncertainty Stemming from the Time Gaps in the Acquisition of Landsat Images and GDEM
5.5. Advantages, Drawbacks, and Robustness of the Albedo Method Applied to Mountain Glaciers
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 335–344. [Google Scholar]
- Barandun, M.; Huss, M.; Usubaliev, R.; Azisov, E.; Berthier, E.; Kääb, A.; Bolch, T.; Hoelzle, M. Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations. Cryosphere 2018, 12, 1899–1919. [Google Scholar] [CrossRef] [Green Version]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature. 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Rastner, P.; Prinz, R.; Notarnicola, C.; Nicholson, L.; Sailer, R.; Schwaizer, G.; Paul, F. On the Automated Mapping of Snow Cover on Glaciers and Calculation of Snow Line Altitudes from Multi-Temporal Landsat Data. Remote Sens. 2019, 11, 1410. [Google Scholar] [CrossRef] [Green Version]
- Rabatel, A.; Dedieu, J.; Vincent, C. Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series validation on three French glaciers, 1994–2002. J. Glaciol. 2005, 51, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Rabatel, A.; Dedieu, J.; Thibert, E.; Letréguilly, A.; Vincent, C. 25 years (1981–2005) of equilibrium-line altitude and mass-balance reconstruction on Glacier Blanc, French Alps, using remote-sensing methods and meteorological data. J. Glaciol. 2008, 54, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Rabatel, A.; Dedieu, J.; Vincent, C. Spatio-temporal changes in glacier wide mass balance quantified by optical remote sensing on 30 glaciers in the French Alps for the period 1983–2014. J. Glaciol. 2016, 62, 1153–1166. [Google Scholar] [CrossRef] [Green Version]
- Barcaza, G.; Aniya, M.; Matsumoto, T.; Aoki, T. Satellite derived equilibrium lines in Northern Patagonia Icefield, Chile and Their Implications to Glacier Variations. Arct. Antarct. Alp. Res. 2009, 41, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Rabatel, A.; Bermejo, A.; Loarte, E.; Soruco, A.; Gomez, J.; Leonardini, G.; Vincent, C.; Sicart, J.E. Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? J. Glaciol. 2012, 58, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Mcfadden, E.M.; Ramage, J.; Rodbell, D.T. Landsat TM and ETM+ Derived Snowline Altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. Cryosphere 2011, 5, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Veettil, B.K.; Wang, S.; Bremer, U.F.; Souza, S.F.; Simões, J.C. Recent trends in annual snowline variations in the northern wet outer tropics: Case studies from southern Cordillera Blanca, Peru. Theor. Appl. Climatol. 2017, 129, 213–227. [Google Scholar] [CrossRef]
- Clare, G.R.; Fotzharris, B.B.; Chinn, T.J.H.; Salinger, J.M. Interannual variation in end-of summer snowlines of the southern Alps of New Zealand, and relationships with southern Hemisphere atmospheric circulation and sea surface temperature patterns. Int. J. Climatol. 2002, 22, 107–120. [Google Scholar] [CrossRef]
- Rabate, A.; Letreguilly, A.; Dedieu, J.P.; Echert, N. Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010 evaluation by remote sensing and modeling of the morpho-topographic and climate controls. Cryosphere 2013, 7, 1455–1471. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Ormsby, J.P.; Bindschadler, R.A.; Siddalingaian, H. Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data. Ann. Glaciol. 1987, 9, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Da-Angelis, H.; Rau, F.; Skvarca, P. Snow zonation on Hielo Patagónico Sur, Southern Patagonia, derived from Landsat 5 TM data. Glob. Planet. Chang. 2007, 59, 149–158. [Google Scholar] [CrossRef]
- Pelto, M. Utility of late summer transient snowline migration rate on Taku Glacier, Alaska. Crypsphere 2011, 5, 1127–1133. [Google Scholar] [CrossRef]
- Salomonson, V.; Appel, I. Estimating fractional snow cover from MODIS using normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Klein, A.G.; Isacks, B.L. Spectral mixture analysis of Landsat thematic mapper images applied to the detection of the transient snowline on tropical Andean glaciers. Glob. Planet. Chang. 1999, 22, 139–154. [Google Scholar] [CrossRef]
- Hanshaw, M.N.; Bookhagen, B. Glacial area, lake areas, and snow lines from 1975 to 2012: Status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. Crypsphere 2014, 8, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Wang, N.; Kehrwald, M.N.; Mao, R.; Wu, H.; Wu, Y.; Jiang, X. Temporal and spatial changes in Western Himalayan firn line altitudes from 1998 to 2009. Glob. Planet. Chang. 2014, 118, 97–105. [Google Scholar] [CrossRef]
- Xing, W.; Li, Z.; Zhang, H.; Zhang, M.; Liang, P.; Mou, J. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959. Acta Geogr. Sinica 2017, 72, 1594–1605. [Google Scholar]
- Zhang, G.; Li, Z.; Wang, W.; Wang, W. Rapid decrease of observed mass balance in the Urumqi Glacier No. 1, Tianshan Mountains, central Asia. Quat. Int. 2014, 349, 135–141. [Google Scholar] [CrossRef]
- Xu, M.; Kang, S.; Wu, H.; Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 2018, 203, 141–163. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tian Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Yang, D.; Kang, E.; Felix, B. Characteristics of precipitation in the source area of the Urumqi River Basin. J. Glaciol. Geocryol. 1992, 14, 258–266. [Google Scholar]
- Li, Z.; Li, H.; Chen, Y. Mechanisms and Simulation of Accelerated Shrinkage of Continental Glaciers A Case Study of Urumqi Glacier No. 1 in Eastern Tianshan, Central Asia. J. Earth Sci. 2011, 22, 423–430. [Google Scholar] [CrossRef]
- Ageta, Y.; Fujita, K. Characteristics of Mass Balance of Summer—Accumulation Type Glaciers in the Himalayas and Tibetan Plateau. Zeitschrift Für Gletscherkunde und Glazialgeologie 1996, 32, 61–65. [Google Scholar]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.; Oimoen, M.; Zhang, Z.; Danielson, J.; Krieger, T.; Curtis, B.; Haase, J.; et al. ASTER Global Digital Elevation Model Version 2—Summary of Validation Results. NASA Land Processes; NASA Distributed Active Archive Center/Joint Japan–US ASTER Science Team: Washington, DC, USA, 2011.
- World Glacier Monitoring Service (WGMS). Global Glacier Change Bulletin No. 1–3 (2013–2017); World Glacier Monitoring Service: Zurich, Switzerland, 2013. [Google Scholar]
- World Glacier Monitoring Service (WGMS). Glacier Mass Balance Bulletins Vols 4–12 (1994–2012); World Glacier Monitoring Service: Zurich, Switzerland, 2013. [Google Scholar]
- Zemp, M.; Hoelzle, W.; Haeberli, W. Six decades of glacier mass-balance observations a review of the worldwide monitoring network. Ann. Glaciol. 2009, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Elsberg, D.H.; Harrison, W.D.; Echelmeyer, K.A.; Krimmel, R.M. Quantifying the effects of climate and surface change on glacier mass balance. J. Glaciol. 2001, 47, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Li, Z.; Wang, F.; Zhou, P. Long-range terrestrial laser scanning measurements of annual and intra-annual mass balances for Urumqi Glacier No. 1, eastern Tien Shan, China. Cryosphere. 2019, 13, 2361–2383. [Google Scholar] [CrossRef] [Green Version]
- Kang, E.; Atsumu, O. Study on energy-water-mass balance and the hydrological flow model in a glacierized catchment of Tianshan mountain. Chin. Sci. Bull. 1993, 38, 925–929. [Google Scholar]
- Wang, P.; Li, Z.; Schneider, C.; Li, H.; Hamm, A.; Jing, S.; Xu, C.; Li, H.; Yue, X.; Yang, M. A test study of an energy and mass balance model application to a site on Urumqi Glacier No. 1, Chinese Tian Shan. Water 2020, 12, 2865. [Google Scholar] [CrossRef]
- Yue, X.; Zhao, J.; Li, Z.; Zhang, M.; Fan, J.; Wang, L.; Wang, P. Spatial and temporal variations of the surface albedo and other factors influencing Urumqi Glacier No. 1 in Tien Shan, China. J. Glaciol. 2017, 63, 899–911. [Google Scholar] [CrossRef] [Green Version]
- Hang, W.; Zhang, L.; Li, P. An improved topographic correction approach for satellite image. J. Image Graph. 2005, 10, 1124–1129. [Google Scholar]
- Greuell, W.; De Ruyter de Wildt, M. Anisotropic reflection of melting glacier ice: Measurements and parameterizations. Remote Sens. Environ. 1999, 70, 265–277. [Google Scholar] [CrossRef]
- Reijmer, C.H.; Bintanja, R.; Greuell, W. Surface albedo measurements over snow blue ice in thematic mapper bands 2 and 4 Dronning Maud Land, Antarctica. J. Geophys. Res. 2001, 106, 9661–9672. [Google Scholar] [CrossRef] [Green Version]
- Knap, W.H.; Reijmer, C.H.; Oerlemans, J. Narrowband to broadband conversion of Landsat TM glacier albedos. Int. J. Remote Sens. 1999, 20, 2091–2110. [Google Scholar] [CrossRef]
- Klok, E.J.; Greull, W.; Oerlemans, J. Temporal and spatial variation of the surface albedo of Morteratschgletscher, Switzerland, as derived from 12 Landsat images. J. Glaciol. 2003, 49, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Fugazza, D.; Senese, A.; Azzoni, R.S.; Maugeri, M.; Diolaiuti, G.A. Spatial ditribution of surface albedo at the Forni Glacier (Stelvio National Park, Central Italian Alpa). Cold Reg. Sci. Technol. 2016, 125, 128–137. [Google Scholar] [CrossRef]
- Knap, W.H.; Brock, B.W.; Oerlemans, J.; Willis, I.C. Comparison of Landsat TM-derived and ground based albedos of Haut Glacier d’Arolla, Switzerland. Int. J. Remote Sens. 1999, 20, 3293–3310. [Google Scholar] [CrossRef]
- Wang, J.; Ye, B.; Cui, Y.; He, X.; Yang, G. Spatial and temporal variations of albedo on nine glaciers in western China from 2000 to 2011. Hydrol. Process. 2014, 28, 3454–3465. [Google Scholar] [CrossRef]
- Naegeli, K.; Huss, M.; Hoelzle, M. Change detection of bare-ice albedo in the Swiss Alps. Cryosphere 2019, 13, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Le Bris, R.; Paul, F. An automatic method to create flow lines for determination of glacier length: A pilot study with Alaskan glaciers. Comput. Geosci. 2013, 52, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Li, Z.; Zhao, J.; Fan, J.; Takeuchi, N.; Wang, L. Variation in Albedo and its Relationship with Surface Dust at Urumqi Glacier No. 1 in Tien Shan, China. Front. Earth Sci. 2020, 8, 110. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Li, H.; Yao, H.; Xu, C.; Zhou, P.; Jin, S.; Wang, W. Analyses of recent observations of Urumqi Glacier No. 1, Chinese Tianshan Mountains. Environ. Earth Sci. 2016, 75, 720. [Google Scholar] [CrossRef]
- Wu, Y.; He, J.; Guo, Z.; Chen, A. Limitations in identifying the equilibrium-line altitude from the optical remote-sensing derived snowline in the Tien Shan, China. J. Glaciol. 2014, 60, 1093–1100. [Google Scholar]
- Guo, Z.; Wang, N.; Wu, H.; Wu, Y.; Wu, X.; Li, Q. Variations in firn line altitude and firn zone area on Qiyi Glacier, Qilian Mountains, over the period of 1990 to 2011. Arct. Antact. Alp. Res. 2015, 47, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ding, Y.; Ye, B.; Han, T. Changes in physical features of Glacier No. 1 of the Tianshan Mountains in response to climate change. Chin. Sci. Bull. 2011, 56, 2820–2827. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Qin, D.; Ren, J.; Li, K.; Li, Z. Variations in the equilibrium line altitude of Urumqi Glacier No.1, Tianshan Mountains, over the past 50 years. Chinese. Sci. Bull. 2013, 58, 825–832. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; He, J.; Pu, J.; Jiang, X.; Jing, Z. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years. Chin. Sci. Bull. 2010, 55, 3810–3817. [Google Scholar] [CrossRef]
- Zemp, M.; Hoelzle, M.; Haeberli, W. Distributed modelling of the regional climatic equilibrium line altitude of glaciers in the European Alps. Glob. Planet. Chang. 2007, 56, 83–100. [Google Scholar] [CrossRef]
- Xu, C.; Li, Z.; Wang, P.; Anjum, M.N.; Li, H.; Wang, F. Detailed comparison of glaciological and geodetic mass balances for Urumqi Glacier No.1, eastern Tien Shan, China, from 1981 to 2015. Cold Reg. Sci. Technol. 2018, 155, 137–148. [Google Scholar] [CrossRef]
- Gardner, A.S.; Sharp, M.J. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res. 2010, 115, 137–147. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physical of Glacier, 4nd ed.; Elsevier: Kidlington, UK, 2010; pp. 145–146. [Google Scholar]
- Zhao, Y.; Zhao, J.; Yue, X.; Wang, Y. Comparison of Remote Sensing Extraction Methods for Glacier Firn Line- Considering Urumqi Glacier No.1 as the Experimental Area. Available online: https://www.e3s-conferences.org/articles/e3sconf/abs/2020/78/e3sconf_iseese2020_04024/e3sconf_iseese2020_04024.html (accessed on 1 March 2021).
Glacier Label | Area (km2) | Elevation Range (m a.s.l.) | Aspect (°) |
---|---|---|---|
A/East branch of UG1 | 0.97 | 3770–4245 | 12.6 |
B/West branch of UG1 | 0.59 | 3860–4450 | 63.4 |
C | 0.95 | 3700–4430 | 326.2 |
D | 0.38 | 3790–4290 | 55.1 |
E | 1.23 | 3650–4343 | 332.6 |
F | 1.46 | 3695–4343 | 328.4 |
G | 0.53 | 3785–4240 | 357.9 |
Landsat Date YYYYMMDD | Landsat Sensor | Mass-Balance Measurements Date | Landsat Date YYYYMMDD | Landsat Sensor | Mass-Balance Measurements Date |
---|---|---|---|---|---|
19940824 | TM5 | 19940831 | 20100804 | TM5 | 20100911 |
20020814 | TM5 | 20020901 | 20110807 | TM5 | 20110906 |
20030817 | TM5 | 20030830 | 20120902 | ETM+ | 20120901 |
20050814 | ETM+ | 20050901 | 20140831 | OLI | 20140901 |
20060801 | ETM+ | 20060901 | 20150826 | ETM+ | 20150902 |
20090724 | ETM+ | 20090917 | 20160804 | OLI | 20160902 |
Glacier Name. | Landsat Sensor | Field Measurement Method | Uncertainty |
---|---|---|---|
Morteratschgletscher Glacier | TM and ETM+ | measured incoming and reflected shortwave radiation for a fixed point | 0.03 |
Urumqi Glacier No. 1 | ETM+ and OLI | Analytical Spectral Device (ASD) Spectroradiometer for 17 ground points | 0.02 |
Forni Glacier | ETM+ | albedo measured by CRN1 net radiometer for a fixed point | 0.01 |
Haut Glacier | TM | Kipp and Zonen CM 7B albedometer for a fixed point | 0.02–0.05 |
Rongbuk Glacier, Qiyi Glacier, Laohugou No.12 Glacier, Dongkemadi Glacier, and Palongzangbu No.4 Glacier | TM and ETM+ | albedo measured by CRN1 net radiometer for a fixed point | 0.048 |
1994 | 2002 | 2003 | 2005 | 2006 | 2009 | 2010 | 2011 | 2012 | 2014 | 2015 | 2016 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 0.58 | 0.30 | 0.59 | 0.48 | 0.41 | 0.39 | 0.30 | 0.21 | 0.17 | 0.48 | 0.33 | 0.39 |
A | B | C | D | |||||
Year | Mean | Std | Mean | Std | Mean | Std | Mean | Std |
1994 | 3950 | 18.5 | 4067.5 | 18.6 | 3957.5 | 20.6 | 3940 | 19.9 |
2002 | 4097.5 | 21.2 | 4127.5 | 19.4 | 4110 | 21.5 | 4110 | 24.0 |
2003 | 3947.5 | 18.9 | 4072.5 | 18.4 | 3922.5 | 19.4 | 3925 | 19.1 |
2005 | 4037.5 | 20.1 | 4097.5 | 20.3 | 4065 | 21.6 | 3962.5 | 20.0 |
2006 | 4017.5 | 20.2 | 4087.5 | 18.7 | 4007.5 | 21.0 | 3965 | 21.0 |
2009 | 3902.5 | 18.6 | 3992.5 | 19.7 | 3917.5 | 19.4 | 3910 | 19.4 |
2010 | 4110 | 21.1 | 4135 | 19.6 | 4055 | 20.9 | 3997.5 | 23.1 |
2011 | 4095 | 21.6 | 4290 | 21.1 | 4192.5 | 22.1 | 4092.5 | 24.1 |
2012 | 4150 | 23.6 | 4230 | 23.4 | 4180 | 22.1 | 4077.5 | 23.3 |
2014 | 3960 | 19.5 | 4105 | 18.7 | 4002.5 | 21.1 | 3970 | 20.6 |
2015 | 4080 | 22.0 | 4122.5 | 19.5 | 4060 | 21.5 | 3990 | 22.1 |
2016 | 4120 | 22.3 | 4142.5 | 20.2 | 4075 | 22.2 | 3997.5 | 21.3 |
Mean | 4039 | 20.6 | 4122.5 | 19.8 | 4045 | 21.1 | 3995 | 21.5 |
E | F | G | Mean SLA | |||||
Year | Mean | Std | Mean | Std | Mean | Std | Mean | Std |
1994 | 3827.5 | 19.8 | 3877.5 | 18.3 | 3872.5 | 20.2 | 3927.5 | 19.4 |
2002 | 3950 | 21.1 | 3962.5 | 17.8 | NA | NA | 4059.6 | 20.8 |
2003 | 3815 | 21.4 | 3855 | 18.1 | 3890 | 20.0 | 3918.2 | 19.3 |
2005 | 3940 | 21.2 | 3912.5 | 17.7 | 4010 | 22.4 | 4003.6 | 20.5 |
2006 | 3857 | 20.1 | 3907.5 | 17.7 | 4020 | 23.7 | 3980.3 | 20.3 |
2009 | 3800 | 20.7 | 3832.5 | 18.0 | 3837.5 | 18.4 | 3884.6 | 19.2 |
2010 | 4022.5 | 22.6 | 3965 | 18.8 | NA | NA | 4047.5 | 21.0 |
2011 | 3977.5 | 22.0 | 3982.5 | 21.4 | 4172.5 | 24.0 | 4114.6 | 22.3 |
2012 | 4232.5 | 24.4 | 3992.5 | 19.1 | 4202.5 | 23.4 | 4152.1 | 22.8 |
2014 | 3888 | 20.2 | 3965 | 17.7 | 3927.5 | 24.1 | 3974 | 20.2 |
2015 | 3923 | 21.9 | 3985 | 19.7 | 4022.5 | 20.2 | 4026.1 | 21.0 |
2016 | 4015 | 21.7 | 3985 | 19.9 | 4022.5 | 22.9 | 4051.1 | 21.5 |
Mean | 3937 | 21.4 | 3935 | 18.7 | 3998 | 21.9 | 4011.6 | 20.7 |
Period | Annual | Summer | Winter | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Climatic Variables | T | S-P* | S-P# | T | S-P* | S-P# | T | S-P* | S-P# | |
SLA vs. | Correlation coefficient | 0.373 | −0.491 | −0.318 | 0.829 | −0.661 | −0.587 | −0.120 | 0.112 | 0.81 |
Significance level (p) | 0.232 | 0.105 | 0.155 | 0.001 | 0.019 | 0.045 | 0.710 | 0.728 | 0.713 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Li, Z.; Zhao, J.; Li, H.; Wang, P.; Wang, L. Changes in the End-of-Summer Snow Line Altitude of Summer-Accumulation-Type Glaciers in the Eastern Tien Shan Mountains from 1994 to 2016. Remote Sens. 2021, 13, 1080. https://doi.org/10.3390/rs13061080
Yue X, Li Z, Zhao J, Li H, Wang P, Wang L. Changes in the End-of-Summer Snow Line Altitude of Summer-Accumulation-Type Glaciers in the Eastern Tien Shan Mountains from 1994 to 2016. Remote Sensing. 2021; 13(6):1080. https://doi.org/10.3390/rs13061080
Chicago/Turabian StyleYue, Xiaoying, Zhongqin Li, Jun Zhao, Huilin Li, Puyu Wang, and Lin Wang. 2021. "Changes in the End-of-Summer Snow Line Altitude of Summer-Accumulation-Type Glaciers in the Eastern Tien Shan Mountains from 1994 to 2016" Remote Sensing 13, no. 6: 1080. https://doi.org/10.3390/rs13061080
APA StyleYue, X., Li, Z., Zhao, J., Li, H., Wang, P., & Wang, L. (2021). Changes in the End-of-Summer Snow Line Altitude of Summer-Accumulation-Type Glaciers in the Eastern Tien Shan Mountains from 1994 to 2016. Remote Sensing, 13(6), 1080. https://doi.org/10.3390/rs13061080