The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Occurrence Data
2.3. Environmental Variables and Spatial Datasets
2.3.1. Foraging Resources
2.3.2. Shelter
2.3.3. Human Pressure
2.4. Habitat Suitability Models
2.5. Connectivity Analysis
3. Results
3.1. Habitat Suitability Models
3.1.1. Operational Scales and Predictors Effect
3.1.2. Model Performance and Habitat Suitability Spatial Pattern
3.2. Connectivity Analysis
3.2.1. Corridor Comparison
3.2.2. Comparison of Connectivity Metrics
4. Discussion
4.1. Habitat Suitability Models
4.2. Connectivity Models
4.3. Other Considerations on the Choice of Spatial Data Source
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Spatial Datasets Details
- Sentinel Land Cover Map (SLCM): We used the land cover map of the study area produced by [27] (see for more details) using Sentinel satellite imagery of the Copernicus Programme of the European Space Agency (ESA). Specifically, the imagery used includes SAR data from Sentinel-1A Ground Range Detected (GRD) products (L1C) using VV and VH polarizations, together with optical data from Sentinel-2 (L2A) using ten spectral bands at 10 and 20 m of spatial resolution. The imagery considered from both sensors ranged from December 2016 to September 2017. Imagery was classified using a random forest algorithm yielding a kappa index of 0.89. The final map comprised eight land cover classes which are permanent bare soils, artificial surfaces, water bodies, forested areas, shrublands, permanent herbaceous vegetation, summer herbaceous vegetation and winter herbaceous vegetation. Sentinel imagery is free of cost and has global coverage.
- Forest Type Product (FTY) 2015 of the high-resolution layers from CLMS of the European Union’s Copernicus Programme: FTY is a layer that represents European forest covers with 20 m of spatial resolution with an accuracy ≥90% (both user’s and producer’s accuracy). Sentinel-2A data from the European Space Agency (ESA) and Landsat 8 data from the United States Geological Survey (USGS) are its primary input data. The layer is based on the FAO definition of forest and includes only forest trees, which means a Tree Cover Density equal to or higher than 10%. It has a minimum mapping unit (MMU) of 0.52 ha (13 pixels) and minimum mapping width of 20 m [25]. FTY is free of cost for all kinds of users and has European coverage.
- CORINE Land Cover 2018 (CLC18) from CLMS of the European Union’s Copernicus Programme: CLC18 is a land cover map that characterizes 44 land cover classes classified by computer-assisted image interpretation of pre-processed Sentinel-2 satellite images and Landsat-8 for gap filling. It has an MMU of 25 ha and a minimum width of linear elements of 100 meters. CLC18 has free access for all kinds of users and has European coverage [26].
- Forest Map of Spain (FMS) from the Spanish Ministry of Ecological Transition [29]: FMS is detailed cartography of the composition and structure of the forest stands in Spain at a 1:50,000 scale with an MMU of 2.25 ha. It was produced between 1998 and 2007 with photo interpreted aerial imagery, combined with pre-existing maps and field inventory data. FMS is only available for Spain, and it is free of cost.
- LiDAR data obtained from the Spanish National Plan for Aerial Orthophotography between 2009 and 2012 [28]: This dataset has a mean density of 0.5 points/m2 and a vertical root mean square error ≤0.15 m. It was processed with FUSION software [78] and then aggregated using 25 m of spatial resolution. We calculated forest canopy cover as the ratio between the number of first returns above 3.5 m—to filter out understory vegetation—and the total number of first returns (details in [32]). LiDAR data are only available for Spain, and they are free of cost.
Appendix B. Supplementary Figures
Appendix C. Further Details of the Datasets Used for the Estimation of the Foraging Resources Variable
References
- Bellamy, C.; Boughey, K.; Hawkins, C.; Reveley, S.; Spake, R.; Williams, C.; Altringham, J. A Sequential Multi-Level Framework to Improve Habitat Suitability Modelling. Landsc. Ecol. 2020, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.; Mulongoy, K.J. Review of Experience with Ecological Networks, Corridors and Buffer Zones. In Secretariat of the Convention on Biological Diversity, Montreal; Technical Series; CBD Secretariat: Montreal, QC, Canada, 2006; Volume 23, ISBN 9292250426. [Google Scholar]
- Cianfrani, C.; Le Lay, G.; Hirzel, A.H.; Loy, A. Do Habitat Suitability Models Reliably Predict the Recovery Areas of Threatened Species? J. Appl. Ecol. 2010, 47, 421–430. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; Mcdonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting Species Distributions for Conservation Decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Gurrutxaga, M.; Saura, S. Prioritizing Highway Defragmentation Locations for Restoring Landscape Connectivity. Environ. Conserv. 2014, 41, 157–164. [Google Scholar] [CrossRef]
- Turner, M.G.; Arthaud, G.J.; Engstrom, R.T.; Hejl, S.J.; Liu, J.; Loeb, S.; McKelvey, K. Usefulness of Spatially Explicit Population Models in Land Management. Ecol. Appl. 1995, 5, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.W. Using Niche Models with Climate Projections to Inform Conservation Management Decisions. Biol. Conserv. 2012, 155, 149–156. [Google Scholar] [CrossRef]
- Álvarez-Martínez, J.M.; Jiménez-Alfaro, B.; Barquín, J.; Ondiviela, B.; Recio, M.; Silió-Calzada, A.; Juanes, J.A. Modelling the Area of Occupancy of Habitat Types with Remote Sensing. Methods Ecol. Evol. 2018, 9, 580–593. [Google Scholar] [CrossRef]
- Plummer, S.E. Perspectives on Combining Ecological Process Models and Remotely Sensed Data. Ecol. Modell. 2000, 129, 169–186. [Google Scholar] [CrossRef]
- Skidmore, A.; Pettorelli, N.; Coops, N.C.; Geller, G.N.; Hansen, M.; Lucas, R.; Mücher, C.A.; O’Connor, B.; Paganini, M.; Pereira, H.M.; et al. Agree on Biodiversity Metrics to Track from Space. Nature 2015, 523, 403–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chust, G.; Pretus, J.L.; Ducrot, D.; Ventura, D. Scale Dependency of Insect Assemblages in Response to Landscape Pattern. Landsc. Ecol. 2004, 19, 41–57. [Google Scholar] [CrossRef]
- Seoane, J.; Bustamante, J.; Díaz-Delgado, R. Are Existing Vegetation Maps Adequate to Predict Bird Distributions? Ecol. Modell. 2004, 175, 137–149. [Google Scholar] [CrossRef]
- Venier, L.A.; Pearce, J.; McKee, J.E.; McKenney, D.W.; Niemi, G.J. Climate and Satellite-Derived Land Cover for Predicting Breeding Bird Distribution in the Great Lakes Basin. J. Biogeogr. 2004, 31, 315–331. [Google Scholar] [CrossRef]
- Camathias, L.; Bergamini, A.; Küchler, M.; Stofer, S.; Baltensweiler, A. High-Resolution Remote Sensing Data Improves Models of Species Richness. Appl. Veg. Sci. 2013, 16, 539–551. [Google Scholar] [CrossRef]
- Sheehan, J. The Utility of Fine-Scale Remote Sensing Data for Modeling Habitat Characteristics and Breeding Bird Species Distributions in an Appalachian Mature Deciduous. Ph.D. Thesis, West Virginia University, Morgantown, WV, USA, 2017. [Google Scholar]
- Gastón, A.; Ciudad, C.; Mateo-Sánchez, M.C.; García-Viñas, J.I.; López-Leiva, C.; Fernández-Landa, A.; Marchamalo, M.; Cuevas, J.; de la Fuente, B.; Fortin, M.J.; et al. Species’ Habitat Use Inferred from Environmental Variables at Multiple Scales: How Much We Gain from High-Resolution Vegetation Data? Int. J. Appl. Earth Obs. Geoinf. 2017, 55, 1–8. [Google Scholar] [CrossRef]
- Tattoni, C.; Rizzolli, F.; Pedrini, P. Can LiDAR Data Improve Bird Habitat Suitability Models? Ecol. Modell. 2012, 245, 103–110. [Google Scholar] [CrossRef]
- Pettorelli, N.; Schulte to Bühne, H.; Tulloch, A.; Dubois, G.; Macinnis-Ng, C.; Queirós, A.M.; Keith, D.A.; Wegmann, M.; Schrodt, F.; Stellmes, M.; et al. Satellite Remote Sensing of Ecosystem Functions: Opportunities, Challenges and Way Forward. Remote Sens. Ecol. Conserv. 2018, 4, 71–93. [Google Scholar] [CrossRef]
- Gatti, A.; Galoppo, A. Sentinel-2 Products Specification Document. 2018, pp. 1–487. Available online: https://sentinel.esa.int/documents/247904/349490/S2_MSI_Product_Specification.pdf (accessed on 15 March 2021).
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2a, Sentinel-2b and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Pettorelli, N.; Wegmann, M.; Skidmore, A.; Mücher, S.; Dawson, T.P.; Fernandez, M.; Lucas, R.; Schaepman, M.E.; Wang, T.; O’Connor, B.; et al. Framing the Concept of Satellite Remote Sensing Essential Biodiversity Variables: Challenges and Future Directions. Remote Sens. Ecol. Conserv. 2016, 2, 122–131. [Google Scholar] [CrossRef]
- O’Connor, B.; Secades, C.; Penner, J.; Sonnenschein, R.; Skidmore, A.; Burgess, N.D.; Hutton, J.M. Earth Observation as a Tool for Tracking Progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 2015, 1, 19–28. [Google Scholar] [CrossRef]
- Rose, R.A.; Byler, D.; Eastman, J.R.; Fleishman, E.; Geller, G.; Goetz, S.; Guild, L.; Hamilton, H.; Hansen, M.; Headley, R.; et al. Ten Ways Remote Sensing Can Contribute to Conservation. Conserv. Biol. 2015, 29, 350–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langanke, T.; Moran, A.; Dulleck, B.; Schleicher, C. Copernicus Land Monitoring Service–High Resolution Layer Water and Wetness Product Specifications Document; Copernicus Team at European Environment Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- Büttner, G.; Kosztra, B.; Soukup, T.; Sousa, A.; Langanke, T. Final CLC2018 Technical Guidelines; Copernicus Team at European Environment Agency: Wien, Austria, 2017. [Google Scholar]
- Mercier, A.; Betbeder, J.; Rumiano, F.; Baudry, J.; Gond, V.; Blanc, L.; Bourgoin, C.; Cornu, G.; Ciudad, C.; Marchamalo, M.; et al. Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest–Agriculture Mosaics in Temperate and Tropical Landscapes. Remote Sens. 2019, 11, 979. [Google Scholar] [CrossRef] [Green Version]
- MITMA Centro Nacional de Descargas. Available online: http://centrodedescargas.cnig.es/ (accessed on 1 June 2015).
- MITECO Mapa Forestal De España 1:50,000 (MFE50). Available online: https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50.aspx (accessed on 1 June 2015).
- Calvo, M.; Sánchez, T.; Vázquez, V.M.; Cubero, D.; Molina, J.I.; Osorio, M.Á.; Zuazúa, P.; Pollo, C.J.; Pinto, D.; Lucio, A.J.; et al. Estrategia Para La Conservación Del Oso Pardo Ursus Arctos En La Cordillera Cantábrica; MITECO: Madrid, Spain, 2019. [Google Scholar]
- San Miguel, A.; Ballesteros, F.; Blanco, J.C.; Palomero, G. Manual de Buenas Prácticas Para La Gestión de Corredores Oseros En La Cordillera Cantábrica; Serie Especies Amenazadas; Fundación Oso Pardo, Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2012. [Google Scholar]
- Mateo-Sánchez, M.C.; Gastón, A.; Ciudad, C.; García-Viñas, J.I.; Cuevas, J.; López-Leiva, C.; Fernández-Landa, A.; Algeet-Abarquero, N.; Marchamalo, M.; Fortin, M.J.; et al. Seasonal and Temporal Changes in Species Use of the Landscape: How Do They Impact the Inferences from Multi-Scale Habitat Modeling? Landsc. Ecol. 2016, 31, 1261–1276. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: www.openstreetmap.org (accessed on 1 June 2015).
- Mateo Sánchez, M.C.; Cushman, S.A.; Saura, S. Scale Dependence in Habitat Selection: The Case of the Endangered Brown Bear (Ursus Arctos) in the Cantabrian Range (NW Spain). Int. J. Geogr. Inf. Sci. 2014, 28, 1531–1546. [Google Scholar] [CrossRef]
- Marquínez, J.; García, P.; Nores, C.; Lastra, J.; Varela, M.; Martínez, R. Delimitación de Áreas Críticas Para El Oso Pardo y Cartografía de La Calidad de Hábitat; Instituto de Recursos Naturales y Ordenación del Territorio, Universidad de Oviedo, Gobierno del Principado de Asturias: Oviedo, Spain, 2002. [Google Scholar]
- Gastón, A.; García-Viñas, J.I. Evaluating the Predictive Performance of Stacked Species Distribution Models Applied to Plant Species Selection in Ecological Restoration. Ecol. Modell. 2013, 263, 103–108. [Google Scholar] [CrossRef]
- Riley, S.J.; De Gloria, S.D.; Elliot, R. A Terrain Ruggedness That Quantifies Topographic Heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Mateo-Sánchez, M.C.; Cushman, S.A.; Saura, S. Connecting Endangered Brown Bear Subpopulations in the Cantabrian Range (North-Western Spain). Anim. Conserv. 2014, 17, 430–440. [Google Scholar] [CrossRef]
- Grand, J.; Buonaccorsi, J.; Cushman, S.A.; Griffin, C.R.; Neel, M.C. A Multiscale Landscape Approach to Predicting Bird and Moth Rarity Hotspots in a Threatened Pitch Pine-Scrub Oak Community. Conserv. Biol. 2004, 18, 1063–1077. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies; Springer: Cham, Switzerland; New York, NY, USA, 2019. [Google Scholar]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Information Theory: Proceedings of the 2nd International Symposium; Petrov, B., Csáki, F., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Fielding, A.H.; Bell, J.F. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Delong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Gurrutxaga, M.; Rubio, L.; Saura, S. Key Connectors in Protected Forest Area Networks and the Impact of Highways: A Transnational Case Study from the Cantabrian Range to the Western Alps (SW Europe). Landsc. Urban Plan. 2011, 101, 310–320. [Google Scholar] [CrossRef]
- Santini, L.; Saura, S.; Rondinini, C. Connectivity of the Global Network of Protected Areas. Divers. Distrib. 2016, 22, 199–211. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, B.; Mateo-Sánchez, M.C.; Rodríguez, G.; Gastón, A.; Pérez de Ayala, R.; Colomina-Pérez, D.; Melero, M.; Saura, S. Natura 2000 Sites, Public Forests and Riparian Corridors: The Connectivity Backbone of Forest Green Infrastructure. Land Use Policy 2018, 75, 429–441. [Google Scholar] [CrossRef]
- Bunn, A.G.; Urban, D.L.; Keitt, T.H. Landscape Connectivity: A Conservation Application of Graph Theory. J. Environ. Manag. 2000, 59, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Hortal, L.; Saura, S. Comparison and Development of New Graph-Based Landscape Connectivity Indices: Towards the Priorization of Habitat Patches and Corridors for Conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A New Habitat Availability Index to Integrate Connectivity in Landscape Conservation Planning: Comparison with Existing Indices and Application to a Case Study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Zeller, K.A.; McGarigal, K.; Whiteley, A.R. Estimating Landscape Resistance to Movement: A Review. Landsc. Ecol. 2012, 27, 777–797. [Google Scholar] [CrossRef]
- Mateo-Sánchez, M.C.; Balkenhol, N.; Cushman, S.; Pérez, T.; Domínguez, A.; Saura, S. Estimating Effective Landscape Distances and Movement Corridors: Comparison of Habitat and Genetic Data. Ecosphere 2015, 6. [Google Scholar] [CrossRef]
- Naves, J.; Wiegand, T.; Revilla, E.; Delibes, M. Endangered Species Constrained by Natural and Human Factors: The Case of Brown Bears in Northern Spain. Conserv. Biol. 2003, 17, 1276–1289. [Google Scholar] [CrossRef] [Green Version]
- LaRue, M.A.; Nielsen, C.K. Modelling Potential Dispersal Corridors for Cougars in Midwestern North America Using Least-Cost Path Methods. Ecol. Modell. 2008, 212, 372–381. [Google Scholar] [CrossRef]
- McRae, B.; Kavanagh, D. Linkage Mapper Connectivity Analysis Software; The Nature Conservancy: Arlington, VA, USA, 2011. [Google Scholar]
- Mcrae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B.; Mcrae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using Circuit Theory to Model Connectivity in Ecology, Evolution, and Conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- McRae, B.; Shah, V.; Mohapatra, T. Circuitscape 4 User Guide; The Nature Conservancy: Arlington, VA, USA, 2013. [Google Scholar]
- Saura, S.; Rubio, L. A Common Currency for the Different Ways in Which Patches and Links Can Contribute to Habitat Availability and Connectivity in the Landscape. Ecography 2010, 33, 523–537. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A Software Package for Quantifying the Importance of Habitat Patches for Landscape Connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Zedrosser, A.; Støen, O.G.; Sæbø, S.; Swenson, J.E. Should I Stay or Should I Go? Natal Dispersal in the Brown Bear. Anim. Behav. 2007, 74, 369–376. [Google Scholar] [CrossRef]
- Lechner, A.M.; Rhodes, J.R. Recent Progress on Spatial and Thematic Resolution in Landscape Ecology. Curr. Landsc. Ecol. Rep. 2016, 1, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; He, H.S.; Fraser, J.S.; Wu, Z.W. Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution. PLoS ONE 2013, 8, e0067889. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, T.K.; Aue, B.; Hotes, S.; Ekschmitt, K. Influence of Grain Size on Species-Habitat Models. Ecol. Modell. 2011, 222, 3403–3412. [Google Scholar] [CrossRef]
- Zeller, K.A.; McGarigal, K.; Cushman, S.A.; Beier, P.; Vickers, T.W.; Boyce, W.M. Sensitivity of Resource Selection and Connectivity Models to Landscape Definition. Landsc. Ecol. 2017, 32, 835–855. [Google Scholar] [CrossRef]
- Clerici, N.; Valbuena Calderón, C.A.; Posada, J.M. Fusion of Sentinel-1a and Sentinel-2A Data for Land Cover Mapping: A Case Study in the Lower Magdalena Region, Colombia. J. Maps 2017, 13, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Bayanudin, A.A.; Jatmiko, R.H. Orthorectification of Sentinel-1 SAR (Synthetic Aperture Radar) Data in Some Parts Of South-Eastern Sulawesi Using Sentinel-1 Toolbox. In Proceedings of the 2nd International Conference of Indonesian Society for Remote Sensing (ICOIRS), Yogyakarta, Indonesia, 17–19 October 2016; IOP Publishing: Bristol, UK, 2016; Volume 47, p. 012007. [Google Scholar]
- Niedballa, J.; Sollmann, R.; Mohamed, A.B.; Bender, J.; Wilting, A. Defining Habitat Covariates in Camera-Trap Based Occupancy Studies. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, S.E.; McDermid, G.; Stenhouse, G.B.; Boyce, M.S. Dynamic Wildlife Habitat Models: Seasonal Foods and Mortality Risk Predict Occupancy-Abundance and Habitat Selection in Grizzly Bears. Biol. Conserv. 2010, 143, 1623–1634. [Google Scholar] [CrossRef]
- Rechsteiner, C.; Zellweger, F.; Gerber, A.; Breiner, F.T.; Bollmann, K. Remotely Sensed Forest Habitat Structures Improve Regional Species Conservation. Remote Sens. Ecol. Conserv. 2017, 3, 247–258. [Google Scholar] [CrossRef]
- Martin, Y.; Van Dyck, H.; Dendoncker, N.; Titeux, N. Testing Instead of Assuming the Importance of Land Use Change Scenarios to Model Species Distributions under Climate Change. Glob. Ecol. Biogeogr. 2013, 22, 1204–1216. [Google Scholar] [CrossRef]
- Riggio, J.; Caro, T. Structural Connectivity at a National Scale: Wildlife Corridors in Tanzania. PLoS ONE 2017, 12, e0187407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fichera, C.R.; Laudari, L.; Modica, G. Application, Validation and Comparison in Different Geographical Contexts of an Integrated Model for the Design of Ecological Networks. J. Agric. Eng. 2015, 46, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Cushman, S.A.; Landguth, E.L. Scale Dependent Inference in Landscape Genetics. Landsc. Ecol. 2010, 25, 967–979. [Google Scholar] [CrossRef]
- Etherington, T.R. Least-Cost Modelling and Landscape Ecology: Concepts, Applications, and Opportunities. Curr. Landsc. Ecol. Rep. 2016, 1, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Beier, P.; Majka, D.R.; Spencer, W.D. Forks in the Road: Choices in Procedures for Designing Wildland Linkages. Conserv. Biol. 2008, 22, 836–851. [Google Scholar] [CrossRef] [PubMed]
- Laliberté, J.; St-Laurent, M.H. Validation of Functional Connectivity Modeling: The Achilles’ Heel of Landscape Connectivity Mapping. Landsc. Urban Plan. 2020, 202, 103878. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Tulbure, M.G.; Broich, M. Evaluating Static and Dynamic Landscape Connectivity Modelling Using a 25-Year Remote Sensing Time Series. Landsc. Ecol. 2018, 33, 625–640. [Google Scholar] [CrossRef]
- Beker, T.; Orlović, S.; Stojanović, D.B. Overview of Free Open Source Global Forest Species Data for Biogeographic Modeling. Topola 2019, 204, 59–70. [Google Scholar]
- Mcgaughey, R.J.; Carson, W.W. Fusing LIDAR Data, Photographs, and Other Data Using 2D and 3D Visualization Techniques. Proc. Terrain Data Appl. Vis. Mak. Connect. 2003, 28–30. Available online: https://www.fs.fed.us/pnw/olympia/silv/publications/opt/488_McGaugheyCarson2003.pdf (accessed on 1 June 2019).
- Gastón, A.; Ropero, C.; García-Viñas, J.I.; López-Leiva, C.; Gómez-Sanz, V.; Vallejo, R.; Ruiz del Castillo, J.; Ruiz de la Torre, J. HispaVeg: A New Online Vegetation Plot Database for Spain. Available online: http://hispaveg.org/ (accessed on 1 June 2015).
Variable | Dataset | Data source |
---|---|---|
Foraging Resources | Global | Land Cover Map based on Sentinel-1 and 2 classification (10 m) [27] |
Continental | CLC18 land cover data [26] (vector) combined with FTY data for canopy cover (20 m) [25] | |
National | FMS (vector) main tree species data and niche models for other relevant plant species, combined with canopy cover (25 m) derived from LiDAR data | |
Forest Area | Global | Forest class of Sentinel-1 and 2 Land Cover Map (20 m) |
Continental | FTY (20 m) | |
National | LiDAR: ≥10% of canopy cover (25 m) [28] | |
Ruggedness | Global Continental National | Digital Elevation Model of 25 m resolution [28] |
Buildings | Global Continental National | Topographic Map (vector) at 1:25,000 scale (MTN25) [28] |
Highways Roads | Global Continental National | Road density (vector) derived with Open Street Maps data [33] |
Predictor | Global | Continental | National | |||
---|---|---|---|---|---|---|
Scale | Coefficient | Scale | Coefficient | Scale | Coefficient | |
For.Resources | 0.5 | 1.081 * | 2 | 0.547 * | 16 | 1.854 * |
Forest Area | 1 | −0.512 * | 1 | 0.210 * | 0.5 | 0.400 * |
Ruggedness | 2 | 1.048 * | 2 | 1.032 * | 2 | 0.982 * |
Buildings | 16 | −1.324 * | 16 | −1.775 * | 16 | −1.726 * |
Highways | 16 | −1.376 * | 16 | −1.315 * | 16 | −0.156 |
Roads | 16 | −2.004 * | 16 | −1.580 * | 16 | −0.523 * |
AUC (95% CI) | 0.900 (0.896–0.904) | 0.908 (0.904–0.911) | 0.936 (0.933–0.939) |
Pearson Corr. | Within West subp. | Within East subp. | Between subp. Edges |
---|---|---|---|
Least-cost modeling | |||
Global–National | 0.985 | 0.953 | 0.986 |
Global–Continental | 0.996 | 0.988 | 0.995 |
Continental–National | 0.987 | 0.965 | 0.995 |
Global–Genetic | 0.951 | 0.919 | 0.972 |
Continental–Genetic | 0.966 | 0.906 | 0.985 |
National–Genetic | 0.972 | 0.920 | 0.994 |
Circuit theory | |||
Global–National | 0.897 | 0.765 | 0.735 |
Global–Continental | 0.961 | 0.930 | 0.939 |
Continental–National | 0.905 | 0.842 | 0.750 |
Global–Genetic | 0.747 | 0.649 | 0.582 |
Continental–Genetic | 0.742 | 0.640 | 0.494 |
National–Genetic | 0.748 | 0.663 | 0.774 |
PC index | |||
Global–National | 0.214 | 0.610 | –0.094 |
Global–Continental | 0.427 | 0.656 | –0.044 |
Continental–National | 0.690 | 0.640 | 0.490 |
Global–Genetic | 0.313 | 0.097 | 0.059 |
Continental–Genetic | 0.218 | 0.121 | 0.087 |
National–Genetic | 0.410 | 0.394 | 0.678 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisneros-Araujo, P.; Goicolea, T.; Mateo-Sánchez, M.C.; García-Viñás, J.I.; Marchamalo, M.; Mercier, A.; Gastón, A. The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear. Remote Sens. 2021, 13, 1138. https://doi.org/10.3390/rs13061138
Cisneros-Araujo P, Goicolea T, Mateo-Sánchez MC, García-Viñás JI, Marchamalo M, Mercier A, Gastón A. The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear. Remote Sensing. 2021; 13(6):1138. https://doi.org/10.3390/rs13061138
Chicago/Turabian StyleCisneros-Araujo, Pablo, Teresa Goicolea, María Cruz Mateo-Sánchez, Juan Ignacio García-Viñás, Miguel Marchamalo, Audrey Mercier, and Aitor Gastón. 2021. "The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear" Remote Sensing 13, no. 6: 1138. https://doi.org/10.3390/rs13061138
APA StyleCisneros-Araujo, P., Goicolea, T., Mateo-Sánchez, M. C., García-Viñás, J. I., Marchamalo, M., Mercier, A., & Gastón, A. (2021). The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear. Remote Sensing, 13(6), 1138. https://doi.org/10.3390/rs13061138