Evaluating the Vertical Accuracy of DEM Generated from ZiYuan-3 Stereo Images in Understanding the Tectonic Morphology of the Qianhe Basin, China
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. ZiYuan-3 (ZY3) Satellite Image
2.2.2. Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) and Reflection Radiometer Global Digital Elevation Model (ATSER GDEM)
3. Method
3.1. ZY3 DEM Generation
3.2. River Longitudinal Profiles
3.3. River Incision
4. Results
4.1. DEM Vertical Accuracy Evaluation
4.2. River Longitudinal Profiles Extraction
4.3. River Incision Extraction
5. Discussion
5.1. Which DEM Is Better for Investigating the River Long Profiles?
5.2. How to Evaluate the Vertical Accuracy in Measuring the River Incision?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhang, H.; Zheng, D.; Yu, J.; Li, C.; Xiao, L. A brief introduction to the new method for river profile analysis: Integral approach. Seismol. Geol. 2017, 39, 1111–1126. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, S.; Chen, S.; Li, S.; Lu, Y. Geomorphic evolution and neotectonics of the Qianhe River Basin on the southwest margin of the Ordos Block, North China. J. Asian Earth Sci. 2019, 176, 184–195. [Google Scholar] [CrossRef]
- Boulton, S.J.; Stokes, M. Which DEM is best for analyzing fluvial landscape development in mountainous terrains? Geomorphology 2018, 310, 168–187. [Google Scholar] [CrossRef]
- Wang, S.; Ren, Z.; Wu, C.; Lei, Q.; Gong, W.; Ou, Q.; Zhang, H.; Ren, G.; Li, C. DEM generation from Worldview—2 stereo imagery and vertical accuracy assessment for its application in active tectonics. Geomorphology 2019, 336, 107–118. [Google Scholar] [CrossRef]
- Wang, T.; Liu, J.; Shi, J.; Wu, S. The influence of DEM resolution on seismic landslide hazard assessment based upon the Newmark displacement method: A case study in the loess area of Tianshui, China. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Shi, W.; Deng, S.; Xu, W. Extraction of multi–scale landslide morphological features based on local G i * using airborne LiDAR–derived DEM. Geomorphology 2018, 303, 229–242. [Google Scholar] [CrossRef]
- Barbarella, M.; Fiani, M.; Zollo, C. Assessment of DEM derived from very high–resolution stereo satellite imagery for geomorphometric analysis. Eur. J. Remote Sens. 2017, 50, 534–549. [Google Scholar] [CrossRef] [Green Version]
- Pekau, O.A.; Yuzhu, C. Failure analysis of fractured dams during earthquakes by DEM. Eng. Struct. 2004, 26, 1483–1502. [Google Scholar] [CrossRef]
- Liu, Z.; Han, L.; Boulton, S.J.; Wu, T.; Guo, J. Quantifying the transient landscape response to active faulting using fluvial geomorphic analysis in the Qianhe Graben on the southwest margin of Ordos, China. Geomorphology 2020, 351, 106974. [Google Scholar] [CrossRef]
- Kent, E.; Boulton, S.J.; Whittaker, A.C.; Stewart, I.S.; Cihat Alçiçek, M. Normal fault growth and linkage in the Gediz (Alaşehir) Graben, Western Turkey, revealed by transient river long–profiles and slope–break knickpoints. Earth Surf. Process. Landf. 2017, 42, 836–852. [Google Scholar] [CrossRef]
- FavalliM, M.; Karátson, D.; Mazzuoli, R.; Pareschi, M.T.; Ventura, G. Volcanic geomorphology and tectonics of the Aeolian archipelago (Southern Italy) based on integrated DEM data. Bull. Volcanol. 2005, 68, 157–170. [Google Scholar] [CrossRef]
- Wechsler, N.; Rockwell, T.K.; Ben-Zion, Y. Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault. Geomorphology 2009, 113, 82–96. [Google Scholar] [CrossRef]
- Berthier, E.; Arnaud, Y.; Kumar, R.; Ahmad, S.; Wagnon, P.; Chevallier, P. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ. 2007, 108, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Frey, H.; Paul, F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 480–490. [Google Scholar] [CrossRef]
- Boulton, S.J.; Stokes, M.; Mather, A.E. Transient fluvial incision as an indicator of active faulting and Plio–Quaternary uplift of the Moroccan High Atlas. Tectonophysics 2014, 633, 16–33. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Han, Z.; Zhang, J.; Jiao, Q. Stream profile analysis, tectonic geomorphology and neotectonic activity of the Damxung–Yangbajain rift in the south Tibetan Plateau. Earth Surf. Process. Landf. 2016, 41, 1312–1326. [Google Scholar] [CrossRef]
- Whipple, K.X.; Tucker, G.E. Dynamics of the stream–power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- De Pascale, G.P.; Quigley, M.C.; Davies, T.R.H. Lidar reveals uniform Alpine fault offsets and bimodal plate boundary rupture behavior, New Zealand. Geology 2014, 42, 411–414. [Google Scholar] [CrossRef]
- Khajavi, N.; Quigley, M.; Langridge, R.M. Influence of topography and basement depth on surface rupture morphology revealed from LiDAR and field mapping, Hope Fault, New Zealand. Tectonophysics 2014, 630, 265–284. [Google Scholar] [CrossRef]
- Sun, Y.; He, H.; Wei, Z.; Gao, W.; Sun, H.; Zou, J. Interpretation and analysis of the fine fault geometry based on high resolution data derived from UAV photogrammetric technique: A case study of Tanjiapo site on the Haiyuan fault. Seismol. Geol. 2019, 41, 1350–1365. [Google Scholar]
- Bi, H.; Zheng, W.; Zeng, J.; Yu, J.; Ren, Z. Application of SFM photogrammetry method to the quantitative study of active tectonics. Seismol. Geol. 2017, 39, 656–674. [Google Scholar]
- Johnson, K.; Nissen, E.; Saripalli, S.; Arrowsmith, J.R.; McGarey, P.; Scharer, K.; Williams, P.; Blisniuk, K. Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere 2014, 10, 969–986. [Google Scholar] [CrossRef]
- Zhou, P.; Tang, X.; Guo, L.; Wang, X.; Fan, W. DEM generation using Ziyuan–3 mapping satellite imagery without ground control points. Int. J. Remote Sens. 2018, 39, 6213–6233. [Google Scholar] [CrossRef]
- Tateishi, R.; Akutsu, A. Relative DEM production from SPOT data without GCP. Int. J. Remote Sens. 2007, 13, 2517–2530. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Chen, C. Applications of DGPS Method and SPOT–5 Across–Track Stereo Images on Tectonic Geomorphology Research in Origin of Minjiang River. Acta Sci. Nat. Univ. Pekin. 2012, 48, 686–694. [Google Scholar]
- Wobus, C.W.; Crosby, B.T.; Whipple, K.X. Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution. J. Geophys. Res. Earth Surf. 2006, 111, 1–14. [Google Scholar] [CrossRef]
- Whipple, K.X.; Hancock, G.S.; Anderson, R.S. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. Gsa Bull. 2000, 112, 490–503. [Google Scholar] [CrossRef]
- Gibbard, P.L.; Lewin, J. River incision and terrace formation in the Late Cenozoic of Europe. Tectonophysics 2009, 474, 41–55. [Google Scholar] [CrossRef]
- Cunha, P.P.; Antunes Martins, A.; Daveau, S.; Friend, P.F. Tectonic control of the Tejo river fluvial incision during the late Cenozoic, in Ródão—central Portugal (Atlantic Iberian border). Geomorphology 2005, 64, 271–298. [Google Scholar] [CrossRef]
- Han, L.; Liu, Z.; Ning, Y.; Zhao, Z. Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Adv. Space Res. 2018, 62, 2480–2493. [Google Scholar] [CrossRef]
- Cheng, Y.; He, C.; Rao, G.; Yan, B.; Lin, A.; Hu, J.; Yu, Y.; Yao, Q. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation. Tectonophysics 2018, 722, 11–24. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Z.; Dong, Y.; Wang, S.; He, D.; Zhou, B.; Somerville, I.D. Longitudinal profile of the Upper Weihe River: Evidence for the late Cenozoic uplift of the northeastern Tibetan Plateau. Geol. J. 2018, 53, 364–378. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Z.; Dong, Y.; Zhou, B. Tectonic uplift of the northern Qinling Mountains (Central China) during the late Cenozoic: Evidence from DEM—Based geomorphological analysis. J. Asian Earth Sci. 2019, 184, 104005. [Google Scholar] [CrossRef]
- He, C.; Yang, C.-J.; Rao, G.; Yuan, X.-P.; Roda–Boluda, D.C.; Cheng, Y.; Yang, R.; Zhang, L.; Yao, Q. Seismic assessment of the Weihe Graben, central China: Insights from geomorphological analyses and 10Be–derived catchment denudation rates. Geomorphology 2020, 359, 107151. [Google Scholar] [CrossRef]
- Chen, S.-E.; Fan, S.-H.; Wang, X.-Z.; Wang, R.-P.; Liu, Y.-L.; Yang, L.-C.; Ning, X.-H.; Li, R.; Li, S. Neotectonic movement in the southern margin of the Ordos Block inferred from the Qianhe River terraces near the north of the Qinghai–Tibet Plateau. Geol. J. 2018, 53, 274–281. [Google Scholar] [CrossRef]
- Lin, A.; Rao, G.; Yan, B. Flexural fold structures and active faults in the northern–western Weihe Graben, central China. J. Asian Earth Sci. 2015, 114, 226–241. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Li, R.; Wang, R. The 1:50000 Geological Mapping in the Loess–Coveredregion with the Map Sheets: Caobizhen (I48E008021), Liangting (I48E008022), Zhaoxian (I48E008023), Qianyang (I48E009021), Fengxiang (I48E009022), and Yaojiagou (I48E009023) in Shaanxi Province, China; Chang’an University: Xi’an, China, 2016. [Google Scholar]
- Dong, Y.; Chen, W.; Chang, H.; Zhang, Y.; Feng, R.; Meng, L. Assessment of orthoimage and DEM derived from ZY–3 stereo image in Northeastern China. Surv. Rev. 2016, 48, 247–257. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.; Li, D.; Tang, X.; Jiang, Y.; Pan, H.; Zhu, X.; Fang, C. Geometric Accuracy Validation for ZY–3 Satellite Imagery. Ieee Geosci. Remote Sens. Lett. 2014, 11, 1168–1171. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, P.; Zhang, G.; Wang, X.; Pan, H. Geometric Accuracy Analysis Model of the Ziyuan–3 Satellite without GCPs. Photogramm. Eng. Remote Sens. 2015, 81, 927–934. [Google Scholar] [CrossRef]
- Hounam, D.; Werner, M. The Shuttle Radar Topography Mission (SRTM). Am. Geophys. Union 2003, 45, 37–55. [Google Scholar]
- Hancock, G.R.; Martinez, C.; Evans, K.G.; Moliere, D.R. A comparison of SRTM and high–resolution digital elevation models and their use in catchment geomorphology and hydrology: Australian examples. Earth Surf. Process. Landf. 2006, 31, 1394–1412. [Google Scholar] [CrossRef]
- Adam, N.; Breit, H.; Knöpfle, W.; Einede, M.; Suchandt, S. The Global SRTM X–SAR DEM—Calibration, Validation, Production Status and Results. Acta Pathol. Microbiol. Scand. 2002, 32, 516–521. [Google Scholar]
- Zhao, S.; Cheng, W.; Jiang, J.; Sha, W. Error Comparison among the DEM Datasets Made from ZY–3 Satellite and the Global Open Datasets. J. Geo–Inf. Sci. 2020, 22, 370–378. [Google Scholar] [CrossRef]
- Zhao, S.; Cheng, W.; Zhou, C.; Chen, X.; Zhang, S.; Zhou, Z.; Liu, H.; Chai, H. Accuracy assessment of the ASTER GDEM and SRTM3 DEM: An example in the Loess Plateau and North China Plain of China. Int. J. Remote Sens. 2011, 32, 8081–8093. [Google Scholar] [CrossRef]
- Abrams, M.; Bailey, B.; Tsu, H.; Hato, M. The ASTER Global DEM. Photogramm. Eng. Remote Sens. 2010, 76, 344–348. [Google Scholar]
- Zhang, K.; Gann, D.; Ross, M.; Robertson, Q.; Sarmiento, J.; Santana, S.; Rhome, J.; Fritz, C. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens. Environ. 2019, 225, 290–306. [Google Scholar] [CrossRef]
- Team, A.G.V. ASTER Global DEM Validation Summary Report; Ministry of Economic, Trade and Industry (METI) of Japan and The United States National Aeronautical and Space Administration (NASA): Washington DC, USA, 2009; pp. 1–28.
- Marr, D.; Nishihara, H.K. Representation and Recognition of the Spatial Organization of Three–Dimensional Shapes. Proc. R. Soc. B Biol. Sci. 1978, 200, 269–294. [Google Scholar]
- Wang, P.; Xu, Y. Photogrammety, 3rd ed.; Wuhan University Press: Wuhan, China, 2016. [Google Scholar]
- Tao, C.; Hu, Y. A Comprehensive study of the rational function model for photogrammetric processing. Photogramm. Eng. Remote Sens. 2001, 67, 1347–1357. [Google Scholar]
- Tong, X.; Liu, S.; Weng, Q. Bias–corrected rational polynomial coefficients for high accuracy geo–positioning of QuickBird stereo imagery. ISPRS J. Photogramm. Remote Sens. 2010, 65, 218–226. [Google Scholar] [CrossRef]
- Fan, X.; Weng, Y.; Hu, W.; Xu, J.; Liu, T. DEM Extraction and Accuracy Assessment Based on IRS–P5 Stereo Images. Remote Sens. Technol. Appl. 2010, 25, 547–551. [Google Scholar]
- Tang, X.; Zhou, P.; Zhang, G.; Wang, X.; Jiang, Y.; Guo, L.; Liu, S. Verification of ZY–3 Satellite Imagery Geometric Accuracy Without Ground Control Points. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2100–2104. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, G.; Tang, X.; Li, D.; Zhu, X.; Zhou, P.; Jiang, Y. Basic Products of the ZiYuan–3 Satellite and Accuracy Evaluation. Photogramm. Eng. Remote Sens. 2013, 79, 1131–1145. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Whittaker, A.C.; Boulton, S.J. Tectonic and climatic controls on knickpoint retreat rates and landscape response times. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- D’Arcy, M.; Whittaker, A.C. Geomorphic constraints on landscape sensitivity to climate in tectonically active areas. Geomorphology 2014, 204, 366–381. [Google Scholar] [CrossRef]
- Castillo, M. Landscape evolution of the graben of Puerto Vallarta (west–central Mexico) using the analysis of landforms and stream long profiles. J. South Am. Earth Sci. 2017, 73, 10–21. [Google Scholar] [CrossRef]
- Boulton, S.J.; Whittaker, A.C. Quantifying the slip rates, spatial distribution and evolution of active normal faults from geomorphic analysis: Field examples from an oblique–extensional graben, southern Turkey. Geomorphology 2009, 104, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, A.C.; Cowie, P.A.; Attal, M.; Tucker, G.E.; Roberts, G.P. Contrasting transient and steady—State rivers crossing active normal faults: New field observations from the Central Apennines, Italy. Basin Res. 2007, 19, 529–556. [Google Scholar] [CrossRef]
- Zhang, H.; Kirby, E.; Pitlick, J.; Anderson, R.S.; Zhang, P. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan Plateau. J. Geophys. Res. Earth Surf. 2017, 122, 546–572. [Google Scholar] [CrossRef]
- Haviv, I.; Enzel, Y.; Whipple, K.X.; Zilberman, E.; Matmon, A.; Stone, J.; Fifield, K.L. Evolution of vertical knickpoints (waterfalls) with resistant caprock: Insights from numerical modeling. J. Geophys. Res. Earth Surf. 2010, 115, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Loget, N.; Van Den Driessche, J. Wave train model for knickpoint migration. Geomorphology 2009, 106, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.L.; Zeitler, P.K.; Pazzaglia, F.J.; Tremblay, M.M.; Shuster, D.L.; Fox, M. Knickpoint evolution on the Yarlung river: Evidence for late Cenozoic uplift of the southeastern Tibetan plateau margin. Earth Planet. Sci. Lett. 2015, 430, 448–457. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Burbank, D.; Wang, Y.; Wu, G.; Li, J.; Guan, Q. A 900 k.y. record of strath terrace formation during glacial–interglacial transitions in northwest China. Geology 2003, 31, 957–960. [Google Scholar] [CrossRef]
- Pan, B.; Gao, H.; Wu, G.; Li, J.; Li, B.; Ye, Y. Dating of erosion surface and terraces in the eastern Qilian Shan, northwest China. Earth Surf. Process. Landf. 2007, 32, 143–154. [Google Scholar] [CrossRef]
- Pan, B.; Hu, X.; Gao, H.; Hu, Z.; Cao, B.; Geng, H.; Li, Q. Late Quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China. Geomorphology 2013, 184, 84–97. [Google Scholar] [CrossRef]
- Burbank, D.W.; Leland, J.; Fielding, E.; Anderson, R.S.; Brozovic, N.; Reid, M.R.; Duncan, C. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 1996, 379, 505–510. [Google Scholar] [CrossRef]
- Maddy, D.; Bridgland, D.; Westaway, R. Uplift—Driven valley incision and climate-controlled river terrace development in the Thames Valley, UK. Quat. Int. 2001, 79, 23–36. [Google Scholar] [CrossRef]
- Dong, Y.; Fu, B.; Ninomiya, Y. DEM generation methods and applications in revealing of topographic changes caused by coal mining activities. In International Conference on Earth Observation Data Processing and Analysis; International Society for Optics and Photonics: Bellingham, DC, USA, 2008; p. 7285. [Google Scholar] [CrossRef]
- Toutin, T. ASTER DEMs for geomatic and geoscientific applications: A review. Int. J. Remote Sens. 2008, 29, 1855–1875. [Google Scholar] [CrossRef]
- Fan, S.; Li, Q.; Han, L.; Liang, J.; Chen, S.; Zhang, T.; Ma, J.; Liu, Z. The 1:50000 Geological Mapping in the Loess–Covered Region in Shaanxi Province, China; Chang’an University: Xi’an, China, 2020. [Google Scholar]
- Aguilar, F.J.; Agüera, F.; Aguilar, M.A.; Carvajal, F. Effects of Terrain Morphology, Sampling Density, and Interpolation Methods on Grid DEM Accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Shi, W.; Li, Q.; Wang, G.; Cheung, T.C.K.; Dai, E.; Shea, G.Y.K. Estimation of average DEM accuracy under linear interpolation considering random error at the nodes of TIN model. Int. J. Remote Sens. 2007, 26, 5509–5523. [Google Scholar] [CrossRef]
- Satgé, F.; Bonnet, M.P.; Timouk, F.; Calmant, S.; Pillco, R.; Molina, J.; Lavado-Casimiro, W.; Arsen, A.; Crétaux, J.F.; Garnier, J. Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. Int. J. Remote Sens. 2015, 36, 465–488. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Zhang, L.; Zheng, X.; Zhang, F.; Yuan, Q. High-quality seamless DEM generation blending SRTM–1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS J. Photogramm. Remote Sens. 2017, 123, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yang, S.; Li, Y. Accuracy Assessment and Correction of SRTM DEM Using ICESat/GLAS Data under Data Coregistration. Remote Sens. 2020, 12, 3435. [Google Scholar] [CrossRef]
- Carabajal, C.C.; Harding, D.J. ICESat validation of SRTM C–band digital elevation models. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Xie, H.; Liang, T.; Yi, D. Estimating vertical error of SRTM and map–based DEMs using ICESat altimetry data in the eastern Tibetan Plateau. Int. J. Remote Sens. 2011, 32, 5177–5196. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, H.; Li, R.; Cheng, W.; Zhou, C. A quantitative model to simulate the vertical errors of SRTM3 DEM V4 data at the pixel level in the Shanbei Plateau of China. Int. J. Remote Sens. 2020, 41, 5257–5276. [Google Scholar] [CrossRef]
- Bhang, K.J.; Schwartz, F.W.; Braun, A. Verification of the Vertical Error in C–Band SRTM DEM Using ICESat and Landsat–7, Otter Tail County, MN. IEEE Trans. Geosci. Remote Sens. 2007, 45, 36–44. [Google Scholar] [CrossRef]
- Zhan, L.; Tang, G.; Yang, X. Evaluation of SRTM DEMs’ elevation accuracy: A case study in Shaanxi province. Geogr. Geo–Inf. Sci. 2010, 26, 34–36. [Google Scholar]
- Guo, X.; Zhang, H.; Zhang, Z.; Hou, G.; Zhao, J. Comparative analysis of the quality and accuracy between ASTER–GDEM and SRTM3. Remote Sens. Technol. Appl. 2011, 26, 334–339. [Google Scholar]
- Dong, Y.; Shortridge, A.M. A regional ASTER GDEM error model for the Chinese Loess Plateau. Int. J. Remote Sens. 2019, 40, 1048–1065. [Google Scholar] [CrossRef]
- Whipple, K.X.; Wobus, C.W.; Crosby, B.; Kirby, E.; Sheehan, D. New Tools for Quantitative Geomorphology: Extraction and Interpretation of Stream profiles from Digital Topographic Data. GSA Short Course 2007, 506, 1–26. [Google Scholar]
- Zhang, T. Study on the Geologic and Geomorphic Evolution of the Late–Cenozoic Basins in the Southwest Margin of the Ordos Block; Chang’an University: Xi’an, China, 2020. [Google Scholar]
- Ariza–Villaverde, A.B.; Jiménez-Hornero, F.J.; Gutiérrez de Ravé, E. Influence of DEM resolution on drainage network extraction: A multifractal analysis. Geomorphology 2015, 241, 243–254. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. Comparative analysis of the accuracy between ASTER GDEM AND measured elevation and influence factor analysis. Geomat. Spat. Inf. Technol. 2013, 36, 150–153. [Google Scholar]
- Purinton, B.; Bookhagen, B. Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surf. Dyn. 2017, 5, 211–237. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Han, Z.; Li, X.; Chen, G.; Wang, X.; Lu, H. Tectonic uplift of Mt. Lushan indicated by the steepness indices of the river longitudinal profiles. Acta Geogr. Sin. 2015, 70, 1516–1525. [Google Scholar] [CrossRef]
- Castillo, M.; Ferrari, L.; Muñoz-Salinas, E. Knickpoint retreat and landscape evolution of the Amatlán de Cañas half-graben (northern sector of Jalisco Block, western Mexico). J. S. Am. Earth Sci. 2017, 77, 108–122. [Google Scholar] [CrossRef]
- Sun, G.; Ranson, K.J.; Kharuk, V.I.; Kovacs, K. Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sens. Environ. 2003, 88, 401–411. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, J.; He, Z.; Jiang, W.; Jiang, H.; Li, Q. Assessment of applying ZY–3 DEM data to quantitative study of active structures. Remote Sens. Land Resour. 2015, 27, 122–130. [Google Scholar] [CrossRef]
- Lan, Q.; Hao, X.; Qi, H. DEM extraction and precision analysis based on ZY–3 remote sensing data. Remote Sens. Inf. 2015, 30, 14–18. [Google Scholar]
- Zhou, P.; Tang, X.; Wang, Z.; Cao, N.; Wang, X. Vertical Accuracy Effect Verification for Satellite Imagery With Different GCPs. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1268–1272. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, G.; Zhu, X.; Pan, H.; Jiang, Y.; Zhou, P.; Wang, X. Triple linear-array image geometry model of ZiYuan–3 surveying satellite and its validation. Int. J. Image Data Fusion 2013, 4, 33–51. [Google Scholar] [CrossRef]
- Gao, H.; Liu, X.; Pan, B.; Wang, Y.; Yu, Y.; Li, J. Stream response to Quaternary tectonic and climatic change: Evidence from the upper Weihe River, central China. Quat. Int. 2008, 186, 123–131. [Google Scholar] [CrossRef]
- Gao, H.; Li, Z.; Liu, X.; Pan, B.; Wu, Y.; Liu, F. Fluvial terraces and their implications for Weihe River valley evolution in the Sanyangchuan Basin. Sci. China Earth Sci. 2017, 60, 413–427. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, X.; He, Z.; He, X.; Wang, J.; Fu, L.; Jia, L. Age of Upper Jinghe River Terraces at the Eastern Piedmont of Liupanshan and Its Significance for Neotectonic Movement. Geoscience 2014, 28, 1202–1212. [Google Scholar]
Sensors | Band Order | Wavelength (μm) | Spatial Resolution (m) | Ground Swath (km) | Side Rotation | Revisit Period (d) |
---|---|---|---|---|---|---|
Forward image | – | 0.50~0.80 | 3.5 | 52 | ±32° | 3~5 |
Backward image | – | 0.50~0.80 | ||||
Nadir image | – | 0.50~0.80 | 2.1 | 51 | ||
Multiple image | 1 | 0.45~0.52 | 5.8 | 51 | 5 | |
2 | 0.52~0.59 | |||||
3 | 0.63~0.69 | |||||
4 | 0.77~0.89 |
No | Filename | Row | Path | Acquisition Time | Solar Zenith | Solar Azimuth | Satellite Zenith | Satellite Azimuth | Cloud Coverage |
---|---|---|---|---|---|---|---|---|---|
1 | L1A0001497551 | 137 | 23 | 2013-12-11 11:52:12 | 30.5° | 165.1° | 84.7° | 101.5° | 0% |
2 | L1A0001051630 | 137 | 22 | 2013-02-24 11:50:36 | 42.1° | 154.4° | 88.6° | 268.6° | 0% |
3 | L1A0001051631 | 138 | 22 | 2013-02-24 11:50:42 | 42.4° | 154.2° | 88.6° | 268.6° | 4% |
4 | L1A0000931653 | 137 | 21 | 2013-01-01 11:47:12 | 29.8° | 162.1° | 89.7° | 206.1° | 0% |
5 | L1A0000931654 | 138 | 21 | 2013-01-01 11:47:15 | 30.4° | 161.9° | 89.7° | 206.2° | 0% |
6 | L1A0000931655 | 139 | 21 | 2013-01-01 11:47:24 | 30.5° | 161.8° | 89.7° | 206.3° | 0% |
DEM | Points | dmax (m) | dmin (m) | Mean (m) | SD (m) | RMSE (m) |
---|---|---|---|---|---|---|
SRTM1 | 5776 | 74.07 | −49.28 | 3.24 | 8.37 | 8.98 |
ASTER GDEM | 91.75 | −61.28 | –3.92 | 12.32 | 12.93 | |
ZY3 DEM | 34.27 | −35.36 | 3.15 | 8.76 | 9.31 |
DEM | Points | dmax (m) | dmin (m) | Mean (m) | SD (m) | RMSE (m) |
---|---|---|---|---|---|---|
SRTM1 | 10,579 | 52.40 | −56.60 | 2.23 | 8.76 | 9.04 |
ASTER GDEM | 106.57 | −84.70 | −4.95 | 13.76 | 14.63 | |
ZY3 DEM | 41.40 | −65.10 | −0.98 | 9.67 | 9.71 |
River No. | DEMs | Knickpoint Elevation | Total Drainage Area | River Length | Upstream Distance of Knickpoint | ksn above Knickpoint | θ | ± | ksn below Knickpoint | θ | ± | Knickpoint Retreat Rates (at 1.4 Myr) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (km2) | (km) | (km) | (m0.9) | (m0.9) | (mm/Year) | ||||||
2 | SRTM1 | 1219 | 3.3 | 56.3 | 0.4 | 16.8 | 0.26 | 0.19 | 34.8 | 0.29 | 0.04 | 0.3 |
ASTER GDEM | 1205 | 3.1 | 52.4 | 0.3 | 16.5 | 0.27 | 0.41 | 34.3 | 0.29 | 0.03 | 0.2 | |
ZY3 DEM | 1213 | 3.2 | 56.6 | 0.4 | 16.9 | 0.27 | 0.17 | 34.9 | 0.29 | 0.04 | 0.3 | |
4 | SRTM1 | – | 91.9 | 111.4 | – | 80.4 | 0.53 | 0.03 | – | – | – | – |
ASTER GDEM | – | 86.9 | 108.7 | – | 79.2 | 0.41 | 0.07 | – | – | – | – | |
ZY3 DEM | – | 87.4 | 111.7 | – | 79.4 | 0.47 | 0.03 | – | – | – | – | |
8 * | SRTM1 | 1909 | 115.8 | 137.2 | 26.8 | 29.6 | 0.19 | 0.14 | 71.8 | 0.28 | 0.30 | 19.1 |
1562 | – | – | 15.4 | 71.8 | 0.28 | 0.30 | 97.4 | 0.67 | 0.07 | 11.0 | ||
ASTER GDEM | 1973 | 112.1 | 134.6 | 28.3 | 28.9 | 0.55 | 0.81 | 69.6 | 0.22 | 0.20 | 20.2 | |
1537 | – | – | 14.4 | 69.6 | 0.22 | 0.20 | 87.6 | 0.46 | 0.13 | 10.3 | ||
ZY3 DEM | 1894 | 113.4 | 137.6 | 28.9 | 30.0 | 0.19 | 0.15 | 70.5 | 0.31 | 0.34 | 20.6 | |
1541 | – | – | 14.8 | 70.5 | 0.31 | 0.34 | 88.3 | 0.47 | 0.15 | 10.6 | ||
18 | SRTM1 | 1184 | 67.7 | 93.2 | 21.2 | 24.3 | 0.49 | 0.12 | 43.1 | 0.38 | 0.05 | 15.1 |
ASTER GDEM | 1195 | 63.3 | 90.4 | 20.5 | 24.9 | 0.47 | 0.27 | 46.3 | 0.35 | 0.10 | 14.6 | |
ZY3 DEM | 1172 | 64.9 | 94.6 | 21.6 | 24.6 | 0.45 | 0.15 | 45.2 | 0.36 | 0.13 | 15.4 |
Profiles | Terrace | Height of Front Edge (m) | Height of Rear Edge (m) | Height of Terrace (m) | Period | Incision Rates (m/kyr) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SRTM1 | ASTER | ZY3 | SRTM1 | ASTER | ZY3 | SRTM1 | ASTER | ZY3 | (Kyr) | SRTM1 | ASTER | ZY3 | ||
AA’ | T1 | 5.3 | 7.1 | 3.9 | 12.5 | 9.8 | 12.4 | 8.9 | 8.5 | 8.2 | 41 | 0.21 | 0.21 | 0.20 |
T3 | 95.3 | 129.1 | 97.9 | 112.4 | 130.4 | 108.1 | 103.9 | 129.8 | 103.0 | 505 | 0.21 | 0.26 | 0.20 | |
T4 | 131.3 | 141.6 | 130.3 | 135.7 | 160.1 | 136.4 | 133.5 | 150.9 | 133.4 | 788 | 0.17 | 0.19 | 0.17 | |
BB’ | T1 | 3.3 | 4.6 | 3.7 | 7.2 | 10.3 | 8.1 | 5.3 | 7.5 | 5.9 | 41 | 0.13 | 0.18 | 0.14 |
T2 | 54.8 | 52.3 | 53.8 | 58.3 | 62.6 | 61.0 | 56.6 | 57.5 | 57.4 | 127 | 0.45 | 0.45 | 0.45 | |
T3 | 112.2 | 113.3 | 105.5 | 122.0 | 139.0 | 119.1 | 117.1 | 125.6 | 112.3 | 505 | 0.23 | 0.25 | 0.22 | |
T4 | 142.7 | 145.0 | 145.0 | 152.6 | 147.3 | 159.9 | 147.7 | 146.2 | 152.5 | 788 | 0.19 | 0.19 | 0.19 | |
T5 | 162.7 | 169.7 | 159.7 | 183.0 | 183.3 | 185.9 | 172.9 | 176.5 | 172.8 | 1411 | 0.12 | 0.13 | 0.12 | |
CC’ | T1 | 3.6 | 12.6 | 5.5 | 17.4 | 20.3 | 18.8 | 10.5 | 16.5 | 13.1 | 41 | 0.26 | 0.40 | 0.30 |
T2 | 47.7 | 52.8 | 48.3 | 67.1 | 55.3 | 67.1 | 57.4 | 54.1 | 57.7 | 127 | 0.45 | 0.43 | 0.45 | |
T3 | 100.6 | 106.2 | 97.3 | 112.2 | 120.0 | 115.7 | 106.4 | 113.1 | 106.5 | 505 | 0.21 | 0.22 | 0.21 | |
T4 | 156.9 | 153.1 | 163.3 | 172.9 | 173.2 | 168.1 | 164.7 | 163.2 | 165.7 | 788 | 0.21 | 0.21 | 0.21 | |
DD’ | T1 | 4.6 | 8.7 | 6.4 | 9.9 | 13.2 | 10.0 | 7.3 | 11.0 | 8.2 | 41 | 0.18 | 0.27 | 0.20 |
T2 | 32.5 | 44.1 | 37.4 | 38.9 | 55.2 | 43.7 | 35.7 | 49.7 | 40.6 | 127 | 0.28 | 0.39 | 0.32 | |
T3 | 74.8 | 66.7 | 79.0 | 86.1 | 96.9 | 96.4 | 80.5 | 81.8 | 87.7 | 375 | 0.21 | 0.22 | 0.23 | |
T4 | 93.9 | 102.1 | 93.6 | 109.7 | 125.2 | 117.7 | 101.8 | 113.7 | 105.7 | 788 | 0.13 | 0.14 | 0.13 | |
EE’ | T1 | 3.1 | 7.5 | 2.7 | 7.0 | 8.8 | 9.0 | 5.1 | 8.2 | 5.9 | 41 | 0.12 | 0.20 | 0.14 |
T2 | 7.8 | 25.7 | 10.1 | 12.7 | 36.4 | 16.0 | 10.3 | 31.1 | 13.1 | 127 | 0.08 | 0.24 | 0.10 | |
T3 | 52.2 | 90.8 | 52.7 | 71.7 | 110.3 | 77.4 | 62.0 | 100.6 | 65.1 | 375 | 0.17 | 0.27 | 0.17 | |
T4 | 127.2 | 133.5 | 122.9 | 157.7 | 157.3 | 160.4 | 142.5 | 145.4 | 141.7 | 788 | 0.18 | 0.18 | 0.18 | |
FF’ | T1 | 10.7 | 11.2 | 10.0 | 16.2 | 19.2 | 17.2 | 13.5 | 15.2 | 13.6 | 41 | 0.33 | 0.37 | 0.33 |
T2 | 29.6 | 36.3 | 33.5 | 39.0 | 52.6 | 44.7 | 34.3 | 44.5 | 39.1 | 127 | 0.27 | 0.35 | 0.31 | |
T3 | 84.3 | 81.2 | 85.5 | 103.5 | 106.2 | 103.1 | 93.9 | 93.7 | 94.3 | 375 | 0.25 | 0.25 | 0.25 | |
T4 | 126.2 | 126.5 | 129.8 | 166.8 | 162.2 | 172.0 | 146.5 | 144.4 | 150.9 | 788 | 0.19 | 0.18 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Han, L.; Yang, Z.; Cao, H.; Guo, F.; Guo, J.; Ji, Y. Evaluating the Vertical Accuracy of DEM Generated from ZiYuan-3 Stereo Images in Understanding the Tectonic Morphology of the Qianhe Basin, China. Remote Sens. 2021, 13, 1203. https://doi.org/10.3390/rs13061203
Liu Z, Han L, Yang Z, Cao H, Guo F, Guo J, Ji Y. Evaluating the Vertical Accuracy of DEM Generated from ZiYuan-3 Stereo Images in Understanding the Tectonic Morphology of the Qianhe Basin, China. Remote Sensing. 2021; 13(6):1203. https://doi.org/10.3390/rs13061203
Chicago/Turabian StyleLiu, Zhiheng, Ling Han, Zhaohui Yang, Hongye Cao, Fengcheng Guo, Jianhua Guo, and Yiqi Ji. 2021. "Evaluating the Vertical Accuracy of DEM Generated from ZiYuan-3 Stereo Images in Understanding the Tectonic Morphology of the Qianhe Basin, China" Remote Sensing 13, no. 6: 1203. https://doi.org/10.3390/rs13061203
APA StyleLiu, Z., Han, L., Yang, Z., Cao, H., Guo, F., Guo, J., & Ji, Y. (2021). Evaluating the Vertical Accuracy of DEM Generated from ZiYuan-3 Stereo Images in Understanding the Tectonic Morphology of the Qianhe Basin, China. Remote Sensing, 13(6), 1203. https://doi.org/10.3390/rs13061203