A Comprehensive Evaluation of Latest GPM IMERG V06 Early, Late and Final Precipitation Products across China
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Rain Gauge Data
2.3. Satellite-Based Precipitation Dataset
3. Methodology
3.1. Data Processing
3.2. Evaluation Metrics
3.3. Categorizing Elevation, Precipitation Intensity and Season
4. Results
4.1. Spatial Patterns of the Continuous and Categorical Evaluation
4.2. Temporal Scale Evaluation
4.2.1. Daily Scale
4.2.2. Monthly Scale
4.2.3. Seasonal Scale
4.3. Evaluations of the Performance Dependency on Elevation
4.4. Evaluation for Precipitation Intensity Bins
5. Discussion
5.1. Reasons for the Difference in Performance of Three Runs
5.2. Reasons for Various Performance of Three Runs in Different Elevation Regions and Precipitation Intensity Bins
5.3. Reasons for the Changing Performance of IMERG in a Long-Time Span
5.4. Study Limitations and Future Works
6. Conclusions
- (1)
- All runs of the IMERG products can accurately capture the spatial patterns of daily precipitation from 2008 to 2017. However, the performances of the products vary among the river basins and gradually decrease from the southeast to the northwest of China. Better performance is measured in eastern humid basins compared to western arid basins.
- (2)
- Our analysis does not show significant differences between the early and late runs of IMERG products in China. However, moderate improvement is observed in the final run, as indicated by higher CC and KGE and lower RMSE at both daily and monthly levels of analysis. The three runs of IMERG show similar accuracy in estimating precipitation in China, with CSI values ranging from 0.4 to 0.41.
- (3)
- Our evaluation reveals a significant (p < 0.01) association between the performance of IMERG products and elevation, mainly highlighted by the analysis based on continuous performance metrics. For all runs, the accuracy gradually decreases with an increase in elevation. However, the categorical metrics exhibit lower levels of dependence on elevation except for POD.
- (4)
- In China and in each basin, all SPPs underestimate the frequency of no/tiny rain events (P < 0.1 mm/day) but overestimate the frequency of light rain events (0.1 ≤ P < 10 mm/day). The IMERG products better match the ground observations in areas with frequent moderate rain events (10 ≤ P < 25 mm/day). IMERG_F tends to overestimate the frequency of heavy precipitation (10 ≤ P < 25 mm/day) in southern China. All products align with ground-based observation in areas that frequently encounter rainstorms (P ≥ 50 mm/day) in PRB, YARB and SEB.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Rivera, J.A.; Marianetti, G.; Hinrichs, S. Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmos. Res. 2018, 213, 437–449. [Google Scholar] [CrossRef]
- Trenberth, K. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Farahmand, A.M.; Melton, F.S.; Teixeira, J.P.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- Gehne, M.; Hamill, T.M.; Kiladis, G.N.; Trenberth, K.E. Comparison of global precipitation estimates across a range of temporal and spatial scales. J. Clim. 2016, 29, 7773–7795. [Google Scholar] [CrossRef]
- Kidd, C.; Matsui, T.; Chern, J.; Mohr, K.; Kummerow, C.; Randel, D.; Matsui, T. Global precipitation estimates from cross-track passive microwave observations using a physically based retrieval scheme. J. Hydrometeorol. 2015, 17, 383–400. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.; Yang, K.; Lu, H.; Chen, Y.; La, Z.; Zhou, X.; Wang, Y. Ground-based observations reveal unique valley precipitation patterns in the central Himalaya. J. Geophys. Res. Atmos. 2020, 125, e2019JD031502. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total. Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, S.; McGregor, J.; Renwick, J. Precipitation seasonality over the Indian subcontinent: An evaluation of gauge, reanalyses, and satellite retrievals. J. Hydrometeorol. 2015, 16, 631–651. [Google Scholar] [CrossRef]
- Kumar, L.S.; Lee, Y.H.; Yeo, J.X.; Ong, J.T. Tropical rain classification and estimation of rain from Z-R (reflectivity-rain rate) relationships. Prog. Electromagn. Res. B 2011, 32, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Persson, A.; Grazzini, F. User Guide to ECMWF Forecast Products. Meteorological Bulletin. M3.2, ECMWE, 2007, p. 115. Available online: https://www.researchgate.net/publication/255267254_User_guide_to_ECMWF_forecast_products (accessed on 20 March 2021).
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Bosilovich, M.G. Regional climate and variability of NASA merra and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteorol. Clim. 2013, 52, 1939–1951. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.; Song, Y.; Duan, Z.; Mo, K.; Wang, Z.; Chen, Q. Performance of multiple satellite precipitation estimates over a typical arid mountainous area of China: Spatiotemporal patterns and extremes. J. Hydrometeorol. 2020, 21, 533–550. [Google Scholar] [CrossRef]
- Kim, J.; Han, H.; Kim, B.; Chen, H.; Lee, J.-H. Use of a high-resolution-satellite-based precipitation product in mapping continental-scale rainfall erosivity: A case study of the United States. Catena 2020, 193, 104602. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Petersen, W.A.; Tokay, A. A novel approach to identify sources of errors in UMERG for GPM ground validation. J. Hydrometeorol. 2016, 17, 2477–2491. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of topography and rainfall intensity on the accuracy of IMERG precipitation estimates in an arid region. Remote Sens. 2020, 13, 13. [Google Scholar] [CrossRef]
- Huang, W.-R.; Liu, P.-Y.; Hsu, J.; Li, X.; Deng, L. Assessment of near-real-time satellite precipitation products from GSMAP in monitoring rainfall variations over Taiwan. Remote Sens. 2021, 13, 202. [Google Scholar] [CrossRef]
- Turk, F.J.; Hristova-Veleva, S.; Giglio, D. Examination of the daily cycle wind vector modes of variability from the constellation of microwave scatterometers and radiometers. Remote Sens. 2021, 13, 141. [Google Scholar] [CrossRef]
- Hobouchian, M.P.; Salio, P.; Skabar, Y.G.; Vila, D.; Garreaud, R. Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmos. Res. 2017, 190, 43–54. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global. Precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor. 2004, 5, 287–296. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM multi-satellite precipitation analysis (TMPA): Qua-si-global, multiyear, combined-sensor precipitation estimate at fine scales. J. Hydrometeor. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G.J. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD); NASA/GSFC: Greenbelt, MD, USA, 2019. Available online: https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERG_ATBD_V06.pdf (accessed on 20 March 2021).
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Lü, H.; Crow, W.T.; Zhu, Y.; Wang, J.; Su, J. Evaluation of Satellite-Based precipitation product from IMERG V04A and V03D, CMORPH and TMPA with gauged rainfall in three climatologic zones in China. Remote Sens. 2018, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Ahmad, I.; Ijaz, M.W.; Farid, H.U.; Yagoub, Y.E.; Zaman, M.; Adnan, M. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. Res. 2018, 205, 134–146. [Google Scholar] [CrossRef]
- Prakash, S. Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. J. Hydrol. 2019, 571, 50–59. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Lee, J.; Lee, E.-H.; Seol, K.-H. Validation of Integrated MultisatellitE Retrievals for GPM (IMERG) by using gauge-based analysis products of daily precipitation over East Asia. Theor. Appl. Clim. 2019, 137, 2497–2512. [Google Scholar] [CrossRef]
- Asong, Z.E.; Razavi, S.; Wheater, H.S.; Wong, J.S. Evaluation of integrated multisatellite retrievals for GPM (IMERG) over southern Canada against ground precipitation observations: A preliminary assessment. J. Hydrometeorol. 2017, 18, 1033–1050. [Google Scholar] [CrossRef]
- Dezfuli, A.K.; Ichoku, C.M.; Huffman, G.J.; Mohr, K.I.; Selker, J.S.; Van De Giesen, N.; Hochreutener, R.; Annor, F.O. Validation of IMERG precipitation in Africa. J. Hydrometeorol. 2017, 18, 2817–2825. [Google Scholar] [CrossRef]
- Wang, C.; Tang, G.; Han, Z.; Guo, X.; Hong, Y. Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: Similarity, difference and improvements. J. Hydrol. 2018, 564, 342–356. [Google Scholar] [CrossRef]
- Sim, E.M.; Liu, G. A parameterization of probability of snow-rain transition. J. Hydrol. 2015, 16, 1466–1477. [Google Scholar]
- Hosseini-Moghari, S.-M.; Tang, Q. Validation of GPM IMERG V05 and V06 precipitation products over Iran. J. Hydrometeorol. 2020, 21, 1011–1037. [Google Scholar] [CrossRef] [Green Version]
- Foelsche, U.O.S.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG early, late, and final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21, 6559–6572. [Google Scholar] [CrossRef] [Green Version]
- Ramsauer, T.; Weiß, T.; Marzahn, P. Comparison of the GPM IMERG final precipitation product to radolan weather radar data over the topographically and climatically diverse Germany. Remote Sens. 2018, 10, 2029. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Hu, D.; Liu, M.; Wang, S.; Di, Y. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. Atmos. Res. 2020, 241, 104952. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A. Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 2016, 36, 252–265. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Wei, G.; Lü, H.; Crow, W.T.; Zhu, Y.; Wang, J.; Su, J. Comprehensive evaluation of GPM-IMERG, CMORPH, and TMPA precipitation products with gauged rainfall over mainland China. Adv. Meteorol. 2018, 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Ma, L.; Li, H.; Zhang, Y.; Kong, F.; Yang, Y. Assessment of high-resolution satellite rainfall products over a gradually elevating mountainous terrain based on a high-density rain gauge network. Int. J. Remote Sens. 2020, 41, 5620–5644. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; Yang, Y. Using high-density rain gauges to validate the accuracy of satellite precipitation products over complex terrains. Atmosphere 2020, 11, 633. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria. Atmospheric Res. 2018, 206, 46–63. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T.; et al. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J. Hydrol. 2018, 567, 696–711. [Google Scholar] [CrossRef]
- Sunilkumar, K.; Yatagai, A.; Masuda, M. Preliminary evaluation of GPM-IMERG rainfall estimates over three distinct climate zones with APHRODITE. Earth Space Sci. 2019, 6, 1321–1335. [Google Scholar] [CrossRef] [Green Version]
- Islam, A. Statistical comparison of satellite-retrieved precipitation products with rain gauge observations over Bangladesh. Int. J. Remote Sens. 2018, 39, 2906–2936. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Xu, J.; Zhu, S.; Yang, J.; Tang, G.; Yang, Y.; Shi, Z.; Hong, Y. AIMERG: A new Asian precipitation dataset (0.1°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE. Earth Syst. Sci. Data 2020, 12, 1525–1544. [Google Scholar] [CrossRef]
- Mantas, V.; Liu, Z.; Caro, C.; Pereira, A. Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmospheric Res. 2015, 163, 132–145. [Google Scholar] [CrossRef]
- Beria, H.; Nanda, T.; Bisht, D.S.; Chatterjee, C. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale. Hydrol. Earth Syst. Sci. 2017, 21, 6117–6134. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Habib, E.; Henschke, A.; Adler, R.F. Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmospheric Res. 2009, 94, 373–388. [Google Scholar] [CrossRef]
- Chokngamwong, R.; Chiu, L.S. Thailand daily rainfall and comparison with TRMM products. J. Hydrometeorol. 2008, 9, 256–266. [Google Scholar] [CrossRef]
Metrics | SPPs | Basin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SRB | HARB | HURB | YERB | YARB | PRB | SEB | SWB | CB | ||
CC | IMERG_E | 0.35 | 0.33 | 0.37 | 0.35 | 0.40 | 0.44 | 0.40 | 0.40 | 0.24 |
IMERG_L | 0.35 | 0.33 | 0.37 | 0.35 | 0.40 | 0.44 | 0.43 | 0.40 | 0.23 | |
IMERG_F | 0.40 | 0.36 | 0.41 | 0.39 | 0.43 | 0.48 | 0.47 | 0.43 | 0.28 | |
β | IMERG_E | 1.23 | 1.19 | 1.23 | 1.12 | 1.04 | 1.01 | 1.01 | 0.96 | 1.45 |
IMERG_L | 1.25 | 1.22 | 1.24 | 1.14 | 1.04 | 0.99 | 0.99 | 0.95 | 1.48 | |
IMERG_F | 1.12 | 1.08 | 1.12 | 1.09 | 1.05 | 1.03 | 1.04 | 1.19 | 1.21 | |
γ | IMERG_E | 0.80 | 0.76 | 0.80 | 0.93 | 0.96 | 1.06 | 0.98 | 0.97 | 0.76 |
IMERG_L | 0.84 | 0.81 | 0.87 | 0.99 | 1.01 | 1.11 | 1.05 | 1.01 | 0.81 | |
IMERG_F | 0.83 | 0.81 | 0.83 | 0.88 | 0.91 | 0.98 | 0.96 | 0.87 | 0.75 | |
KGE | IMERG_E | 0.30 | 0.26 | 0.31 | 0.34 | 0.40 | 0.44 | 0.40 | 0.39 | 0.09 |
IMERG_L | 0.28 | 0.27 | 0.31 | 0.33 | 0.40 | 0.43 | 0.43 | 0.39 | 0.08 | |
IMERG_F | 0.36 | 0.33 | 0.37 | 0.37 | 0.42 | 0.48 | 0.47 | 0.39 | 0.21 | |
RMSE (mm/day) | IMERG_E | 6.99 | 7.31 | 10.03 | 5.81 | 11.26 | 14.80 | 13.62 | 7.17 | 2.90 |
IMERG_L | 7.24 | 7.53 | 10.52 | 6.06 | 11.57 | 15.09 | 13.06 | 7.29 | 3.06 | |
IMERG_F | 6.57 | 7.00 | 9.50 | 5.37 | 10.74 | 13.83 | 12.83 | 7.39 | 2.55 | |
POD | IMERG_E | 0.65 | 0.66 | 0.71 | 0.65 | 0.68 | 0.66 | 0.69 | 0.74 | 0.55 |
IMERG_L | 0.64 | 0.65 | 0.70 | 0.63 | 0.67 | 0.66 | 0.70 | 0.72 | 0.53 | |
IMERG_F | 0.64 | 0.65 | 0.70 | 0.65 | 0.69 | 0.67 | 0.71 | 0.75 | 0.55 | |
FAR | IMERG_E | 0.58 | 0.63 | 0.61 | 0.57 | 0.44 | 0.35 | 0.38 | 0.40 | 0.70 |
IMERG_L | 0.57 | 0.61 | 0.59 | 0.55 | 0.42 | 0.35 | 0.36 | 0.39 | 0.69 | |
IMERG_F | 0.56 | 0.60 | 0.58 | 0.55 | 0.43 | 0.35 | 0.36 | 0.40 | 0.69 | |
CSI | IMERG_E | 0.34 | 0.31 | 0.33 | 0.35 | 0.44 | 0.49 | 0.48 | 0.49 | 0.24 |
IMERG_L | 0.35 | 0.32 | 0.35 | 0.35 | 0.45 | 0.49 | 0.50 | 0.49 | 0.24 | |
IMERG_F | 0.35 | 0.33 | 0.35 | 0.36 | 0.45 | 0.49 | 0.51 | 0.50 | 0.25 |
SPPs | CC | β | γ | KGE | RMSE (mm/day) | POD | FAR | CSI |
---|---|---|---|---|---|---|---|---|
IMERG_E | 0.42 | 1.07 | 0.93 | 0.41 | 9.67 | 0.68 | 0.50 | 0.40 |
IMERG_L | 0.41 | 1.08 | 0.97 | 0.41 | 9.86 | 0.67 | 0.49 | 0.41 |
IMERG_F | 0.47 | 1.07 | 0.90 | 0.45 | 9.26 | 0.68 | 0.48 | 0.42 |
SPPs | CC | β | γ | KGE | RMSE (mm/month) |
---|---|---|---|---|---|
IMERG_E | 0.83 | 1.08 | 0.97 | 0.81 | 56.57 |
IMERG_L | 0.83 | 1.08 | 0.98 | 0.81 | 57.62 |
IMERG_F | 0.94 | 1.07 | 0.92 | 0.87 | 34.31 |
Elevation (m) | Mean Rain (mm) | SPPs | Metrics | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CC | β | γ | KGE | RMSM (mm/day) | POD | FAR | CSI | |||
<200 | 1197.19 | IMERG_E | 0.44 | 1.14 | 0.90 | 0.41 | 12.15 | 0.71 | 0.50 | 0.42 |
IMERG_L | 0.43 | 1.14 | 0.95 | 0.41 | 12.54 | 0.71 | 0.48 | 0.43 | ||
IMERG_F | 0.47 | 1.09 | 0.89 | 0.45 | 11.42 | 0.72 | 0.48 | 0.43 | ||
200–500 | 943.52 | IMERG_E | 0.39 | 1.05 | 0.95 | 0.38 | 9.80 | 0.65 | 0.50 | 0.40 |
IMERG_L | 0.38 | 1.05 | 0.99 | 0.38 | 10.02 | 0.64 | 0.49 | 0.40 | ||
IMERG_F | 0.43 | 1.06 | 0.93 | 0.42 | 9.42 | 0.65 | 0.48 | 0.41 | ||
500–1000 | 729.58 | IMERG_E | 0.37 | 1.00 | 0.92 | 0.36 | 8.04 | 0.62 | 0.52 | 0.37 |
IMERG_L | 0.36 | 1.01 | 0.96 | 0.36 | 8.25 | 0.61 | 0.50 | 0.38 | ||
IMERG_F | 0.40 | 1.02 | 0.91 | 0.40 | 7.84 | 0.62 | 0.50 | 0.38 | ||
1000–1500 | 523.17 | IMERG_E | 0.34 | 1.07 | 0.92 | 0.33 | 6.87 | 0.61 | 0.56 | 0.34 |
IMERG_L | 0.34 | 1.08 | 0.95 | 0.33 | 7.05 | 0.59 | 0.54 | 0.35 | ||
IMERG_F | 0.39 | 1.04 | 0.90 | 0.38 | 6.50 | 0.61 | 0.54 | 0.35 | ||
1500–2000 | 766.16 | IMERG_E | 0.38 | 0.92 | 0.97 | 0.37 | 7.63 | 0.63 | 0.47 | 0.40 |
IMERG_L | 0.38 | 0.92 | 1.00 | 0.38 | 7.75 | 0.62 | 0.46 | 0.40 | ||
IMERG_F | 0.42 | 1.00 | 0.95 | 0.42 | 7.61 | 0.63 | 0.47 | 0.41 | ||
>2000 | 554.98 | IMERG_E | 0.32 | 0.84 | 1.13 | 0.29 | 5.13 | 0.66 | 0.44 | 0.43 |
IMERG_L | 0.32 | 0.82 | 1.18 | 0.27 | 5.20 | 0.64 | 0.43 | 0.43 | ||
IMERG_F | 0.35 | 1.11 | 1.01 | 0.34 | 5.48 | 0.68 | 0.44 | 0.44 |
Precipitation Bin (mm/day) | SPPs | CC | β | γ | KGE | RMSE (mm/day) | POD |
---|---|---|---|---|---|---|---|
[0.1, 10) | IMERG_E | 0.15 | 1.61 | 2.31 | −0.68 | 9.72 | 0.61 |
IMERG_L | 0.15 | 1.63 | 2.40 | −0.75 | 10.19 | 0.60 | |
IMERG_F | 0.17 | 1.65 | 2.18 | −0.58 | 9.38 | 0.61 | |
[10, 25) | IMERG_E | 0.11 | 0.66 | 6.04 | −4.13 | 17.56 | 0.32 |
IMERG_L | 0.11 | 0.69 | 6.23 | −4.31 | 18.48 | 0.32 | |
IMERG_F | 0.12 | 0.69 | 5.55 | −3.65 | 16.67 | 0.34 | |
[25, 50) | IMERG_E | 0.10 | 0.52 | 6.63 | −4.72 | 29.04 | 0.24 |
IMERG_L | 0.09 | 0.53 | 6.85 | −4.94 | 29.99 | 0.25 | |
IMERG_F | 0.11 | 0.53 | 6.08 | −4.17 | 27.59 | 0.26 | |
≥50 | IMERG_E | 0.24 | 0.39 | 2.83 | −1.07 | 65.01 | 0.19 |
IMERG_L | 0.24 | 0.40 | 2.92 | −1.15 | 65.46 | 0.20 | |
IMERG_F | 0.28 | 0.40 | 2.61 | −0.86 | 62.66 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Leng, G.; Python, A.; Peng, J. A Comprehensive Evaluation of Latest GPM IMERG V06 Early, Late and Final Precipitation Products across China. Remote Sens. 2021, 13, 1208. https://doi.org/10.3390/rs13061208
Yu L, Leng G, Python A, Peng J. A Comprehensive Evaluation of Latest GPM IMERG V06 Early, Late and Final Precipitation Products across China. Remote Sensing. 2021; 13(6):1208. https://doi.org/10.3390/rs13061208
Chicago/Turabian StyleYu, Linfei, Guoyong Leng, Andre Python, and Jian Peng. 2021. "A Comprehensive Evaluation of Latest GPM IMERG V06 Early, Late and Final Precipitation Products across China" Remote Sensing 13, no. 6: 1208. https://doi.org/10.3390/rs13061208
APA StyleYu, L., Leng, G., Python, A., & Peng, J. (2021). A Comprehensive Evaluation of Latest GPM IMERG V06 Early, Late and Final Precipitation Products across China. Remote Sensing, 13(6), 1208. https://doi.org/10.3390/rs13061208