Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban–Rural Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LUC Classification
2.3. MODIS Data
2.4. MODIS LST and Density of IS, GS, and BL
2.5. Trend in the Daytime and Nighttime Surface UHI Intensity
2.6. Population Density Data
2.7. Landscape Configuration Analysis
3. Results
3.1. LUC Changes and Magnitude and Trends of LST
3.2. Mean LST vs. Density of IS, GS, and BL
3.3. Magnitude and Trend of the Surface UHI Intensity in the Daytime and Nighttime
3.4. Population Desnisty vs. LST
3.5. Spatial-Metrics-Based Analysis vs. LST
4. Discussion
4.1. Rapid Urbanization and Its Impact on Greater Cairo
4.2. Surface UHI Nexus with LUC Classes and PD
4.3. Trend in Surface UHI Intensity along the Urban–Rural Gradient
4.4. Landscape Configuration on Surface UHI Formation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UHI | Urban Heat Island |
LST | Land Surface Temperature |
TM | Thematic Mapper |
OLI/TIRS | Operational Land Imager/Thermal Infrared Sensor |
MODIS | Moderate Resolution Imaging Spectroradiometer |
GEE | Google Earth Engine |
IS | Impervious Surface |
GS | Green space |
BL | Bare Land |
W | Water |
LUC | Land Use/Cover |
WGS84 | World Geodetic System 1984 |
UTM | Universal Transverse Mercator |
KNN | K-Nearest Neighbor |
ANN | Artificial Neural Networks |
SVM | Support Vector Machines |
RF | Random Forest |
NASA | National Aeronautics and Space Administration |
EOS | Earth Observing System |
URZ | Urban–Rural Zone |
PD | Population Density |
AREA_MN | Mean Patch Area |
LPI | Largest Patch Index |
AI | Aggregation Index |
Appendix A
Year | Sensor | Image ID | Acquisition Date |
---|---|---|---|
2000 | Landsat 5 TM | LT05_L2SP_176039_20000714_20200906_02_T1 | 14-07-2000 |
LT05_L2SP_176039_20000730_20200906_02_T1 | 30-07-2000 | ||
LT05_L2SP_176039_20000815_20200907_02_T1 | 15-08-2000 | ||
LT05_L2SP_176039_20000831_20200907_02_T1 | 31-08-2000 | ||
2010 | Landsat 5 TM | LT05_L2SP_176039_20100710_20200823_02_T1 | 10-07-2010 |
LT05_L2SP_176039_20100710_20200823_02_T1 | 27-08-2010 | ||
2019 | Landsat 8 OLI/TIRS | LC08_L2SP_176039_20190703_20200827_02_T1 | 03-07-2019 |
LC08_L2SP_176039_20190719_20200827_02_T1 | 19-07-2019 | ||
LC08_L2SP_176039_20190804_20200827_02_T1 | 04-08-2019 | ||
LC08_L2SP_176039_20190820_20200827_02_T1 | 20-08-2019 |
Classified Data | 2000 | Total | User’s Accuracy (%) | |||
---|---|---|---|---|---|---|
IS | GS | BL | W | |||
KNN | ||||||
IS | 129 | 2 | 2 | 1 | 134 | 96.27 |
GS | 5 | 121 | 3 | 0 | 129 | 93.80 |
BL | 2 | 1 | 49 | 1 | 53 | 92.45 |
W | 1 | 1 | 0 | 82 | 84 | 97.62 |
Total | 137 | 125 | 54 | 84 | 400 | |
Producer’s accuracy (%) | 94.16 | 96.80 | 90.74 | 97.62 | ||
Overall accuracy (%) = 95.25 | ||||||
RF | ||||||
IS | 108 | 16 | 3 | 6 | 133 | 81.20 |
GS | 8 | 110 | 4 | 5 | 127 | 86.61 |
BL | 8 | 3 | 54 | 1 | 66 | 81.82 |
W | 3 | 4 | 0 | 67 | 74 | 90.54 |
Total | 127 | 133 | 61 | 79 | 400 | |
Producer’s accuracy (%) | 85.04 | 82.71 | 88.52 | 84.81 | ||
Overall accuracy (%) = 84.75 | ||||||
SVM | ||||||
IS | 112 | 13 | 3 | 3 | 131 | 85.50 |
GS | 9 | 111 | 4 | 2 | 126 | 88.10 |
BL | 5 | 2 | 62 | 2 | 71 | 87.32 |
W | 2 | 4 | 0 | 66 | 72 | 91.67 |
Total | 128 | 130 | 69 | 73 | 400 | |
Producer’s accuracy (%) | 87.50 | 85.38 | 89.86 | 90.41 | ||
Overall accuracy (%) = 87.75 | ||||||
ANN | ||||||
IS | 96 | 18 | 4 | 3 | 121 | 79.34 |
GS | 11 | 104 | 1 | 4 | 120 | 86.67 |
BL | 8 | 3 | 76 | 4 | 91 | 83.52 |
W | 4 | 3 | 0 | 61 | 68 | 89.71 |
Total | 119 | 128 | 81 | 72 | 400 | |
Producer’s accuracy (%) | 80.67 | 81.25 | 93.83 | 84.72 | ||
Overall accuracy (%) = 84.25 |
Classified Data | 2010 | Total | User’s Accuracy (%) | |||
---|---|---|---|---|---|---|
IS | GS | BL | W | |||
KNN | ||||||
IS | 119 | 3 | 2 | 4 | 128 | 92.97 |
GS | 3 | 118 | 3 | 2 | 126 | 93.65 |
BL | 13 | 1 | 67 | 1 | 82 | 81.71 |
W | 2 | 1 | 0 | 61 | 64 | 95.31 |
Total | 137 | 123 | 72 | 68 | 400 | |
Producer’s accuracy (%) | 86.86 | 95.93 | 93.06 | 89.71 | ||
Overall accuracy (%) = 91.25 | ||||||
RF | ||||||
IS | 124 | 16 | 3 | 6 | 149 | 83.22 |
GS | 9 | 97 | 3 | 5 | 114 | 85.09 |
BL | 4 | 2 | 74 | 1 | 81 | 91.36 |
W | 4 | 1 | 0 | 51 | 56 | 91.07 |
Total | 141 | 116 | 80 | 63 | 400 | |
Producer’s accuracy (%) | 87.94 | 83.62 | 92.50 | 80.95 | ||
Overall accuracy (%) = 86.5 | ||||||
SVM | ||||||
IS | 114 | 7 | 5 | 8 | 134 | 85.07 |
GS | 11 | 86 | 4 | 2 | 103 | 83.50 |
BL | 1 | 5 | 87 | 3 | 96 | 90.63 |
W | 1 | 3 | 0 | 63 | 67 | 94.03 |
Total | 127 | 101 | 96 | 76 | 400 | |
Producer’s accuracy (%) | 89.76 | 85.15 | 90.63 | 82.89 | ||
Overall accuracy (%) = 87.5 | ||||||
ANN | ||||||
IS | 112 | 12 | 17 | 3 | 144 | 77.78 |
GS | 7 | 76 | 6 | 2 | 91 | 83.52 |
BL | 13 | 3 | 76 | 4 | 96 | 79.17 |
W | 4 | 3 | 0 | 62 | 69 | 89.86 |
Total | 136 | 94 | 99 | 71 | 400 | |
Producer’s accuracy (%) | 82.35 | 80.85 | 76.77 | 87.32 | ||
Overall accuracy (%) = 81.5 |
Classified Data | 2019 | Total | User’s Accuracy (%) | |||
---|---|---|---|---|---|---|
IS | GS | BL | W | |||
KNN | ||||||
IS | 117 | 2 | 2 | 0 | 121 | 96.69 |
GS | 4 | 108 | 5 | 2 | 119 | 90.76 |
BL | 7 | 2 | 81 | 0 | 90 | 90.00 |
W | 2 | 1 | 0 | 67 | 70 | 95.71 |
Total | 130 | 113 | 88 | 69 | 400 | |
Producer’s accuracy (%) | 90.00 | 95.58 | 92.05 | 97.10 | ||
Overall accuracy (%) = 93.25 | ||||||
RF | ||||||
IS | 126 | 5 | 13 | 1 | 145 | 86.90 |
GS | 3 | 91 | 6 | 2 | 102 | 89.22 |
BL | 17 | 2 | 64 | 1 | 84 | 76.19 |
W | 5 | 1 | 0 | 69 | 75 | 92.00 |
Total | 151 | 99 | 83 | 73 | 406 | |
Producer’s accuracy (%) | 83.44 | 91.92 | 77.11 | 94.52 | ||
Overall accuracy (%) = 86.21 | ||||||
SVM | ||||||
IS | 107 | 8 | 17 | 4 | 136 | 78.68 |
GS | 11 | 96 | 4 | 2 | 113 | 84.96 |
BL | 21 | 5 | 71 | 3 | 100 | 71.00 |
W | 1 | 3 | 0 | 47 | 51 | 92.16 |
Total | 140 | 112 | 92 | 56 | 400 | |
Producer’s accuracy (%) | 76.43 | 85.71 | 77.17 | 83.93 | ||
Overall accuracy (%) = 80.25 | ||||||
ANN | ||||||
IS | 98 | 12 | 10 | 3 | 123 | 79.67 |
GS | 3 | 81 | 3 | 2 | 89 | 91.01 |
BL | 23 | 3 | 85 | 5 | 116 | 73.28 |
W | 1 | 2 | 0 | 69 | 72 | 95.83 |
Total | 125 | 98 | 98 | 79 | 400 | |
Producer’s accuracy (%) | 78.40 | 82.65 | 86.73 | 87.34 | ||
Overall accuracy (%) = 83.25 |
References
- Reba, M.; Seto, K.C. A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens. Environ. 2020, 242, 111739. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1481–1507. [Google Scholar] [CrossRef]
- Wu, J. Urban sustainability: An inevitable goal of landscape research. Landsc. Ecol. 2010, 25, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; He, S.; Zhou, X. Study on sustainable urbanization literature based on Web of Science, scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace. J. Clean. Prod. 2020, 264, 121537. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Qiu, T.; Song, C.; Zhang, Y.; Liu, H.; Vose, J.M. Urbanization and climate change jointly shift land surface phenology in the northern mid-latitude large cities. Remote Sens. Environ. 2020, 236, 111477. [Google Scholar] [CrossRef]
- Marcotullio, P.J.; Keßler, C.; Fekete, B.M. The future urban heatwave challenge in Africa: Exploratory analysis. Glob. Environ. Chang. 2021, 66. [Google Scholar] [CrossRef]
- Franco, S.; Mandla, V.R.; Ram Mohan Rao, K. Urbanization, energy consumption and emissions in the Indian context A review. Renew. Sustain. Energy Rev. 2017, 71, 898–907. [Google Scholar] [CrossRef]
- Michishita, R.; Jiang, Z.; Xu, B. Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing. Remote Sens. Environ. 2012, 117, 3–18. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Chao, S.; Qiao, L.; Jiang, Y.; Zeng, X.; Fan, X. Urbanization-related changes in soil PAHs and potential health risks of emission sources in a township in Southern Jiangsu, China. Sci. Total Environ. 2017, 575, 692–700. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London, Deduced from Meteorological Observations; Cambridge University Press: New York, NY, USA, 2012; Volume 2. [Google Scholar]
- OKE, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, B.K.H.; Myint, S.W.; Feng, C.; Chow, W.T.L.; Passy, P.F. Science of the Total Environment Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Sci. Total Environ. 2018, 643, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Pereira Filho, A.J.; Karam, H.A. Urban Climate Estimation of long term low resolution surface urban heat island intensities for tropical cities using MODIS remote sensing data. UCLIM 2016, 17, 32–66. [Google Scholar] [CrossRef]
- He, B.J.; Wang, J.; Liu, H.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Gillies, R.R.; Kustas, W.P.; Humes, K.S. A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. Int. J. Remote Sens. 1997, 18, 3145–3166. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Wang, Y.; Du, H.; Xu, Y.; Lu, D.; Wang, X.; Guo, Z. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631–632, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.P.; Alias, H.; Aghamohammadi, N.; Aghazadeh, S.; Nik Sulaiman, N.M. Urban heat island experience, control measures and health impact: A survey among working community in the city of Kuala Lumpur. Sustain. Cities Soc. 2017, 35, 660–668. [Google Scholar] [CrossRef]
- Rocklöv, J.; Forsberg, B.; Ebi, K.; Bellander, T. Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden. Glob. Health Action 2014, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Wang, Y.; Xiu, C.; Xiao, X.; Xia, J.; Jin, C. Optimizing local climate zones to mitigate urban heat island effect in human settlements. J. Clean. Prod. 2020, 275, 123767. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Sun, W.; Xiao, X.; Xia Cecilia, J.; Jin, C.; Li, X. Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature. Sustain. Cities Soc. 2020, 63, 102443. [Google Scholar] [CrossRef]
- Yang, J.; Zhan, Y.; Xiao, X.; Xia, J.C.; Sun, W.; Li, X. Investigating the diversity of land surface temperature characteristics in different scale cities based on local climate zones. Urban Clim. 2020, 34, 100700. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Gong, W.; Xia, X. Greening in Rural Areas Increases the Surface Urban Heat Island Intensity. Geophys. Res. Lett. 2019, 46, 2204–2212. [Google Scholar] [CrossRef]
- Fast, J.D.; Torcolini, J.C.; Redman, R. Pseudovertical temperature profiles and the urban heat island measured by a temperature datalogger network in Phoenix, Arizona. J. Appl. Meteorol. 2005, 44, 3–13. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Roth, M. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 2006, 2260, 2243–2260. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Chen, J.; Li, J.; Niu, Z. Less sensitive of urban surface to climate variability than rural in Northern China. Sci. Total Environ. 2018, 628–629, 650–660. [Google Scholar] [CrossRef]
- Zhou, D.; Bonafoni, S.; Zhang, L.; Wang, R. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci. Total Environ. 2018, 628–629, 415–429. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Niu, Z.; Liu, F.; Wang, Q. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Sci. Total Environ. 2017, 609, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Zhan, W.; Wang, Z.H.; Voogt, J.; Hu, L.; Quan, J.; Liu, C.; Zhang, N.; Lai, J. Satellite identification of atmospheric-surface-subsurface urban heat islands under clear sky. Remote Sens. Environ. 2020, 250, 112039. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Li, D.; Huang, D.; Zhu, C. Climate—Vegetation control on the diurnal and seasonal variations of surface urban heat islands in China. Environ. Res. Lett. 2016, 11, 074009. [Google Scholar] [CrossRef]
- Zhou, D.; Li, D.; Sun, G.; Zhang, L.; Liu, Y.; Hao, L. Contrasting effects of urbanization and agriculture on surface temperature in eastern China. J. Geophys. Res. Atmos. 2016, 9597–9606. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Asrar, G.R.; Imhoff, M.; Li, X. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Sci. Total Environ. 2017, 605–606, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Santamouris, M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 2015, 512–513, 582–598. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012. [Google Scholar] [CrossRef]
- Clinton, N.; Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Scott Krayenhoff, E.; Voogt, J.A. Daytime thermal anisotropy of urban neighbourhoods: Morphological causation. Remote Sens. 2016, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia, J.C.; Jin, C.; Li, X. Understanding land surface temperature impact factors based on local climate zones. Sustain. Cities Soc. 2021, 69, 102818. [Google Scholar] [CrossRef]
- Alexander, P.J.; Mills, G. Local climate classification and Dublin’s urban heat island. Atmosphere 2014, 5, 755–774. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Luo, X.; Jin, C.; Xiao, X.; Cecilia, J. Spatiotemporal patterns of vegetation phenology along the urban—Rural gradient in Coastal Dalian, China. Urban For. Urban Green. 2020, 54, 126784. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. Variability in annual temperature cycle in the urban areas of the United States as revealed by MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2018, 146, 65–73. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y. Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana. Sustainability 2020, 12, 7953. [Google Scholar] [CrossRef]
- Weng, Q.; Liu, H.; Lu, D. Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban Ecosyst. 2007, 10, 203–219. [Google Scholar] [CrossRef]
- Myint, S.W.; Wentz, E.A.; Brazel, A.J.; Quattrochi, D.A. The impact of distinct anthropogenic and vegetation features on urban warming. Landsc. Ecol. 2013, 28, 959–978. [Google Scholar] [CrossRef] [Green Version]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Lu, L.; Weng, Q.; Guo, H.; Li, Q.; Hui, W. Spatiotemporal Variation of Surface Urban Heat Islands in Relation to Land Cover Composition and Configuration: A Multi-Scale Case Study of Xi’an, China. Remote Sens. 2020, 12, 2713. [Google Scholar] [CrossRef]
- Osborne, P.E.; Alvares-Sanches, T. Quantifying how landscape composition and configuration affect urban land surface temperatures using machine learning and neutral landscapes. Comput. Environ. Urban Syst. 2019, 76, 80–90. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Terfa, B.K.; Chen, N.; Zhang, X.; Niyogi, D. Spatial configuration and extent explains the urban heat mitigation potential due to green spaces: Analysis over Addis Ababa, Ethiopia. Remote Sens. 2020, 12, 2876. [Google Scholar] [CrossRef]
- Nega, W.; Hailu, B.T.; Fetene, A. An assessment of the vegetation cover change impact on rainfall and land surface temperature using remote sensing in a subtropical climate, Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 16, 100266. [Google Scholar] [CrossRef]
- Kabano, P.; Lindley, S.; Harris, A. Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landsc. Urban Plan. 2021, 206, 103989. [Google Scholar] [CrossRef]
- Me-ead, C.; McNeil, R. Pattern and Trend of Night Land Surface Temperature in Africa. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Effat, H.A.; Hassan, O.A.K. Change detection of urban heat islands and some related parameters using multi-temporal Landsat images; a case study for Cairo city, Egypt. Urban Clim. 2014, 10, 171–188. [Google Scholar] [CrossRef]
- El-Hattab, M.; Amany, S.M.; Lamia, G.E. Monitoring and assessment of urban heat islands over the Southern region of Cairo Governorate, Egypt. Egypt. J. Remote Sens. Sp. Sci. 2018, 21, 311–323. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme. The State of African Cities. 2008. A Framework for Addressing Urban Challenges in Africa; UN-HABITAT: Nairobi, Kenya, 2008; ISBN 9789211320152. [Google Scholar]
- Kondo, K.; Mabon, L.; Bi, Y.; Chen, Y.; Hayabuchi, Y. Balancing conflicting mitigation and adaptation behaviours of urban residents under climate change and the urban heat island effect. Sustain. Cities Soc. 2021, 65, 102585. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, F.F.; Gonçalves, W.A.; Andrade, L.D.M.B.; Villavicencio, L.M.M.; dos Santos Silva, C.M. Assessment of Urban Heat Islands in Brazil based on MODIS remote sensing data. Urban Clim. 2021, 35. [Google Scholar] [CrossRef]
- Richard, Y.; Pohl, B.; Rega, M.; Pergaud, J.; Thevenin, T.; Emery, J.; Dudek, J.; Vairet, T.; Zito, S.; Chateau-Smith, C. Is Urban Heat Island intensity higher during hot spells and heat waves (Dijon, France, 2014–2019)? Urban Clim. 2021, 35, 100747. [Google Scholar] [CrossRef]
- Lazzarini, M.; Molini, A.; Marpu, P.R.; Ouarda, T.B.M.J.; Ghedira, H. Urban climate modifications in hot desert cities: The role of land cover, local climate, and seasonality. Geophys. Res. Lett. 2015, 42, 9980–9989. [Google Scholar] [CrossRef] [Green Version]
- Shahraiyni, H.T.; Sodoudi, S.; El-zafarany, A.; Abou, T.; Seoud, E. A Comprehensive Statistical Study on Daytime Surface Urban Heat Island during Summer in Urban Areas, Case Study: Cairo and Its New Towns. Remote Sens. 2016, 8, 643. [Google Scholar] [CrossRef] [Green Version]
- Robaa, S.M. Some aspects of the urban climates of Greater Cairo Region, Egypt. Int. J. Climatol. 2013, 3216, 3206–3216. [Google Scholar] [CrossRef]
- The World’s Cities in 2018. Available online: https://www.un.org/development/desa/pd/search/node/the%20world%20cities%20in%202018 (accessed on 4 April 2021).
- Yin, Z.Y.; Stewart, D.J.; Bullard, S.; MacLachlan, J.T. Changes in urban built-up surface and population distribution patterns during 1986-1999: A case study of Cairo, Egypt. Comput. Environ. Urban Syst. 2005, 29, 595–616. [Google Scholar] [CrossRef]
- Nile Basin Climate Zones—Nile Basin Water Resources Atlas. Available online: https://atlas.nilebasin.org/treatise/nile-basin-climate-zones/ (accessed on 23 February 2021).
- Maps and Educational Software. Available online: http://www.yourchildlearns.com/ (accessed on 11 August 2020).
- DIVA-GIS. Available online: https://www.diva-gis.org/ (accessed on 11 August 2020).
- Google Earth Engine. Available online: https://earthengine.google.com/ (accessed on 11 August 2020).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 12 August 2020).
- Kamusoko, C.; Aniya, M. Hybrid classification of Landsat data and GIS for land use/cover change analysis of the Bindura district, Zimbabwe. Int. J. Remote Sens. 2009, 30, 97–115. [Google Scholar] [CrossRef]
- Erkan, U.; Gökrem, L. A new method based on pixel density in salt and pepper noise removal. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 162–171. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Image classification techniques in mapping urban landscape: A case study of Tsukuba city using AVNIR-2 sensor data. Tsukuba Geoenviron. Sci. 2007, 3, 3–10. [Google Scholar]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Wang, K.; Li, Z.; Cribb, M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter. Remote Sens. Environ. 2006, 102, 293–305. [Google Scholar] [CrossRef]
- Jin, M.; Dickinson, R.E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef] [Green Version]
- LP DAAC—MODIS Overview. Available online: https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/modis-overview/ (accessed on 10 February 2021).
- MOD11A1.006 Terra Land Surface Temperature and Emissivity Daily Global 1 km. Available online: https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A1 (accessed on 12 August 2020).
- Image Collection Reductions. Available online: https://developers.google.com/earth-engine/reducers_image_collection (accessed on 12 August 2020).
- LP DAAC Data User Resources/ArcGIS MODIS Python Toolbox. Available online: https://git.earthdata.nasa.gov/projects/LPDUR/repos/arcgis-modis-python-toolbox/browse (accessed on 10 February 2021).
- van Hove, L.W.A.; Steeneveld, G.J.; Jacobs, C.M.J.; Heusinkveld, B.G.; Elbers, J.A.; Moors, E.J.; Holtslag, A.A.M. Exploring the Urban Heat Island Intensity of Dutch Cities: Assessment Based on a Literature Review, Recent Meteorologic; Alterra: Wageningen, The Netherlands, 2011. [Google Scholar]
- Tatem, A.J. WorldPop, open data for spatial demography. Sci. Data 2017, 4, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, C.T. High resolution global gridded data for use in population studies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2017, 42, 117–120. [Google Scholar] [CrossRef] [Green Version]
- WorldPop. Available online: https://www.worldpop.org/ (accessed on 17 February 2021).
- Taubenböck, H.; Weigand, M.; Esch, T.; Staab, J.; Wurm, M.; Mast, J.; Dech, S. A new ranking of the world’s largest cities—Do administrative units obscure morphological realities? Remote Sens. Environ. 2019, 232, 111353. [Google Scholar] [CrossRef]
- Ye, T.; Zhao, N.; Yang, X.; Ouyang, Z.; Liu, X.; Chen, Q.; Hu, K.; Yue, W.; Qi, J.; Li, Z.; et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total Environ. 2019, 658, 936–946. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Seposo, X.T.; Togawa, T.; Hijioka, Y.; Nakamura, S. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Liu, J.; Bu, Y. Quantitative Analysis of Spatial Heterogeneity and Driving Forces of the Thermal Environment in Urban Built-up Areas: A Case Study in Xi’ an, China. Sustainability 2021, 13, 1870. [Google Scholar] [CrossRef]
- WorldPop: About WorldPop. Available online: https://www.worldpop.org/about (accessed on 17 February 2021).
- Hou, H.; Estoque, R.C. Detecting Cooling Effect of Landscape from Composition and Configuration: An Urban Heat Island Study on Hangzhou. Urban For. Urban Green. 2020, 53, 126719. [Google Scholar] [CrossRef]
- Li, X.; Kamarianakis, Y.; Ouyang, Y.; Turner, B.L.; Brazel, A. On the association between land system architecture and land surface temperatures: Evidence from a Desert Metropolis—Phoenix, Arizona, U.S.A. Landsc. Urban Plan. 2017, 163, 107–120. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K. Fragstats; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 2015; pp. 1–182. [CrossRef]
- Rady, O.; El-kawy, A.; Ahmed, H.; Mohamed, H. The Egyptian Journal of Remote Sensing and Space Sciences Temporal detection and prediction of agricultural land consumption by urbanization using remote sensing. Egypt. J. Remote Sens. Sp. Sci. 2019, 22, 237–246. [Google Scholar] [CrossRef]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Impacts of urbanization on the Muthurajawela marsh and Negombo lagoon, Sri Lanka: Implications for landscape planning towards a sustainable urban wetland ecosystem. Remote Sens. 2021, 13, 316. [Google Scholar] [CrossRef]
- World Urbanization Prospects, The 2011 Revision; Department of Economic and Social Affairs, Popolation Division, United Nations: New York, NY, USA, 2012.
- Mohamed, A.; Worku, H. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Clim. 2020, 31, 100545. [Google Scholar] [CrossRef]
- Siddiqui, A.; Siddiqui, A.; Maithani, S.; Jha, A.K.; Kumar, P.; Srivastav, S.K. Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression. Egypt. J. Remote Sens. Sp. Sci. 2018, 21, 229–236. [Google Scholar] [CrossRef]
- Han, Y.; Jia, H. Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China. Ecol. Modell. 2017, 353, 107–116. [Google Scholar] [CrossRef]
- The Strategic Urban Development Master Plan Study for a Sustainable Development of the Greater Cairo Region in the Arab Republic of Egypt; Final Report; General Organization for Physical Planning, Greater Cairo Region Urban Planning Center: Cairo, Egypt; Volume 2, pp. 1–46.
- Climate Change Adaptation And Urban Resilience Participatory Development Programme in Urban Areas. Available online: http://www.egypt-urban.net/climate-change-adaptation-and-urban-resilience/ (accessed on 22 February 2021).
- Strategic Urban Development Plan for Greater Cairo Region. UN-HABITAT. Available online: https://mirror.unhabitat.org/content.asp?cid=7120&catid=192&typeid=13 (accessed on 4 April 2021).
- Rehan, R.M. Cool city as a sustainable example of heat island management case study of the coolest city in the world. HBRC J. 2016, 12, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Town, B.; Tarawally, M.; Xu, W.; Hou, W.; Mushore, T.D. Comparative Analysis of Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone. Remote Sens. 2018, 10, 112. [Google Scholar] [CrossRef] [Green Version]
- Rasul, A.; Balzter, H.; Smith, C. Spatial variation of the daytime Surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Clim. 2015, 14, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S.K. Seasonal variations of the surface urban heat Island in a semi-arid city. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- USA Environmental Protection Agency Reducing Urban Heat Islands: Green Roofs. Heat Isl. Reduct. Act. 2008, 1–23. [CrossRef]
- Xu, H.; Lin, D.; Tang, F. The impact of impervious surface development on land surface temperature in a subtropical city: Xiamen, China. Int. J. Climatol. 2013, 1883, 1873–1883. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
Spatial Metrics | Formula | Description | Units |
---|---|---|---|
Mean patch area (AREA_MN) | The spatial pattern and heterogeneity of the area. | ha | |
Largest Patch Index (LPI) | LPI ability to detect the advantages of the LUC. | 0–100 | |
Aggregation Index (AI) | The calculation of class-level aggregation in the area. | percentage |
2000 | 2010 | 2019 | ||||
---|---|---|---|---|---|---|
Land Class | Area (km2) | % | Area (km2) | % | Area (km2) | % |
Impervious surface | 564.14 | 22.57 | 698.65 | 27.95 | 869.35 | 34.77 |
Greenspace | 699.31 | 27.97 | 639.52 | 25.58 | 627.48 | 25.1 |
Bare land | 1192.12 | 47.68 | 1121.56 | 44.86 | 962.93 | 38.52 |
Water | 44.43 | 1.78 | 40.27 | 1.61 | 40.24 | 1.61 |
Daytime | |||||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2019 | |||||||
IS | GS | BL | IS | GS | BL | IS | GS | BL | |
AREA_MN | 0.0198 | −0.4022 | 0.3813 | 0.0169 | −0.3621 | 0.525 | 0.0200 | −0.5001 | 0.5209 |
LPI | 0.0454 | −0.5238 | 0.6233 | 0.2001 | −0.5123 | 0.3494 | 0.0334 | −0.5448 | 0.6054 |
AI | 0.0479 | −0.0989 | 0.6036 | 0.0202 | −0.0897 | 0.5989 | 0.004 | −0.4047 | 0.4503 |
Nighttime | |||||||||
AREA_MN | 0.2624 | −0.4489 | 0.0004 | 0.1745 | −0.4007 | 0.0006 | 0.199 | −0.5873 | 0.0087 |
LPI | 0.5077 | −0.6199 | 0.0081 | 0.5700 | −0.6038 | 0.0097 | 0.4332 | −0.6563 | 0.0318 |
AI | 0.3210 | −0.2237 | 0.1708 | 0.2536 | −0.296 | 0.1953 | 0.3584 | −0.3781 | 0.1403 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athukorala, D.; Murayama, Y. Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban–Rural Gradient. Remote Sens. 2021, 13, 1396. https://doi.org/10.3390/rs13071396
Athukorala D, Murayama Y. Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban–Rural Gradient. Remote Sensing. 2021; 13(7):1396. https://doi.org/10.3390/rs13071396
Chicago/Turabian StyleAthukorala, Darshana, and Yuji Murayama. 2021. "Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban–Rural Gradient" Remote Sensing 13, no. 7: 1396. https://doi.org/10.3390/rs13071396
APA StyleAthukorala, D., & Murayama, Y. (2021). Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban–Rural Gradient. Remote Sensing, 13(7), 1396. https://doi.org/10.3390/rs13071396