Crustal Strain and Stress Fields in Egypt from Geodetic and Seismological Data
Abstract
:1. Introduction
2. Background Setting
2.1. Geodynamic Setting
2.2. Seismotectonic Setting
3. Materials and Methods
3.1. Earthquake Fault Plane Solutions and Stress Tensor Inversions
3.1.1. Data Collection
3.1.2. Stress Tensor Inversions
3.2. Geodetic Observations
3.2.1. GNSS Data Collection and Processing
3.2.2. GNSS Velocity Estimation
3.2.3. GNSS Strain-Rate Computation
4. Results and Discussion
4.1. Crustal Stress Field
4.2. Geodetic Velocities and Strain-Rates Field
4.3. Stress and Strain-Rate Fields Comparison
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moores, E.M.; Fairbridge, R.W. Encyclopedia of European and Asian Regional Geology; Encyclopedia of Earth Sciences Series; Springer: London, UK, 1998. [Google Scholar]
- Reilinger, R.; McClusky, S. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys. J. Int. 2011, 186, 971–979. [Google Scholar] [CrossRef]
- Sawires, R.; Peláez, J.A.; Fat-Helbary, R.E.; Panzera, F.; Ibrahim, H.A.; Hamdache, M. Probabilistic seismic hazard deaggregation for selected Egyptian cities. Pure Appl. Geophys. 2017, 174, 1581–1600. [Google Scholar] [CrossRef]
- Sawires, R.; Peláez, J.A.; Fat-Helbary, R.E.; Ibrahim, H.A. An Earthquake Catalogue (2200 B.C. to 2013) for Seismotectonic and Seismic Hazard Assessment Studies in Egypt. In Earthquakes and Their Impact on Society; D’Amico, S., Ed.; Springer Natural Hazards, Springer: Cham, Switzerland, 2016. [Google Scholar]
- Palano, M.; Imprescia, P.; Gresta, S. Current stress and strain-rate fields across the Dead Sea Fault System: Constraints from seismological data and GPS observations. Earth Planet. Sci. Lett. 2013, 369–370, 305–316. [Google Scholar] [CrossRef]
- Saleh, M.; Becker, M. New constraints on the Nubia–Sinai–Dead Sea fault crustal motion. Tectonophysics 2015, 651, 79–98. [Google Scholar] [CrossRef]
- Pietrantonio, G.; Devoti, R.; Mahmoud, S.; Riguzzi, F. Kinematics of the Suez-Sinai area from combined GPS velocity field. J. Geodyn. 2016, 102, 231–238. [Google Scholar] [CrossRef]
- EUREF. Permanent GNSS Network. Available online: www.epncb.oma.be (accessed on 23 February 2021).
- SOPAC. Scripps Orbit and Permanent Array Center. Available online: http://sopac-csrc.ucsd.edu (accessed on 15 March 2021).
- UNAVCO. Available online: www.unavco.org (accessed on 23 February 2021).
- Egyptian Geological Survey Authority. Geological Map of Egypt; Egyptian Geological Survey Authority: Cairo, Egypt, 1981. [Google Scholar]
- World Pop Open Spatial Demographic Data and Research. Available online: www.worldpop.org (accessed on 23 February 2021).
- Sawires, R.F.; Peláez, J.; Fat-Helbary, R.; Ibrahim, H.; Hernández, H.I.A.M.G. An updated seismic source model for Egypt. In Earthquake Engineering—From Engineering Seismology to Optimal Seismic Design of Engineering Structures; IntechOpen: London, UK, 2015; pp. 1–52. [Google Scholar] [CrossRef] [Green Version]
- Zoback, M.L. First-and second-order patterns of stress in the lithosphere: The World Stress Map Project. J. Geophys. Res. Solid Earth 1992, 97, 11703–11728. [Google Scholar] [CrossRef]
- Badawy, A. Status of the crustal stress in Egypt as inferred from earthquake focal mechanisms and borehole breakouts. Tectonophysics 2001, 343, 49–61. [Google Scholar] [CrossRef]
- Badawy, A. Seismicity of Egypt. Seism. Res. Lett. 2005, 76, 149–160. [Google Scholar] [CrossRef]
- Hussein, H.M.; Elenean, K.A.; Marzouk, I.; Korrat, I.M.; Abu El-Nader, I.; Ghazala, H.; ElGabry, M. Present-day tectonic stress regime in Egypt and surrounding area based on inversion of earthquake focal mechanisms. J. Afr. Earth Sci. 2013, 81, 1–15. [Google Scholar] [CrossRef]
- Mohamed, E.K.; Hassoup, A.; Elenean, K.A.; Othman, A.A.; Hamed, D.-E.M. Earthquakes focal mechanism and stress field pattern in the northeastern part of Egypt. NRIAG J. Astron. Geophys. 2015, 4, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.; Badreldin, H. Present-day stress field in Egypt based on a comprehensive and updated earthquake focal mech-anisms catalog. Pure Appl. Geophys. 2019, 176, 4729–4760. [Google Scholar] [CrossRef]
- Chang, C.-P.; Chang, T.-Y.; Angelier, J.; Kao, H.; Lee, J.-C.; Yu, S.-B. Strain and stress field in Taiwan oblique convergent system: Constraints from GPS observation and tectonic data. Earth Planet. Sci. Lett. 2003, 214, 115–127. [Google Scholar] [CrossRef]
- Townend, J.; Zoback, M.D. Stress, strain, and mountain building in central Japan. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Keiding, M.; Lund, B.; Árnadóttir, T. Earthquakes, stress, and strain along an obliquely divergent plate boundary: Reykjanes Peninsula, southwest Iceland. J. Geophys. Res. Space Phys. 2009, 114, 09306. [Google Scholar] [CrossRef]
- Palano, M.; González, P.J.; Fernández, J. The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth Planet. Sci. Lett. 2015, 430, 439–447. [Google Scholar] [CrossRef] [Green Version]
- The World Stress Map Project—A Service for Science and Earth System Management. Available online: www.world-stress-map.org/ (accessed on 23 February 2021).
- Salamon, A.; Hofstetter, A.; Garfunkel, Z.; Ron, H. Seismotectonics of the Sinai subplate–The eastern Mediterranean region. Geophys. J. Int. 2003, 155, 149–173. [Google Scholar] [CrossRef] [Green Version]
- Hofstetter, A. Seismic observations of the 22/11/1995 Gulf of Aqaba earthquake sequence. Tectonophysics 2003, 369, 21–36. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C. Mediterranean extension and the Africa-Eurasia collision. Tectonics 2000, 19, 1095–1106. [Google Scholar] [CrossRef]
- Mouthereau, F.; Lacombe, O.; Vergés, J. Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 2012, 532–535, 27–60. [Google Scholar] [CrossRef]
- Brew, G.; Lupa, J.; Barazangi, M.; Sawaf, T.; Al-Imam, A.; Zaza, T. Structure and tectonic development of the Ghab basin and the Dead Sea fault system, Syria. J. Geol. Soc. 2001, 158, 665–674. [Google Scholar] [CrossRef]
- Montadert, L.; Nicolaides, S.; Semb, P.H.; Lie, Ø.; Marlow, L.; Kendall, C.C.; Rose, L.A. Petroleum Systems Offshore Cyprus. In Petroleum Systems of the Tethyan Region; Marlow, L., Kendall, C., Yose, L., Eds.; American Association of Petroleum Geologists: Washington, DC, USA, 2014; pp. 301–334. [Google Scholar]
- Bartov, Y.; Steinitz, G.; Eyal, M.; Eyal, Y. Sinistral movement along the Gulf of Aqaba—Its age and relation to the opening of the Red Sea. Nature 1980, 285, 220–222. [Google Scholar] [CrossRef]
- Macgregor, D. History of the development of the East African Rift System: A series of interpreted maps through time. J. Afr. Earth Sci. 2015, 101, 232–252. [Google Scholar] [CrossRef]
- Bulut, F.; Bohnhoff, M.; Eken, T.; Janssen, C.; Kılıç, T.; Dresen, G. The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- International Seismological Centre. Available online: www.isc.ac.uk/iscbulletin/search/catalogue/ (accessed on 23 February 2021).
- Frohlich, C. Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys. Earth Planet. Inter. 1992, 75, 193–198. [Google Scholar] [CrossRef]
- Dewey, J.F.; Helman, M.L.; Knott, S.D.; Turco, E.; Hutton, D.H.W. Kinematics of the western Mediterranean. Geol. Soc. Lond. Spéc. Publ. 1989, 45, 265–283. [Google Scholar] [CrossRef]
- Joffe, S.; Garfunkel, Z. Plate kinematics of the circum Red Sea—A re-evaluation. Tectonophysics 1987, 141, 5–22. [Google Scholar] [CrossRef]
- Maamoun, M.; Megahed, A.; Allam, A. Seismicity of Egypt. Helwan Obs. Bull. 1984, 4, 109–160. [Google Scholar]
- Kebeasy, R.M. Seismicity. In The Geology of Egypt; Said, R., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1990; pp. 51–59. [Google Scholar]
- Ambraseys, N.N.; Melville, C.P.; Adams, R.D. The Seismicity of Egypt, Arabia and the Red Sea; Cambridge University Press: Cambridge, UK, 1994; pp. 1–137. [Google Scholar]
- Badawy, A. Historical seismicity of Egypt. Acta Geod. Geophys. Hung. 1999, 34, 119–135. [Google Scholar]
- Abou Elenean, K.M. Focal mechanisms of small and moderate size earthquakes recorded by the Egyptian National Seismic Network (ENSN), Egypt. NRIAG J. Geophys. 2007, 6, 119–153. [Google Scholar]
- Poirier, J.P.; Taher, M.A. Historical seismicity in the near and Middle East, North Africa, and Spain from Arabic documents (VIIth-XVIIIth century). Bull. Seismol. Soc. Am. 1980, 70, 2185–2201. [Google Scholar]
- Global CMT Web Page. Available online: www.globalcmt.org (accessed on 23 February 2021).
- European-Mediterranean RCMT Catalog—European-Mediterranean Regional Centroid-Moment Tensors. Available online: rcmt2.bo.ingv.it (accessed on 23 February 2021).
- ENSN—Athena. Available online: http://ensn.nriag.sci.eg/ (accessed on 23 February 2021).
- NEIC-USGS—Earthquake Hazards Program. Available online: earthquake.usgs.gov/earthquakes/search/ (accessed on 23 February 2021).
- Korrat, I.; El Agami, N.; Hussein, H.; El-Gabry, M. Seismotectonics of the passive continental margin of Egypt. J. Afr. Earth Sci. 2005, 41, 145–150. [Google Scholar] [CrossRef]
- Badawy, A.A.; Al-Werr, A.; Ali, S.M. Relative location and source mechanism of inland earthquakes in Northern Egypt. J. Seism. 2013, 18, 257–276. [Google Scholar] [CrossRef]
- Michael, A.J. Determination of stress from slip data: Faults and folds. J. Geophys. Res. Space Phys. 1984, 89, 11517–11526. [Google Scholar] [CrossRef]
- Michael, A.J. Use of focal mechanisms to determine stress: A control study. J. Geophys. Res. Space Phys. 1987, 92, 357–368. [Google Scholar] [CrossRef]
- Gephart, J.W.; Forsyth, D.W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando Earthquake Sequence. J. Geophys. Res. Space Phys. 1984, 89, 9305–9320. [Google Scholar] [CrossRef]
- Lund, B.; Slunga, R. Stress tensor inversion using detailed microearthquake information and stability constraints: Appli-cation to Ölfus in southwest Iceland. J. Geophys. Res. Solid Earth 1999, 104, 14947–14964. [Google Scholar] [CrossRef]
- Arnold, R.; Townend, J. A Bayesian approach to estimating tectonic stress from seismological data. Geophys. J. Int. 2007, 170, 1336–1356. [Google Scholar] [CrossRef] [Green Version]
- Vavryčuk, V. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys. J. Int. 2014, 199, 69–77. [Google Scholar] [CrossRef]
- McKenzie, D.P. The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bull. Seismol. Soc. Am. 1969, 59, 591–601. [Google Scholar]
- Bott, M.H.P. The Mechanics of Oblique Slip Faulting. Geol. Mag. 1959, 96, 109–117. [Google Scholar] [CrossRef]
- Michael, A.J. Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: New techniques and results. J. Geophys. Res. Space Phys. 1991, 96, 6303–6319. [Google Scholar] [CrossRef]
- Lund, B.; Townend, J. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophys. J. Int. 2007, 170, 1328–1335. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, S.; Reilinger, R.; McClusky, S.; Vernant, P.; Tealeb, A. GPS evidence for northward motion of the Sinai Block: Implications for E. Mediterranean tectonics. Earth Planet. Sci. Lett. 2005, 238, 217–224. [Google Scholar] [CrossRef]
- Radwan, A.M.; Hosny, A.; Kotb, A.; Khalil, A.; Abed, A.; Fernandes, R.M.S.; Rayan, A. Assessment of the geodynamical settings around the main active faults at Aswan area, Egypt. Arab. J. Geosci. 2014, 8, 4317–4327. [Google Scholar] [CrossRef]
- Riguzzi, F.; Mahmoud, S.M.; Tealeb, A. Displacement pattern of the Sinai area: First results from GPS. Ann. Geophys. 1999, 42. [Google Scholar] [CrossRef]
- Sakr, K.; Radwan, A.M.; Rashwan, M.; Gomaa, M. Estimation of crustal movements using the Global Positioning System (GPS) measurements along Nile Valley area, Egypt from 2007 to 2012. NRIAG J. Astron. Geophys. 2015, 4, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Monem, S.M.; Zahran, K.H.; Saleh, M.; Yossef, M.M.; Omran, A.A.; Radwan, A.M. Gavity observation and crustal deformation at Cairo Region and its geodynamical implications. World Appl. Sci. J. 2013, 21, 1721–1728. [Google Scholar]
- Abdel-Monem, S.M.; Becker, M.; Saleh, M. Comparative deformation analysis for Abu Dabab area, Egypt. Acta Geod. Geophys. Hung. 2012, 47, 1–18. [Google Scholar]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Sofware Version 5.2; Astronomical Institute, University of Bern: Bern, Switzerland, 2015; Available online: http://www.bernese.unibe.ch/docs/DOCU52.pdf (accessed on 23 February 2021).
- Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. Introduction to GAMIT/GLOBK, Release 10.7; Massachusetts Institute of Technology: Cambridge, UK, 2018; Available online: www-gpsg.mit.edu (accessed on 23 February 2021).
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Welcome to the Free Ocean Tide Loading Provider. Available online: holt.oso.chalmers.se/loading (accessed on 23 February 2021).
- International GNSS Service—2nd Data Reprocessing Campaign. Available online: acc.igs.org/reprocess2.html (accessed on 23 February 2021).
- Petrie, E.J.; King, M.A.; Moore, P.; Lavallée, D.A. Higher-order ionospheric effects on the GPS reference frame and veloci-ties. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- NASA Earth Data. Available online: https://cddis.nasa.gov/archive/gnss/products/ionex/ (accessed on 23 February 2021).
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Saria, E.E.; Calais, E.; Stamps, D.S.; Delvaux, D.; Hartnady, C.J.H. Present-day kinematics of the East African Rift. J. Geophys. Res. Solid Earth 2014, 119, 3584–3600. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, M.; Zeng, Y.; Wang, F. Optimal Interpolation of Spatially Discretized Geodetic Data. Bull. Seism. Soc. Am. 2015, 105, 2117–2127. [Google Scholar] [CrossRef] [Green Version]
- Devès, M.H.; King, G.C.; Klinger, Y.; Agnon, A. Localised and distributed deformation in the lithosphere: Modelling the Dead Sea region in 3 dimensions. Earth Planet. Sci. Lett. 2011, 308, 172–184. [Google Scholar] [CrossRef]
- Lyberis, N. Tectonic evolution of the Gulf of Suez and the Gulf of Aqaba. Tectonophysics 1988, 153, 209–220. [Google Scholar] [CrossRef]
- Montenat, C.; D’Estevou, P.O.; Jarrige, J.-J.; Richert, J.-P. Rift development in the Gulf of Suez and the north-western Red Sea: Structural aspects and related sedimentary processes. In Sedimentation and Tectonics in Rift Basins Red Sea Gulf of Aden; Springer: Dordrecht, The Netherlands, 1998; pp. 97–116. [Google Scholar]
- Heidbach, O.; Barth, A.; Müller, B.; Reinecker, J.; Stephansson, O.; Tingay, M.; Zang, A. WSM Quality Ranking Scheme, Database Description and Analysis Guidelines for Stress Indicator; World Stress Map Technical Report 16-01; GFZ German Research Centre for Geosciences: Potsdam, Germany, 2016. [Google Scholar]
- Awad, M.; Mizoue, M. Earthquake activity in the Aswan region, Egypt. Pure Appl. Geophys. 1995, 145, 69–86. [Google Scholar] [CrossRef]
- Abou-Aly, N.; Abdel-Monem, S.M.; Salah, M.; Saleh, M.; Sherif, M.; Khalil, H.; Hassib, G.; Rayan, A. Gps Measurements of Current Crustal Movements along the Gulf of Suez. 2011, pp. 45–66. Available online: http://www.unoosa.org/documents/pdf/psa/activities/2011/UAE/Presentations/33.pdf (accessed on 26 February 2021).
- Saleh, M.; Becker, M. A new velocity field from the analysis of the Egyptian Permanent GPS Network (EPGN). Arab. J. Geosci. 2013, 7, 4665–4682. [Google Scholar] [CrossRef]
- Saleh, M.; Becker, M. New estimation of Nile Delta subsidence rates from InSAR and GPS analysis. Environ. Earth Sci. 2018, 78, 6. [Google Scholar] [CrossRef]
- Rateb, A.; Abotalib, A.Z. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Sci. Total. Environ. 2020, 729, 138868. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.H.; Sultan, M. Land subsidence in the Nile Delta: Inferences from radar interferometry. Holocene 2009, 19, 949–954. [Google Scholar] [CrossRef]
Dataset | N | σ1 az./pl. | σ2 az./pl. | σ3 az./pl. | R | β | Stress Regime | SHmax |
---|---|---|---|---|---|---|---|---|
FMI-01 | 17 | 271/74 | 124/14 | 032/08 | 0.43 | 42.4 | NF | 119 |
FMI-02 | 21 | 126/66 | 300/24 | 031/02 | 0.38 | 29.0 | NF | 122 |
FMI-03 | 25 | 323/77 | 147/13 | 057/01 | 0.20 | 31.4 | NF | 146 |
FMI-04 | 13 | 358/83 | 139/06 | 229/04 | 0.38 | 24.6 | NF | 140 |
FMI-05 | 96 | 152/82 | 339/08 | 249/01 | 0.28 | 41.9 | NF | 159 |
FMI-06 | 31 | 293/32 | 110/58 | 202/01 | 0.12 | 17.7 | SS | 113 |
FMI-07 | 38 | 274/86 | 153/02 | 063/03 | 0.93 | 41.9 | NF | 153 |
FMI-08 | 12 | 146/81 | 329/09 | 239/00 | 0.75 | 35.6 | NF | 149 |
FMI-09 | 15 | 143/79 | 284/09 | 015/07 | 0.65 | 17.3 | NF | 106 |
FMI-10 | 16 | 337/67 | 139/22 | 232/06 | 0.20 | 25.9 | NF | 148 |
FMI-11 | 13 | 024/74 | 278/05 | 187/15 | 0.41 | 32.4 | NF | 95 |
FMI-12 | 9 | 299/29 | 105/60 | 206/06 | 0.51 | 29.4 | SS | 117 |
FMI-13 | 23 | 101/80 | 283/10 | 193/00 | 0.46 | 13.1 | NF | 103 |
FMI-14 | 10 | 079/73 | 294/14 | 202/09 | 0.32 | 14.4 | NF | 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashwan, M.; Sawires, R.; Radwan, A.M.; Sparacino, F.; Peláez, J.A.; Palano, M. Crustal Strain and Stress Fields in Egypt from Geodetic and Seismological Data. Remote Sens. 2021, 13, 1398. https://doi.org/10.3390/rs13071398
Rashwan M, Sawires R, Radwan AM, Sparacino F, Peláez JA, Palano M. Crustal Strain and Stress Fields in Egypt from Geodetic and Seismological Data. Remote Sensing. 2021; 13(7):1398. https://doi.org/10.3390/rs13071398
Chicago/Turabian StyleRashwan, Mohamed, Rashad Sawires, Ali M. Radwan, Federica Sparacino, José Antonio Peláez, and Mimmo Palano. 2021. "Crustal Strain and Stress Fields in Egypt from Geodetic and Seismological Data" Remote Sensing 13, no. 7: 1398. https://doi.org/10.3390/rs13071398
APA StyleRashwan, M., Sawires, R., Radwan, A. M., Sparacino, F., Peláez, J. A., & Palano, M. (2021). Crustal Strain and Stress Fields in Egypt from Geodetic and Seismological Data. Remote Sensing, 13(7), 1398. https://doi.org/10.3390/rs13071398