Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo Invariant Calibration Site
Abstract
:1. Introduction
1.1. Absolute Calibration
1.2. PICS Stability and Identification of Stable Areas
1.3. PICS for Absolute Calibration Model Development
1.4. Required Improvement in the Absolute Calibration Model
1.5. Landsat 8 as Reference Radiometer
1.6. Hyperspectral BRDF Model
1.7. Objectives of the Work
2. Materials and Methods
2.1. Sensors Overview
2.1.1. Landsat
2.1.2. Hyperion EO-1
2.1.3. Sentinels
2.1.4. MODIS
2.2. Study Area (PICS) and ROI
2.3. Data Preprocessing
2.4. Data Filtering
2.5. Drift Corrections to Hyperspectral Data
Yearly Drift Parameter Estimation and Correction
2.6. Four Angles BRDF Modeling
2.7. Hyperspectral BRDF Coefficients Interpolation/Fitting
2.8. Cross-Scale Factors
2.9. Hyperspectral Absolute Calibration Model
3. Results and Discussion
3.1. Validation with Landsat 8
3.2. Validation with L7
3.3. Validation with S2A and S2B
3.4. Validation with Terra and Aqua MODIS
3.5. Uncertainty Analysis
3.5.1. Cross Scale Factor Uncertainty
- The Geo-Registration Error Uncertainty
- Site Non-Uniformity
- BRDF Coefficient Uncertainty
- BRDF Model Uncertainty
3.5.2. Intercept Uncertainty
3.5.3. BRDF Model Uncertainty
3.5.4. Sensor Uncertainty
3.5.5. Total Uncertainty
3.6. Model Specification and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raut, B.; Kaewmanee, M.; Angal, A.; Xiong, X.; Helder, D. Empirical Absolute Calibration Model for Multiple Pseudo-Invariant Calibration Sites. Remote Sens. 2019, 11, 1105. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.; Helder, D.; Angal, A.; Choi, J.; Xiong, X. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site. Remote Sens. 2014, 6, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, X.; Angal, A.; Choi, T. Absolute Radiometric Calibration of Landsat Using a Pseudo Invariant Calibration Site. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1360–1369. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Morstad, D.; Scarino, B.R.; Gopalan, A. Desert-Based Absolute Calibration of Successive Geostationary Visible Sensors Using a Daily Exoatmospheric Radiance Model. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3670–3682. [Google Scholar] [CrossRef]
- Jing, X.; Leigh, L.; Helder, D.; Pinto, C.T.; Aaron, D. Lifetime Absolute Calibration of the EO-1 Hyperion Sensor and its Validation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9466–9475. [Google Scholar] [CrossRef]
- Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J. Overview of Intercalibration of Satellite Instruments. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1056–1080. [Google Scholar] [CrossRef]
- Helder, D.L.; Markham, B.L.; Thome, K.J.; Barsi, J.A.; Chander, G.; Malla, R. Updated Radiometric Calibration for the Landsat-5 Thematic Mapper Reflective Bands. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3309–3325. [Google Scholar] [CrossRef]
- Thome, K.J.; Arai, K.; Tsuchida, S.; Biggar, S.F. Vicarious Calibration of ASTER via the Reflectance-Based Approach. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3285–3295. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Wu, A.; Xiong, X.; Scarino, B.R.; Haney, C.O.; Gopalan, A. Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets. Remote Sens. 2014, 6, 2809–2826. [Google Scholar] [CrossRef] [Green Version]
- Tuli, F.T.Z.; Pinto, C.T.; Angal, A.; Xiong, X.; Helder, D. New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS). Remote Sens. 2019, 11, 1502. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Angal, A.; Choi, T.-Y.; Chander, G.; Wu, A. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors. J. Appl. Remote Sens. 2010, 4, 043525. [Google Scholar] [CrossRef]
- Chander, G.; Angal, A.; Xiong, X.J.; Helder, D.L.; Mishra, N.; Choi, T.J.; Wu, A. Preliminary assessment of several parameters to measure and compare usefulness of the CEOS reference pseudo-invariant calibration sites. In Proceedings of Sensors, Systems, and Next-Generation Satellites XIV, Toulouse, France, 20–23 September 2010; p. 78262L. [Google Scholar]
- Cosnefroy, H.; Leroy, M.; Briottet, X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sens. Environ. 1996, 58, 101–114. [Google Scholar] [CrossRef]
- EROS. Committee on Earth Observation Satellites (CEOS) Legacy—Calibration/Validation Test Sites. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-committee-earth-observation-satellites-ceos-legacy?qt-science_center_objects=0#qt-science_center_objects (accessed on 27 January 2021).
- Helder, D.L.; Basnet, B.; Morstad, D.L. Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Can. J. Remote Sens. 2010, 36, 527–539. [Google Scholar] [CrossRef]
- Vuppula, H. Normalization of Pseudo-Invariant Calibration Sites for Increasing the Temporal Resolution and Long-Term Trending. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2017. [Google Scholar]
- Govaerts, Y.; Clerici, M. Evaluation of Radiative Transfer Simulations Over Bright Desert Calibration Sites. IEEE Trans. Geosci. Remote Sens. 2004, 42, 176–187. [Google Scholar] [CrossRef]
- Govaerts, Y.; Sterckx, S.; Adriaensen, S. Optical sensor calibration using simulated radiances over desert sites. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6932–6935. [Google Scholar]
- Landsat 8 Collection 1. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-1 (accessed on 27 January 2021).
- Farhad, M.M.; Kaewmanee, M.; Leigh, L.; Helder, D. Radiometric Cross Calibration and Validation Using 4 Angle BRDF Model between Landsat 8 and Sentinel 2A. Remote Sens. 2020, 12, 806. [Google Scholar] [CrossRef]
- USGS. Landsat 8 (L8) Data Users Handbook; EROS: Sioux Falls, South Dakota; USGS: Washington, DC, USA, 2016. [Google Scholar]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 Operational Land Imager Radiometric Calibration and Stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef] [Green Version]
- Franks, S.; Neigh, C.S.R.; Campbell, P.K.; Sun, G.; Yao, T.; Zhang, Q.; Huemmrich, K.F.; Middleton, E.M.; Ungar, S.G.; Frye, S.W. EO-1 Data Quality and Sensor Stability with Changing Orbital Precession at the End of a 16 Year Mission. Remote Sens. 2017, 9, 412. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; AlHammoud, B.; Czapla-Myers, J.; Gascon, F.; Haque, O.; Kaewmanee, M.; Leigh, L.; Markham, B.L. Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. Eur. J. Remote Sens. 2018, 51, 822–837. [Google Scholar] [CrossRef]
- Markham, B.; Thome, K.; Barsi, J.; Kaita, E.; Helder, D.; Barker, J.; Scaramuzza, P. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2810–2820. [Google Scholar] [CrossRef]
- USGS. Landsat 7 Science Data Users Handbook; USGS: Washington, DC, USA, 2011. [Google Scholar]
- Ungar, S.; Pearlman, J.; Mendenhall, J.; Reuter, D. Overview of the earth observing one (eo-1) mission. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1149–1159. [Google Scholar] [CrossRef]
- Micijevic, E.; Haque, M.O.; Mishra, N. Radiometric calibration updates to the Landsat collection. Proceedings of Earth Observing Systems XXI, San Diego, CA, USA, 30 August–1 September 2016; p. 99720. [Google Scholar]
- Xiong, X.; Sun, J.; Barnes, W.; Salomonson, V.; Esposito, J.; Erives, H.; Guenther, B. Multiyear On-Orbit Calibration and Performance of Terra MODIS Reflective Solar Bands. IEEE Trans. Geosci. Remote Sens. 2007, 45, 879–889. [Google Scholar] [CrossRef]
- Roy, D.; Zhang, H.; Ju, J.; Gomez-Dans, J.; Lewis, P.; Schaaf, C.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of Spectral Band Adjustment Factors (SBAF) for Cross-Calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Shrestha, M.; Hasan, N.; Leigh, L.; Helder, D. Extended Pseudo Invariant Calibration Sites (EPICS) for the Cross-Calibration of Optical Satellite Sensors. Remote Sens. 2019, 11, 1676. [Google Scholar] [CrossRef] [Green Version]
- Bouvet, M. Radiometric comparison of multispectral imagers over a pseudo-invariant calibration site using a reference radiometric model. Remote Sens. Environ. 2014, 140, 141–154. [Google Scholar] [CrossRef]
- Lamquin, N.; Woolliams, E.; Bruniquel, V.; Gascon, F.; Gorroño, J.; Govaerts, Y.; Leroy, V.; Lonjou, V.; Alhammoud, B.; Barsi, J.A.; et al. An inter-comparison exercise of Sentinel-2 radiometric validations assessed by independent expert groups. Remote Sens. Environ. 2019, 233, 111369. [Google Scholar] [CrossRef]
- Data Quality Report. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report (accessed on 28 January 2021).
- ENV13005, N. Guide to the Expression of Uncertainty in Measurement; AFNOR: Paris, France, 1999; Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 3 December 2020).
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J. Applied Linear Regression Models; McGraw-Hill Irwin: Boston, MA, USA, 2004. [Google Scholar]
- Shrestha, M.; Hasan, N.; Leigh, L.; Helder, D. Derivation of Hyperspectral Profile of Extended Pseudo Invariant Calibration Sites (EPICS) for Use in Sensor Calibration. Remote Sens. 2019, 11, 2279. [Google Scholar] [CrossRef] [Green Version]
Sensor Name | Number of Scenes | SZA Variation (Degree) | SAA Variation (Degree) | VZA Variation (Degree) | VAA Variation (Degree) |
---|---|---|---|---|---|
EO-1 Hyperion | 363 | 20–70 | 83–160 | 0.2–20 | 100–282 |
L8 OLI | 128 | 20–56 | 100–158 | 0.2–1.5 | 55–263 |
L7 ETM+ | 336 | 20–58 | 96–158 | 1.5–3.5 | 102–105 |
S2A MSI | 129 | 17–55 | 103–162 | 3.0–3.5 | 124–128 |
S2B MSI | 71 | 17–55 | 102–162 | 3.0–3.5 | 128–130 |
Terra MODIS | 960 | 16–55 | 100–167 | 1.3–17 | 98–292 |
Aqua MODIS | 1056 | 16–55 | 198–260 | 3.0–16 | 80–260 |
PICS | World Reference System-2 Path/Row | ROI Location | Size of the ROI | Upper Left Latitude | Upper Right Longitude | Lower Left Latitude | Lower Right Longitude |
---|---|---|---|---|---|---|---|
Libya 4 | 181/40 | Scene Center for L8, L7, EO-1 | 20 | 29.12° | 23.86° | 29.08° | 23.89° |
Libya 4 | 181/40 | Edge of the Scene for L8, L7, EO-1 | 39 | 29.23° | 24.43° | 29.17° | 24.49° |
Libya 4 | 181/40 | Scene Center for Sentinels | 37 | 28.79° | 23.72° | 28.73° | 23.80° |
Libya 4 | 181/40 | Edge of the Scene for Sentinels | 32 | 28.58° | 24.16° | 28.51° | 24.10° |
Coefficient | Estimate | Standard Error | t-Statistics | p-Value | Null Hypothesis |
---|---|---|---|---|---|
Intercept | 0.5381 | 0.0010 | 511.97 | 0 | Significant |
0.0009 | 1 | Insignificant | |||
0.0008 | 1 | Insignificant | |||
0.0120 | 1 | Insignificant | |||
0.0024 | 1 | Insignificant | |||
0.0023 | 1 | Insignificant | |||
−0.0581 | 0.0466 | −1.2475 | 0.2124 | Significant | |
0.0090 | 1 | Insignificant | |||
0.0393 | 1 | Insignificant | |||
0.0233 | 0.0103 | 2.2614 | Significant | ||
0.0657 | 1 | Insignificant | |||
−0.0845 | 0.0022 | −38.7107 | Significant | ||
−0.1481 | 0.0030 | −49.727 | Significant | ||
−22.6123 | −22.61 | −6.7966 | Significant | ||
1.19 | 8.8122 | Significant |
Bands | Libya 4 |
---|---|
CA (442.98 nm) | 0.9826 0.0427 |
Blue (482.59 nm) | 0.9826 0.0363 |
Green (561.33 nm) | 0.9892 0.0280 |
Red (654.61 nm) | 0.9914 0.0272 |
NIR (864.57 nm) | 0.9463 0.0299 |
SWIR1 (1609.09 nm) | 1.0283 0.0358 |
SWIR1 (2201.25 nm) | 1.0300 0.0375 |
Landsat 8 Bands | Mean Percentage Difference (%) | Accuracy (NRMSE) (%) | Precision (%) |
---|---|---|---|
CA (443 nm) | 1.73 | 2.02 | 1.24 |
Blue (482 nm) | 1.92 | 2.21 | 1.25 |
Green (561.4 nm) | 2.14 | 2.33 | 1.02 |
Red (654.6 nm) | 1.75 | 1.95 | 0.96 |
NIR (864.7 nm) | 2.21 | 2.35 | 0.99 |
SWIR1 (1608.9 nm) | 2.11 | 2.23 | 0.91 |
SWIR2 (2200.7 nm) | 2.22 | 2.76 | 2.11 |
Landsat 7 Bands | Mean Percentage Difference (%) | Accuracy (NRMSE) (%) | Precision (%) |
---|---|---|---|
Blue (478.8 nm) | 2.23 | 2.53 | 1.80 |
Green (561 nm) | 1.03 | 1.39 | 1.34 |
Red (661.7 nm) | 1.25 | 1.59 | 1.27 |
NIR (835 nm) | 1.19 | 2.28 | 2.20 |
SWIR1 (1650 nm) | 1.43 | 1.85 | 1.75 |
SWIR2 (2208 nm) | 2.50 | 3.01 | 2.88 |
Sentinel Bands | Mean Percentage Difference (%) | Accuracy (NRMSE) (%) | Precision (%) | |||
---|---|---|---|---|---|---|
S2A | S2B | S2A | S2B | S2A | S2B | |
CA (442.7 nm) | 1.70 | 1.14 | 2.05 | 1.38 | 1.21 | 1.03 |
Blue (492.4 nm) | 1.30 | 0.97 | 1.56 | 1.19 | 1.20 | 1.05 |
Green (559.8 nm) | 0.81 | 0.79 | 1.01 | 1.05 | 0.97 | 1.00 |
Red (664.6 nm) | 1.51 | 0.88 | 1.70 | 1.17 | 0.92 | 1.06 |
Red Edge (704.1 nm) | 3.34 | 2.24 | 3.75 | 2.80 | 1.99 | 2.15 |
Red Edge (740.5 nm) | 1.34 | 1.53 | 1.60 | 1.94 | 1.56 | 1.85 |
Red Edge (782.8 nm) | 3.13 | 2.68 | 3.31 | 2.89 | 1.08 | 1.12 |
NIR (832.8 nm) | 1.80 | 1.90 | 2.21 | 2.26 | 2.22 | 2.26 |
Narrow NIR (864.7 nm) | 0.78 | 1.55 | 1.01 | 1.78 | 0.96 | 1.11 |
SWIR1 (1613.7 nm) | 0.87 | 1.04 | 1.19 | 1.26 | 1.18 | 1.15 |
SWIR2 (2202.4 nm) | 1.83 | 2.30 | 2.40 | 2.84 | 2.34 | 2.39 |
MODIS Bands | Mean Percentage Difference (%) | Accuracy (NRMSE) (%) | Precision (%) | |||
---|---|---|---|---|---|---|
Terra | Aqua | Terra | Aqua | Terra | Aqua | |
Blue (465.3 nm) | 4.23 | 2.57 | 5.85 | 3.43 | 4.15 | 2.71 |
Green (553.8 nm) | 2.10 | 1.52 | 2.82 | 1.93 | 2.81 | 1.92 |
Red (648.1 nm) | 1.80 | 1.46 | 2.31 | 1.83 | 2.23 | 1.66 |
NIR (857.4 nm) | 1.82 | 2.89 | 2.34 | 3.34 | 2.17 | 1.90 |
SWIR1 (1628.0 nm) | 1.63 | N/A | 2.15 | N/A | 2.06 | N/A |
SWIR2 (2115.2 nm) | 2.98 | 2.96 | 3.96 | 3.65 | 3.37 | 2.58 |
Bands (Wavelength) | Registration Error (%) | Site Non Uniformity (%) | BRDF Coefficient Uncertainty (%) | BRDF Model Uncertainty (%) | Total Cross Scale (%) |
---|---|---|---|---|---|
CA (443 nm) | 0.026 | 0.032 | 1.41 | 2.92 | 3.24 |
Blue (482 nm) | 0.026 | 0.046 | 1.14 | 2.89 | 3.10 |
Green (561.4 nm) | 0.026 | 0.052 | 0.91 | 2.39 | 2.55 |
Red (654.6 nm) | 0.026 | 0.049 | 0.84 | 2.09 | 2.25 |
NIR (864.7 nm) | 0.026 | 0.047 | 0.81 | 1.96 | 2.12 |
SWIR1 (1608.9 nm) | 0.026 | 0.038 | 0.92 | 2.09 | 2.28 |
SWIR2 (2200.7 nm) | 0.026 | 0.039 | 1.30 | 3.22 | 3.47 |
Bands | Cross Scale (%) |
Intercept (%) |
BRDF Model (%) |
Sensor (%) |
Total (%) |
---|---|---|---|---|---|
CA (443 nm) | 3.24 | 0.31 | 4.84 | 5.38 | 7.93 |
Blue (482 nm) | 3.10 | 0.27 | 4.43 | 5.38 | 7.64 |
Green (561.4 nm) | 2.55 | 0.19 | 3.35 | 5.38 | 6.84 |
Red (654.6 nm) | 2.25 | 0.16 | 2.82 | 5.38 | 6.48 |
NIR (864.7 nm) | 2.12 | 0.15 | 2.64 | 5.38 | 6.36 |
SWIR1 (1608.9 nm) | 2.28 | 0.14 | 2.70 | 5.38 | 6.36 |
SWIR2 (2200.7 nm) | 3.47 | 0.21 | 3.75 | 5.38 | 7.42 |
Sensor Name | SZA Variation (Degree) | SAA Variation (Degree) | VZA Variation (Degree) | VAA Variation (Degree) | Mean Percentage Difference | Accuracy | Precision |
---|---|---|---|---|---|---|---|
L8 OLI | 20–56 | 100–158 | 0.2–0.7 | 55–87 | 1.7–2.2% | 1.2–2.7% | 0.9–2.1% |
L7 ETM+ | 20–58 | 96–158 | 1.5–3.5 | 102–105 | 1.0–2.5% | 1.3–3.0% | 1.3–2.8% |
S2A MSI | 17–55 | 103–162 | 1.67–1.87 | 59–68 | 0.8–2.8% | 1.1–3.7% | 1.0–2.4% |
S2B MSI | 17–55 | 102–162 | 1.67–1.87 | 63–68 | 0.7–2.7% | 1.0–3.5% | 0.9–2.6% |
Sensor Name | SZA Variation (Degree) | SAA Variation (Degree) | VZA Variation (Degree) | VAA Variation (Degree) | Mean Percentage Difference | Accuracy | Precision |
---|---|---|---|---|---|---|---|
L8 OLI | 20–56 | 100–158 | 3.29–3.85 | 270–283 | 0.9–2.0% | 1.4–2.6% | 1.2–2.3% |
L7 ETM+ | 20–58 | 96–158 | 3.1–4.79 | 273–277 | 1.4–2.4% | 1.8–2.9% | 1.6–2.9% |
S2A MSI | 17–55 | 103–162 | 3.0–3.5 | 124–128 | 0.7–3.1% | 1.0–3.7% | 0.9–2.3% |
S2B MSI | 17–55 | 102–162 | 3.0–3.5 | 128–130 | 0.7–2.6% | 1.0–2.9% | 1.0–2.4% |
Sensor Name | SZA Variation (Degree) | SAA Variation (Degree) | VZA Variation (Degree) | VAA Variation (Degree) | Mean Percentage Difference | Accuracy | Precision |
---|---|---|---|---|---|---|---|
Terra MODIS | 16–55 | 100–167 | 1.3–17 | 98–292 | 1.6–4.2% | 2.1–5.8% | 2.0–4.2% |
Aqua MODIS | 16–55 | 198–260 | 3.0–16 | 80–260 | 1.5–3.0% | 1.8–3.7% | 1.6–2.7% |
Sensor Name | SZA Variation (Degree) | SAA Variation (Degree) | VZA Variation (Degree) | VAA Variation (Degree) | Residual Error in Percentage |
---|---|---|---|---|---|
Terra MODIS | 16–55 | 100–167 | 1.0–6.0 | 98–292 | −6% to 8% |
Terra MODIS | 16–55 | 100–167 | 7.0–12 | 98–292 | −5% to 8% |
Terra MODIS | 16–55 | 100–167 | 14–17 | 98–292 | −11% to 5% |
Aqua MODIS | 16–55 | 198–260 | 1.0–6.0 | 98–292 | −5% to 8% |
Aqua MODIS | 16–55 | 198–260 | 7.0–12 | 98–292 | −9% to 7% |
Aqua MODIS | 16–55 | 198–260 | 14–17 | 98–292 | −3% to 7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaity, M.D.; Kaewmanee, M.; Leigh, L.; Teixeira Pinto, C. Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo Invariant Calibration Site. Remote Sens. 2021, 13, 1538. https://doi.org/10.3390/rs13081538
Chaity MD, Kaewmanee M, Leigh L, Teixeira Pinto C. Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo Invariant Calibration Site. Remote Sensing. 2021; 13(8):1538. https://doi.org/10.3390/rs13081538
Chicago/Turabian StyleChaity, Manisha Das, Morakot Kaewmanee, Larry Leigh, and Cibele Teixeira Pinto. 2021. "Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo Invariant Calibration Site" Remote Sensing 13, no. 8: 1538. https://doi.org/10.3390/rs13081538
APA StyleChaity, M. D., Kaewmanee, M., Leigh, L., & Teixeira Pinto, C. (2021). Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo Invariant Calibration Site. Remote Sensing, 13(8), 1538. https://doi.org/10.3390/rs13081538