Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.2.1. Hazard Inventories
2.2.2. Conditioning Factors
2.2.3. Multicollinearity Test for the Conditioning Factors
2.3. Methods
- (1)
- Firstly, we constructed a spatial database collecting the basic environmental data, as well as the landslide and fire inventories.
- (2)
- Secondly, we used the prepared data to extract conditioning factors from the environmental data for landslide and wildfire susceptibility modeling separately. Then, a multicollinearity test on those factors was performed using VIF and TOL.
- (3)
- Thirdly, we randomly portioned the dataset into a training dataset and testing dataset. The dataset was first shuffled and then split randomly into training (70%) and testing (30%) data in Python.The target class value (i.e., hazard point) is 1 if the samples are disaster-positive; otherwise, the class value is set to “0”. The ratio between training and validation is 70% and 30% [8,64,78]. The models were run 30 times with different hazard data combinations using AdaBoost, GBDT and RF, and, every time, the input data were split into 70% for training and 30% for testing. After developing the models, evaluation of the model accuracy and comparison between models was implemented, using AUC, Precison, ACC and confusion matrix statistics.
- (4)
- Next, the model predictive capability was compared, and the best-performed model was used to generate the susceptibility maps for the two hazards. Then, we carried out an overlay analysis to evaluate the susceptibility of the two hazards. Additionally, we computed the CV to assess the uncertainty of the results. The susceptibility map intersected with the uncertainty map based on a matrix-based method to assess the reliability of the best model. Additonally, the relative importance of every conditioning factor for each hazard was obtained.
2.3.1. AdaBoost
2.3.2. Gradient Boosting Decision Tree
2.3.3. Random Forest
2.4. Factor Importance
2.5. Model Performance and Accuracy Assessment
3. Results
3.1. Evaluation of the Models
3.2. Susceptibility Maps
3.3. Uncertainty of the RF Model
3.4. Factor Contribution Analysis
4. Discussion
4.1. Contribution of Driving Factors
4.2. Comparison between the Ensemble Machine Learning Methods
4.3. Comparison of Different Sampling Strategies
4.4. Limitations and Future Works
5. Conclusions
- (1)
- This research compared the model performance using various measures and found out that RF is the best model in both landslide and wildfire susceptibility modeling and mapping. Then, the separate susceptibility maps for landslides and wildfires were generated using the best-performed RF model, in which the majority of actual hazard points fell within the very highly susceptible areas.
- (2)
- The resulting maps of each hazard were overlaid to develop the intersection map, and the regions that were highly susceptible to both landslides and wildfires accounted for a small portion.
- (3)
- The CV was used to evaluate the uncertainty of landslide and wildfire susceptibility spatial distribution. In general, the uncertainty was low, and there was no high-level uncertainty in the highly susceptible areas in either landslides or wildfires.
- (4)
- Through the factor importance analysis, it was found that the distance to roads and distance to faults were, relatively, the two most important factors for landslide susceptibility. For wildfires, the distance to urban areas was the most important, followed by the distance to roads and slope.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- An, Y.; Tan, X.; Gu, B.; Zhu, K. Flood Risk Assessment Using the CV-TOPSIS Method for the Belt and Road Initiative: An Empirical Study of Southeast Asia. Ecosyst. Health Sustain. 2020, 6, 1765703. [Google Scholar] [CrossRef]
- Bandibas, J.; Takarada, S. Mobile Application and a Web-Based Geographic Information System for Sharing Geological Hazards Information in East and Southeast Asia. J. Geogr. Inf. Syst. 2019, 11, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Deng, X.; Zhang, Y. Evaluation and Convergence Analysis of Socio-Economic Vulnerability to Natural Hazards of Belt and Road Initiative Countries. J. Clean. Prod. 2021, 282, 125406. [Google Scholar] [CrossRef]
- Rich, G.J.; Sirikantraporn, S. (Jill) Posttraumatic Growth and Resilience in Southeast Asia. In Resistance, Resilience, and Recovery from Disasters: Perspectives from Southeast Asia; Regina, M., Hechanova, M.C., Waelde, L., Eds.; Community, Environment and Disaster Risk Management; Emerald Publishing Limited: Bingle, UK, 2020; Volume 21, pp. 143–158. ISBN 978-1-83909-791-1. [Google Scholar]
- Yin, S. Biomass Burning Spatiotemporal Variations over South and Southeast Asia. Environ. Int. 2020, 145, 106153. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, R.; Sutanto, S.J.; Hidayah, A.; Ridwan, B.; Mulyana, A. Development of a Landslide Early Warning System in Indonesia. Geosciences 2019, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-Based Landslide Susceptibility Models Using Frequency Ratio, Logistic Regression, and Artificial Neural Network in a Tertiary Region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R. Landslide Susceptibility Mapping Using Machine Learning Algorithms and Comparison of Their Performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Samphantharak, K. Natural Disaster and Economic Development in Southeast Asia; Social Science Research Network: Rochester, NY, USA, 2019. [Google Scholar]
- Smith, W.; Dressler, W.H. Forged in Flames: Indigeneity, Forest Fire and Geographies of Blame in the Philippines. Postcolonial Stud. 2020, 23, 527–545. [Google Scholar] [CrossRef]
- Ba, A.D.; Beeson, M. Contemporary Southeast Asia: The Politics of Change, Contestation, and Adaptation; Macmillan International Higher Education: London, UK, 2017; ISBN 978-1-137-59621-5. [Google Scholar]
- Taufik, M.; Setiawan, B.I.; Van Lanen, H.A.J. Increased Fire Hazard in Human-Modified Wetlands in Southeast Asia. Ambio 2019, 48, 363–373. [Google Scholar] [CrossRef]
- Miettinen, J.; Shi, C.; Liew, S.C. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires. Environ. Manag. 2017, 60, 747–757. [Google Scholar] [CrossRef]
- Sagala, S.; Sitinjak, E.; Yamin, D. Fostering Community Participation to Wildfire. In Wildfire Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 123–144. ISBN 978-0-12-410434-1. [Google Scholar]
- Hartiningtias, D.; Fulé, P.Z.; Gunawan, A.A. Wildfire Effects on Forest Structure of Pinus Merkusii in Sumatra, Indonesia. For. Ecol. Manag. 2020, 457, 117660. [Google Scholar] [CrossRef]
- Leuenberger, M.; Parente, J.; Tonini, M.; Pereira, M.G.; Kanevski, M. Wildfire Susceptibility Mapping: Deterministic vs. Stochastic Approaches. Environ. Model. Softw. 2018, 101, 194–203. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Hong, H.; Jaafari, A.; Zenner, E.K. Predicting Spatial Patterns of Wildfire Susceptibility in the Huichang County, China: An Integrated Model to Analysis of Landscape Indicators. Ecol. Indic. 2019, 101, 878–891. [Google Scholar] [CrossRef]
- Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Alizadeh, M.; Chen, W.; Mohammadi, A.; Ahmad, B.B.; Panahi, M.; Hong, H.; et al. Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sens. 2018, 10, 1527. [Google Scholar] [CrossRef] [Green Version]
- Shahabi, H.; Hashim, M. Landslide Susceptibility Mapping Using GIS-Based Statistical Models and Remote Sensing Data in Tropical Environment. Sci. Rep. 2015, 5, 9899. [Google Scholar] [CrossRef] [Green Version]
- Meinhardt, M.; Fink, M.; Tünschel, H. Landslide Susceptibility Analysis in Central Vietnam Based on an Incomplete Landslide Inventory: Comparison of a New Method to Calculate Weighting Factors by Means of Bivariate Statistics. Geomorphology 2015, 234, 80–97. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Tran, T.H.; Ha, N.A.; Ngo, V.L.; Nadhir, A.-A.; Tran, V.P.; Duy, N.M.; Amini, A.; Prakash, I.; Ho, L.S.; et al. GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam. Sustainability 2019, 11, 7118. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Nguyen-Thoi, T.; Qi, C.; Phong, T.V.; Dou, J.; Ho, L.S.; Le, H.V.; Prakash, I. Coupling RBF Neural Network with Ensemble Learning Techniques for Landslide Susceptibility Mapping. CATENA 2020, 195, 104805. [Google Scholar] [CrossRef]
- Hashim, M.; Misbari, S.; Pour, A.B. Landslide Mapping and Assessment by Integrating Landsat-8, PALSAR-2 and GIS Techniques: A Case Study from Kelantan State, Peninsular Malaysia. J. Indian Soc. Remote Sens. 2018, 46, 233–248. [Google Scholar] [CrossRef]
- Ngoc Thach, N.; Bao-Toan Ngo, D.; Xuan-Canh, P.; Hong-Thi, N.; Hang Thi, B.; Nhat-Duc, H.; Dieu, T.B. Spatial Pattern Assessment of Tropical Forest Fire Danger at Thuan Chau Area (Vietnam) Using GIS-Based Advanced Machine Learning Algorithms: A Comparative Study. Ecol. Inform. 2018, 46, 74–85. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F.; Martínez-Álvarez, F.; Tien Bui, D. A Novel Ensemble Modeling Approach for the Spatial Prediction of Tropical Forest Fire Susceptibility Using LogitBoost Machine Learning Classifier and Multi-Source Geospatial Data. Theor. Appl. Climatol. 2019, 137, 637–653. [Google Scholar] [CrossRef]
- Prasertsri, N.; Littidej, P. Spatial Environmental Modeling for WildfireProgression Accelerating Extent AnalysisUsing Geo-Informatics. Pol. J. Environ. Stud. 2020, 29, 3249–3261. [Google Scholar] [CrossRef]
- Thoha, A.S.; Sofyan, M.; Ahmad, A.G. Spatio-Temporal Distribution of Forest and Land Fires in Labuhanbatu Utara District, North Sumatera Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 454, 12081. [Google Scholar] [CrossRef]
- Forbes, K.; Broadhead, J.; Brardinoni, A.D.; Gray, D.; Stokes, B.V. Forests and Landslides: The Role of Trees and Forests in the Prevention of Landslides and Rehabilitation of Landslide-Affected Areas in Asia Second Edition. Rap. Publ. 2013, 8–35. Available online: https://www.unisdr.org/preventionweb/files/53056_i3245e.pdf (accessed on 26 March 2021).
- Nachappa, T.G.; Ghorbanzadeh, O.; Gholamnia, K.; Blaschke, T. Multi-Hazard Exposure Mapping Using Machine Learning for the State of Salzburg, Austria. Remote Sens. 2020, 12, 2757. [Google Scholar] [CrossRef]
- Zeng, Z.; Estes, L.; Ziegler, A.D.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, E.F. Highland Cropland Expansion and Forest Loss in Southeast Asia in the Twenty-First Century. Nat. Geosci. 2018, 11, 556–562. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Avitabile, V.; Hijioka, Y.; DasGupta, R.; Togawa, T.; Murayama, Y. The Future of Southeast Asia’s Forests. Nat. Commun. 2019, 10, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Gower, D.B.; Wood, E.F. Accelerating Forest Loss in Southeast Asian Massif in the 21st Century: A Case Study in Nan Province, Thailand. Glob. Change Biol. 2018, 24, 4682–4695. [Google Scholar] [CrossRef]
- Miettinen, J.; Stibig, H.-J.; Achard, F. Remote Sensing of Forest Degradation in Southeast Asia—Aiming for a Regional View through 5–30 m Satellite Data. Glob. Ecol. Conserv. 2014, 2, 24–36. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Z.; Liu, Z.; Zeng, Z.; Ciais, P.; Huang, M.; Liu, Y.; Piao, S. Seasonal and Interannual Changes in Vegetation Activity of Tropical Forests in Southeast Asia. Agric. For. Meteorol. 2016, 224, 1–10. [Google Scholar] [CrossRef]
- Cannon, S.H.; Reneau, S.L. Conditions for Generation of Fire-Related Debris Flows, Capulin Canyon, New Mexico. Earth Surf. Process. Landf. 2000, 25, 1103–1121. [Google Scholar] [CrossRef]
- Di Napoli, M.; Marsiglia, P.; Di Martire, D.; Ramondini, M.; Ullo, S.L.; Calcaterra, D. Landslide Susceptibility Assessment of Wildfire Burnt Areas through Earth-Observation Techniques and a Machine Learning-Based Approach. Remote Sens. 2020, 12, 2505. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B.; Lee, S. Application of Convolutional Neural Networks Featuring Bayesian Optimization for Landslide Susceptibility Assessment. CATENA 2020, 186, 104249. [Google Scholar] [CrossRef]
- Jazebi, S.; de León, F.; Nelson, A. Review of Wildfire Management Techniques—Part I: Causes, Prevention, Detection, Suppression, and Data Analytics. IEEE Trans. Power Deliv. 2020, 35, 430–439. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, C.; Khan, K.U.J. Application and Comparison of Different Ensemble Learning Machines Combining with a Novel Sampling Strategy for Shallow Landslide Susceptibility Mapping. Stoch. Environ. Res. Risk Assess. 2020. [Google Scholar] [CrossRef]
- Kadavi, P.R.; Lee, C.-W.; Lee, S. Application of Ensemble-Based Machine Learning Models to Landslide Susceptibility Mapping. Remote Sens. 2018, 10, 1252. [Google Scholar] [CrossRef] [Green Version]
- Al-Abadi, A.M. Mapping Flood Susceptibility in an Arid Region of Southern Iraq Using Ensemble Machine Learning Classifiers: A Comparative Study. Arab. J. Geosci. 2018, 11, 218. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Bui, D.T.; Pradhan, B.; Acharya, T.D.; Pham, B.T.; Zhu, A.-X.; Chen, W.; Ahmad, B.B. Landslide Susceptibility Mapping Using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest Ensembles in the Guangchang Area (China). CATENA 2018, 163, 399–413. [Google Scholar] [CrossRef]
- Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. CATENA 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Bui, D.T.; Tsangaratos, P.; Ngo, P.-T.T.; Pham, T.D.; Pham, B.T. Flash Flood Susceptibility Modeling Using an Optimized Fuzzy Rule Based Feature Selection Technique and Tree Based Ensemble Methods. Sci. Total Environ. 2019, 668, 1038–1054. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Li, S.; Ren, F.; Du, Q. A Hybrid Model Considering Spatial Heterogeneity for Landslide Susceptibility Mapping in Zhejiang Province, China. CATENA 2020, 188, 104425. [Google Scholar] [CrossRef]
- Sachdeva, S.; Bhatia, T.; Verma, A.K. GIS-Based Evolutionary Optimized Gradient Boosted Decision Trees for Forest Fire Susceptibility Mapping. Nat. Hazards 2018, 92, 1399–1418. [Google Scholar] [CrossRef]
- Liang, W.; Luo, S.; Zhao, G.; Wu, H. Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms. Mathematics 2020, 8, 765. [Google Scholar] [CrossRef]
- Towfiqul Islam, A.R.M.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood Susceptibility Modelling Using Advanced Ensemble Machine Learning Models. Geosci. Front. 2021, 12, 101075. [Google Scholar] [CrossRef]
- Valdez, M.C.; Chang, K.-T.; Chen, C.-F.; Chiang, S.-H.; Santos, J.L. Modelling the Spatial Variability of Wildfire Susceptibility in Honduras Using Remote Sensing and Geographical Information Systems. Geomat. Nat. Hazards Risk 2017, 8, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ke, Y.; Chen, Z.; Liang, S.; Zhao, H.; Hong, H. Application of Alternating Decision Tree with AdaBoost and Bagging Ensembles for Landslide Susceptibility Mapping. CATENA 2020, 187, 104396. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, D.K.; Park, C.; Ahn, Y.; Kil, S.-H.; Sung, S.; Biging, G.S. Estimating Landslide Susceptibility Areas Considering the Uncertainty Inherent in Modeling Methods. Stoch. Environ. Res. Risk Assess. 2018, 32, 2987–3019. [Google Scholar] [CrossRef]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Di Martire, D.; Firpo, M.; Pepe, G.; Raso, E.; Calcaterra, D. Machine Learning Ensemble Modelling as a Tool to Improve Landslide Susceptibility Mapping Reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Tembata, K.; Takeuchi, K. Floods and Exports: An Empirical Study on Natural Disaster Shocks in Southeast Asia. Econ. Disasters Clim. Change 2019, 3, 39–60. [Google Scholar] [CrossRef] [Green Version]
- Kamworapan, S.; Surussavadee, C. Evaluation of CMIP5 Global Climate Models for Simulating Climatological Temperature and Precipitation for Southeast Asia. Adv. Meteorol. 2019, 2019, 1–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, X. Characteristics of Coastline Changes on Southeast Asia Islands from 2000 to 2015. Remote Sens. 2020, 12, 519. [Google Scholar] [CrossRef] [Green Version]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Schroeder, W.; Biswas, S.; Justice, C. Trends in Vegetation Fires in South and Southeast Asian Countries. Sci. Rep. 2019, 9, 7422. [Google Scholar] [CrossRef]
- Jayachandran, S. Air Quality and Early-Life Mortality Evidence from Indonesia’s Wildfires. J. Hum. Resour. 2009, 44, 916–954. [Google Scholar] [CrossRef] [Green Version]
- Vetrita, Y.; Cochrane, M.A. Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia’s Peatlands. Remote Sens. 2020, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanzadeh, O.; Valizadeh Kamran, K.; Blaschke, T.; Aryal, J.; Naboureh, A.; Einali, J.; Bian, J. Spatial Prediction of Wildfire Susceptibility Using Field Survey GPS Data and Machine Learning Approaches. Fire 2019, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, K.; Preethi, K.; Ramesh, H. Evaluating the Effects of Forest Fire on Water Balance Using Fire Susceptibility Maps. Ecol. Indic. 2020, 110, 105856. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Stanley, T.; Kirschbaum, D.B. A Heuristic Approach to Global Landslide Susceptibility Mapping. Nat. Hazards 2017, 87, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhao, L. Review on Landslide Susceptibility Mapping Using Support Vector Machines. CATENA 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Van Zyl, J.J. The Shuttle Radar Topography Mission (SRTM): A Breakthrough in Remote Sensing of Topography. Acta Astronaut. 2001, 48, 559–565. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xu, B.; Zhu, Z.; Yuan, C.; Suen, H.P.; Guo, J.; Xu, N.; Li, W.; Zhao, Y.; Yang, J. Stable Classification with Limited Sample: Transferring a 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar]
- Styron, R.; Pagani, M. The GEM Global Active Faults Database. Earthq. Spectra 2020, 36, 160–180. [Google Scholar] [CrossRef]
- Mapping Global Urban Boundaries from the Global Artificial Impervious Area (GAIA) Data-IOPscience. Available online: https://iopscience.iop.org/article/10.1088/1748–9326/ab9be3/meta (accessed on 7 April 2021).
- Hartmann, J.; Moosdorf, N. The New Global Lithological Map Database GLiM: A Representation of Rock Properties at the Earth Surface. Geochem. Geophys. Geosystems 2012, 13. [Google Scholar] [CrossRef]
- Juang, C.S.; Stanley, T.A.; Kirschbaum, D.B. Using Citizen Science to Expand the Global Map of Landslides: Introducing the Cooperative Open Online Landslide Repository (COOLR). PLoS ONE 2019, 14, e0218657. [Google Scholar] [CrossRef] [Green Version]
- Sze, J.S.; Jefferson, L.J.S. Evaluating the Social and Environmental Factors behind the 2015 Extreme Fire Event in Sumatra, Indonesia. Environ. Res. Lett. 2019, 14, 15001. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Sadhasivam, N.; Kariminejad, N.; Collins, A.L. Gully Erosion Spatial Modelling: Role of Machine Learning Algorithms in Selection of the Best Controlling Factors and Modelling Process. Geosci. Front. 2020, 11, 2207–2219. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W. GIS-Based Landslide Susceptibility Assessment Using Optimized Hybrid Machine Learning Methods. Catena 2021, 196, 104833. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Tien Bui, D.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.-B.; Gróf, G.; Ho, H.L. A Comparative Assessment of Flood Susceptibility Modeling Using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling Flood Susceptibility Using Data-Driven Approaches of Naïve Bayes Tree, Alternating Decision Tree, and Random Forest Methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, W. Optimization of Computational Intelligence Models for Landslide Susceptibility Evaluation. Remote Sens. 2020, 12, 2180. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Wang, C.; Duan, Z.; Liu, H.; Liu, X.; Ullah Jan Khan, K. A Hybrid Model Consisting of Supervised and Unsupervised Learning for Landslide Susceptibility Mapping. Remote Sens. 2021, 13, 1464. [Google Scholar] [CrossRef]
- Song, Y.; Niu, R.; Xu, S.; Ye, R.; Peng, L.; Guo, T.; Li, S.; Chen, T. Landslide Susceptibility Mapping Based on Weighted Gradient Boosting Decision Tree in Wanzhou Section of the Three Gorges Reservoir Area (China). ISPRS Int. J. Geo Inf. 2019, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Jiang, D.; Wen, H.; Song, H. Adaboost-Based Security Level Classification of Mobile Intelligent Terminals. J. Supercomput. 2019, 75, 7460–7478. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pourghasemi, H.R.; Gayen, A.; Edalat, M.; Zarafshar, M.; Tiefenbacher, J.P. Is Multi-Hazard Mapping Effective in Assessing Natural Hazards and Integrated Watershed Management? Geosci. Front. 2020, 11, 1203–1217. [Google Scholar] [CrossRef]
- Conoscenti, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gómez-Gutiérrez, Á.; Rotigliano, E.; Agnesi, V. Assessment of Susceptibility to Earth-Flow Landslide Using Logistic Regression and Multivariate Adaptive Regression Splines: A Case of the Belice River Basin (Western Sicily, Italy). Geomorphology 2015, 242, 49–64. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Tsangaratos, P.; Ilia, I.; Wang, X. Combining Evolutionary Algorithms and Machine Learning Models in Landslide Susceptibility Assessments. Remote Sens. 2020, 12, 3854. [Google Scholar] [CrossRef]
- Mathew, J.; Jha, V.K.; Rawat, G.S. Landslide Susceptibility Zonation Mapping and Its Validation in Part of Garhwal Lesser Himalaya, India, Using Binary Logistic Regression Analysis and Receiver Operating Characteristic Curve Method. Landslides 2009, 6, 17–26. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kariminejad, N.; Amiri, M.; Edalat, M.; Zarafshar, M.; Blaschke, T.; Cerda, A. Assessing and Mapping Multi-Hazard Risk Susceptibility Using a Machine Learning Technique. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Rossi, M.; Reichenbach, P. LAND-SE: A Software for Statistically Based Landslide Susceptibilityzonation, Version 1.0. Geosci. Model. Dev. 2016, 9, 3533–3543. [Google Scholar] [CrossRef] [Green Version]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An Ensemble Prediction of Flood Susceptibility Using Multivariate Discriminant Analysis, Classification and Regression Trees, and Support Vector Machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the Landslide Susceptibility: Which Algorithm, Which Precision? CATENA 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Wilde, M.; Günther, A.; Reichenbach, P.; Malet, J.-P.; Hervás, J. Pan-European Landslide Susceptibility Mapping: ELSUS Version 2. J. Maps 2018, 14, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Bui, D.T.; Prakash, I. Bagging Based Support Vector Machines for Spatial Prediction of Landslides. Environ. Earth Sci. 2018, 77, 1–17. [Google Scholar] [CrossRef]
- Lima, P.; Steger, S.; Glade, T.; Tilch, N.; Schwarz, L.; Kociu, A. Landslide Susceptibility Mapping at National Scale: A First Attempt for Austria. In Proceedings of the Advancing Culture of Living with Landslides, Ljubljana, Slovenia, 29 May–2 June 2017; Mikos, M., Tiwari, B., Yin, Y., Sassa, K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 943–951. [Google Scholar]
- Field, R.D.; van der Werf, G.R.; Shen, S.S.P. Human Amplification of Drought-Induced Biomass Burning in Indonesia since 1960. Nat. Geosci. 2009, 2, 185–188. [Google Scholar] [CrossRef]
- Tilloy, A.; Malamud, B.D.; Winter, H.; Joly-Laugel, A. A Review of Quantification Methodologies for Multi-Hazard Interrelationships. Earth Sci. Rev. 2019, 196, 102881. [Google Scholar] [CrossRef]
- Xiao, C.; Tian, Y.; Shi, W.; Guo, Q.; Wu, L. A New Method of Pseudo Absence Data Generation in Landslide Susceptibility Mapping with a Case Study of Shenzhen. Sci. China Technol. Sci. 2010, 53, 75–84. [Google Scholar] [CrossRef]
- Miao, Y.M.; Zhu, A.X.; Yang, L.; Bai, S.B.; Liu, J.Z.; Deng, Y. Sensitivity of BCS for Sampling Landslide Absence Data in Landslide Susceptibility Assessment. Mt. Res. Dev. 2016, 34, 432–441. [Google Scholar]
- Zhu, J.; Baise, L.G.; Thompson, E.M. An Updated Geospatial Liquefaction Model for Global ApplicationAn Updated Geospatial Liquefaction Model for Global Application. Bull. Seismol. Soc. Am. 2017, 107, 1365–1385. [Google Scholar] [CrossRef]
- Nowicki Jessee, M.A.; Hamburger, M.W.; Allstadt, K.; Wald, D.J.; Robeson, S.M.; Tanyas, H.; Hearne, M.; Thompson, E.M. A Global Empirical Model for Near-Real-Time Assessment of Seismically Induced Landslides. J. Geophys. Res. Earth Surf. 2018, 123, 1835–1859. [Google Scholar] [CrossRef] [Green Version]
- Tonini, M.; D’Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
No | Dataset | Source | Reference |
---|---|---|---|
1 | DEM | SRTM Data (http://srtm.csi.cgiar.org/srtmdata/ accessed on 26 March 2021) | [65] |
2 | Climate | TerraClimate (http://www.climatologylab.org/terraclimate.html accessed on 26 March 2021) | [66] |
3 | Land coverage | FROM-GLC 2017v1(http://data.ess.tsinghua.edu.cn/ accessed on 26 March 2021) | [67] |
4 | Road | OMS (https://www.openstreetmap.org/) Primary and motorway | OpenStreetMap |
5 | Fault | GEM Global Active Faults (https://github.com/GEMScienceTools/gem-global-active-faults accessed on 26 March 2021) | [68] |
6 | River | OSM (https://www.openstreetmap.org/ accessed on 26 March 2021) | OpenStreetMap |
7 | Urban areas | http://data.ess.tsinghua.edu.cn/ accessed on 26 March 2021 | [69] |
8 | Lithology | Global Lithological Map Database v1.0 (https://doi.pangaea.de/10.1594/PANGAEA.788537 accessed on 26 March 2021) | [70] |
9 | NDVI | https://lpdaac.usgs.gov/products/mod13q1v006/ accessed on 26 March 2021 | MODIS MOD13Q1 |
10 | Landslide | https://maps.nccs.nasa.gov/arcgis/apps/MapAndAppGallery/index.html?appid=574f26408683485799d02e857e5d9521 accessed on 26 March 2021 | [71] |
11 | Fire location | https://firms.modaps.eosdis.nasa.gov/ accessed on 26 March 2021 | MODIS MCD14DL |
Factors | Landslide | Wildfire |
---|---|---|
Elevation | √ | √ |
Slope | √ | √ |
Aspect | √ | - |
Plan curvature | √ | - |
Profile curvature | √ | - |
Distance to urbans | - | √ |
Distance to rivers | √ | √ |
Distance to roads | √ | √ |
Distance to faults | √ | - |
NDVI | √ | √ |
Precipitation | √ | √ |
Temperature | - | √ |
Wind speed | - | √ |
Soil moisture | √ | - |
Lithology | √ | - |
Land use | √ | - |
TWI | √ | √ |
SPI | √ | - |
Hazards | Models | ACC | Precision | AUC |
---|---|---|---|---|
Landslide | AdaBoost | 0.77 | 0.75 | 0.86 |
GBDT | 0.78 | 0.76 | 0.87 | |
RF | 0.81 | 0.78 | 0.89 | |
Fire | AdaBoost | 0.74 | 0.72 | 0.81 |
GBDT | 0.80 | 0.78 | 0.88 | |
RF | 0.83 | 0.83 | 0.91 |
Strategy | Description |
---|---|
I | Buffer 5–10 km |
II | Buffer 10–15 km |
III | Buffer 15–20 km |
IV | The whole region minus the 5-km buffer |
Hazard | Strategy | RF | GBDT | AdaBoost | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ACC | Precision | AUC | ACC | Precision | AUC | ACC | Precision | AUC | ||
Landslide | I | 0.69 | 0.71 | 0.72 | 0.67 | 0.68 | 0.71 | 0.67 | 0.66 | 0.7 |
II | 0.70 | 0.70 | 0.75 | 0.69 | 0.68 | 0.73 | 0.67 | 0.65 | 0.72 | |
III | 0.73 | 0.72 | 0.8 | 0.71 | 0.70 | 0.78 | 0.68 | 0.65 | 0.75 | |
IV | 0.78 | 0.76 | 0.87 | 0.77 | 0.75 | 0.86 | 0.76 | 0.74 | 0.85 | |
Wildfire | I | 0.66 | 0.60 | 0.84 | 0.65 | 0.64 | 0.69 | 0.64 | 0.64 | 0.67 |
II | 0.71 | 0.70 | 0.78 | 0.68 | 0.67 | 0.73 | 0.61 | 0.61 | 0.66 | |
III | 0.76 | 0.79 | 0.82 | 0.70 | 0.70 | 0.77 | 0.63 | 0.63 | 0.66 | |
IV | 0.84 | 0.83 | 0.9 | 0.81 | 0.79 | 0.89 | 0.74 | 0.73 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Jiang, Z.; Wang, M.; Liu, K. Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods. Remote Sens. 2021, 13, 1572. https://doi.org/10.3390/rs13081572
He Q, Jiang Z, Wang M, Liu K. Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods. Remote Sensing. 2021; 13(8):1572. https://doi.org/10.3390/rs13081572
Chicago/Turabian StyleHe, Qian, Ziyu Jiang, Ming Wang, and Kai Liu. 2021. "Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods" Remote Sensing 13, no. 8: 1572. https://doi.org/10.3390/rs13081572
APA StyleHe, Q., Jiang, Z., Wang, M., & Liu, K. (2021). Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods. Remote Sensing, 13(8), 1572. https://doi.org/10.3390/rs13081572