Earth’s Time-Variable Gravity from GRACE Follow-On K-Band Range-Rates and Pseudo-Observed Orbits
Abstract
:1. Introduction
2. Methods and Materials
2.1. Gravity Field Recovery as a Generalized Dynamic Orbit Determination
2.2. Processing Details
- Orbit pre-adjustment
- Orbit modeling—Orbit arcs with a length of 3 h (approximately 2 revolutions), state transition and sensitivity matrices are simultaneously integrated in 5 s steps using a modified version of the Gauss–Jackson integration technique [58]. A straightforward implementation of this efficient integration approach is described in [14]. Forces of gravitational and non-gravitational nature affecting the motion of the satellites are modeled according to the information given in Table 1. An exception is made for the forces due to Earth’s gravity field. In order to speed up the computation in this step, the gravity field is considered only until degree and order 120. The force modeling implementations were evaluated in a software comparison in the framework of COST-G. Implementations of all separate force effects agree well with the implementations of the COST-G ACs. The differences with regard to the implementations of other ACs are several orders of magnitude below m/s [59].
- Arc length—The 3 h arc length employed in our approach differs considerably from the approaches of other ACs. The usual standard arc length employed by other ACs for numerical integration and GFR from GRACE and GRACE-FO data is 24 h. The aim of the rather short arc length is to allow a more precise orbit fit to the pseudo-observed positions and KBRR measurements, as inaccuracies, e.g., in force modeling, can be compensated by the frequent estimation of local arc parameters. In contrast to the very common arc length of one day, no constrained parameters, e.g., cycle per revolution accelerations, have to be co-estimated in order to achieve an adequate orbit fit. Since a decrease of the arc length increases the amount of arcs that can be processed independently, a considerable amount of processing time can be saved if parallel computing is utilized.
- Observations—The reduced observation vectors are formed as differences between kinematic orbit positions or KBRR measurements and the corresponding quantities obtained from the dynamically integrated orbit (see Equations (A10) and (A12)). For KBRR measurements, the original 5 s sampling is kept. Kinematic orbits from the Astronomical Institute of the University of Bern (AIUB) are downsampled to 30 s and used as pseudo observations. Due to the general prevailing noisy character of kinematic orbits, compared to the rather smooth reduced-dynamic orbits, a screening is performed. Epochs with a position difference larger than 8 cm w.r.t. the reduced-dynamic GNV1B orbits are not considered during parameter estimation.
- Weights—The partials of the numerically integrated orbit w.r.t. unknown parameters are used to set up the design matrices. Then, technique-specific normal matrices are formed and combined. To set up the weight matrices, an initial standard deviation of 0.2 μm/s for KBRR is used. For the pseudo-observed position components, an initial standard deviation of m is assumed. Variance component estimation, e.g., [60], is used to improve the technique-specific weights after each iteration of the orbit determination.
- Parameters—Corrections to the initial state vectors and accelerometer bias parameters are estimated arc-wise based on least squares adjustment. Accelerometer scale factors, accelerometer shear and rotation parameters needed for a full scale matrix [23] are estimated monthly. For this purpose, the scale factors are fixed to 1 and the accelerometer shear and rotation parameters to 0. The objective of this step is not to obtain a best possible orbit fit, but rather to estimate appropriate initial values for the second step, therefore no empirical parameters are co-estimated. A priori values of the unknowns are corrected iteratively until convergence using the estimated corrections. A convergence is assumed when the mean of absolute KBRR reduced observation differences of two consecutive iterations is smaller than m/s.
- Outlier arcs—After the pre-adjustment of all monthly arcs, an inspection is performed in order to detect spurious arcs that might disturb the GFR in the second step. Kinematic empirical KBRR parameters [61] consisting of 90 min biases and bias-rates, as well as 180 min periodic biases and bias-rates are fitted to each KBRR reduced observation vector. The fitted signal is subtracted from the KBRR reduced observation vectors. Then, the root mean square (RMS) of this difference is formed for each arc of a month. Finally, a sigma-based screening is applied to the time series of these quantities. Arcs outside the 3 sigma bounds are not considered in the further processing.
- Orbit adjustment and gravity field recovery
- Orbit modeling—Initial states and accelerometer biases from the pre-adjustment are used as new a priori values for the dynamic orbit modeling and computation of the state and parameter sensitivity matrices. Forces are modeled according to the description given in Table 1. Method specifics for the numerical integration are unchanged from step 1.
- Observations—The formation of reduced observation vectors is consistent with the procedure in the pre-adjustment.
- Weights—A standard deviation of m/s is used to set up the KBRR weight matrices. In case of kinematic positions, the inertial orbit covariance information is used to form diagonal weight matrices. We divide the elements of the kinematic positions weight matrices by an empirical factor of 25. Without this downweighting of the kinematic orbit covariance information, the quality of obtained solutions is unsatisfactory. A downweighting of GNSS-based observations w.r.t. KBRR measurements is an issue already known from the GRACE processing, e.g., [6,8], and deserves further attention in the future.
- Parameters—The local parameters, i.e., initial states and accelerometer biases, are re-estimated in this step. In addition, the set of local parameters is extended by kinematic empirical KBRR parameters to absorb effects due to the possible mis-modeling of perturbing accelerations. The set of kinematic empirical parameters is consistent with the definition utilized previously in the outlier arc detection. The normalized spherical harmonic coefficients of the monthly Earth’s gravitational potential up to degree and order 96, as well as accelerometer scale factors, rotation and shear parameters, are introduced as global unknowns. The contribution of an arc to the set of global parameters is estimated after pre-elimination of the local parameters from the system of normal equations. The contributions of all 3 h arcs of a month are accumulated in order to obtain the final global parameters (see Equation (A3)).
- Outlier screening—KBRR post-fit residuals are computed and a visual screening is performed in time and frequency domains (see Section 3.3). In case of additional outliers, the second step is repeated.
2.3. GRACE-FO Sensor Data and Products
- KBR1B: biased K-band ranges, as well as their first and second time derivatives K-band range-rates and K-band range-accelerations given in 5 s sampling. KBRR measurements are used as the main observations in the estimation process. The light time correction and antenna center offset correction as given in the KBR1B product are applied.
- GNV1B: main data in these products are 1 s satellite positions and velocities in ITRF obtained from a reduced-dynamic orbit determination approach. In this work, the positions are used for modeling satellite accelerations caused by different forces (see Table 1). Instead of evaluating the accelerations at intermediate positions during every iteration of orbit determination, a major part of the accelerations is pre-computed using the precise GNV1B orbits. Only the acceleration caused by the Earth’s gravitational potential is evaluated at every intermediate position during orbit determination and GFR.
- SCA1B: 1 s normalized quaternions describing the rotation between SRF and GCRF. Since the numerical orbit propagation is accomplished in an inertial frame, the quaternions are needed for transforming calibrated non-gravitational accelerations to GCRF (see Equation (3)).
- ACT1B: main data in these products are 1 s linear accelerometer measurements given in SRF. The measurements represent the sum of acceleration variations caused by non-gravitational effects. Accelerometer calibration parameters have to be estimated during orbit determination and GFR. The ACT1B products replace ACC1B products that were formerly used for GFR from GRACE data. The main feature of ACT1B is a so-called transplantation of GRACE-C accelerometer measurements to satellite GRACE-D. The necessity for this transplantation [24] arises because of a severe degradation of GRACE-D measurements, e.g., [40]. With the exception of June 2018, only GRACE-C ACT1B products are used in this work.
- Alternative ACT products: For GRACE-D, for all months except June 2018, alternative ACT products [57] from the Institute of Geodesy at Graz University of Technology are used instead of the official ACT1B products.
- AIUB kinematic orbits: These kinematic orbits are produced at the Astronomical Institute at University of Bern. Processing details are summarized in [64]. The kinematic orbits do not contain any information from dynamic models. The positions are treated as pseudo-observations during parameter estimation. In addition to the positions, co-factor matrices are also available. These matrices are used to form the corresponding weight matrices.
3. Results and Evaluation
- AIUB-GRACE-FO_ op from the Astronomical Institute at the University of Bern [71]
3.1. Noise Level
3.2. Signal Content
3.3. KBRR Post-Fit Residuals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Analysis Center |
AIUB | Astronomical Institute, University of Bern |
COST-G | COmbination Service for Time-variable Gravity fields |
DDSD | Difference Degree Standard Deviation |
EWH | Equivalent Water Height |
GCRF | Geocentric Celestial Reference Frame |
GFR | Gravity Field Recovery |
GFZ | GeoForschungsZentrum |
(GFZ German Research Centre for Geosciences) | |
GNSS | Global Navigation Satellite Systems |
GRACE | Gravity Recovery And Climate Experiment |
GRACE-FO | GRACE Follow-On |
GRACE-SIGMA | GRACE-Satellite orbit Integrator and Gravity field analysis in MAtlab |
ITRF | International Terrestrial Reference Frame |
ITSG | Institute for Theoretical and Satellite Geodesy |
(now: Institute of Geodesy, Graz University of Technology) | |
JPL | Jet Propulsion Laboratory |
KBR | K-Band Ranging |
KBRR | K-Band Range-Rate |
LEO | Low Earth Orbit |
LUH | Leibniz University Hannover |
ODE | Ordinary Differential Equation |
PSD | Power Spectral Density |
RMS | Root Mean Square |
SDS | (GRACE-FO) Science Data System |
SLR | Satellite Laser Ranging |
SRF | Science Reference Frame |
TAL | Time-Argument-of-Latitude |
TVG | Time-Variable Gravity |
Appendix A
Appendix A.1. GFR Parameter Estimation: Linear Algebra
Appendix A.2. GFR Parameter Estimation: Analysis
References
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Dunn, C.; Bertiger, W.; Bar-Sever, Y.; Desai, S.; Haines, B.; Kuang, D.; Franklin, G.; Harris, I.; Kruizinga, G.; Meehan, T.; et al. Instrument of GRACE: GPS augments gravity measurements. GPS World 2003, 14, 16–28. [Google Scholar]
- Touboul, P.; Willemenot, E.; Foulon, B.; Josselin, V. Accelerometers for CHAMP, GRACE and GOCE space missions: Synergy and evolution. Boll. Geof. Teor. Appl. 1999, 40, 321–327. [Google Scholar]
- Bettadpur, S. UTCSR Level-2 Processing Standards Document (For Level-2 Product Release 0006), (Rev. 5.0, 18 April 2018), GRACE 327–742. 2018. Available online: ftp://isdcftp.gfz-potsdam.de/grace/DOCUMENTS/Level-2/ (accessed on 24 March 2021).
- Yuan, D.-N. JPL Level-2 Processing Standards Document, For Level-2 Product Release 06. 2018. Available online: ftp://isdcftp.gfz-potsdam.de/grace/DOCUMENTS/Level-2/ (accessed on 24 March 2021).
- Dahle, C.; Murböck, M.; Flechtner, F.; Dobslaw, H.; Michalak, G.; Neumayer, K.H.; Abrykosov, O.; Reinhold, A.; König, R.; Sulzbach, R.; et al. The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. Remote Sens. 2019, 11, 2116. [Google Scholar] [CrossRef] [Green Version]
- Kvas, A.; Behzadpour, S.; Ellmer, M.; Klinger, B.; Strasser, S.; Zehentner, N.; Mayer-Gürr, T. ITSG-Grace2018: Overview and evaluation of a new GRACE-only gravity field time series. J. Geophys. Res. Solid Earth 2019, 124, 9332–9344. [Google Scholar] [CrossRef] [Green Version]
- Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G. AIUB-RL02: An improved time-series of monthly gravity fields from GRACE data. Geophys. J. Int. 2016, 205, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- Lemoine, J.-M.; Biancale, R.; Reinquin, F.; Bourgogne, S.; Gégout, P. CNES/GRGS RL04 Earth gravity field models, from GRACE and SLR data. GFZ Data Serv. 2019. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Francis, O.; Zhang, X.; Chen, Q.; Li, W.; Chen, T. An optimized short-arc approach: Methodology and application to develop refined time series of Tongji-Grace2018 GRACE monthly solutions. J. Geophys. Res. Solid Earth 2019, 124, 6010–6038. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, Z.; Luo, Z. A New Hybrid Processing Strategy to Improve Temporal Gravity Field Solution. J. Geophys. Res. Solid Earth 2019, 124, 9415–9432. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Zhong, M.; Feng, W. Monthly gravity field recovery from GRACE orbits and K-band measurements using variational equations approach. Geod. Geodyn. 2015, 6, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, M.; Koch, I.; Khami, A.; Flury, J. IfE monthly gravity field solutions using the variational equations. Presented at the EGU General Assembly 2018, Vienna, Austria, 8–13 April 2018; 2018. [Google Scholar] [CrossRef]
- Koch, I.; Flury, J.; Naeimi, M.; Shabanloui, A. LUH-GRACE2018: A New Time Series of Monthly Gravity Field Solutions from GRACE. In International Association of Geodesy Symposia; Springer: Berlin, Germany, 2020. [Google Scholar] [CrossRef] [Green Version]
- Förste, C.; Bruinsma, S.; Rudenko, S.; Abrikosov, O.; Lemoine, J.-M.; Marty, J.-C.; Neumayer, K.H.; Biancale, R. A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. Presented at the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Chen, Q.; Shen, Y.; Francis, O.; Chen, W.; Zhang, X.; Hsu, H. Tongji-Grace02s and Tongji-Grace02k: High-Precision Static GRACE-Only Global Earth’s Gravity Field Models Derived by Refined Data Processing Strategies. J. Geophys. Res. Solid Earth 2018, 123, 6111–6137. [Google Scholar] [CrossRef]
- Kvas, A.; Brockmann, J.M.; Krauss, S.; Schubert, T.; Gruber, T.; Meyer, U.; Mayer-Gürr, T.; Schuh, W.-D.; Jäggi, A.; Pail, R. GOCO06s—A satellite-only global gravity field model. Earth Syst. Sci. Data 2021, 13, 99–118. [Google Scholar] [CrossRef]
- Savchenko, R.; Bosch, W. EOT11a—Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry; DGFI Report No. 89; Deutsches Geodätisches Forschungsinstitut (DGFI): München, Germany, 2012. [Google Scholar]
- Carrere, L.; Lyard, F.; Cancet, M.; Guillot, A. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. Presented at the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Dobslaw, H.; Flechtner, F.; Bergmann-Wolf, I.; Dahle, C.; Dill, R.; Esselborn, S.; Sasgen, I.; Thomas, M. Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05. J. Geophys. Res. Oceans 2019, 118, 3704–3711. [Google Scholar] [CrossRef] [Green Version]
- Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.; Poropat, L.; Thomas, M.; Dahle, C.; Esselborn, S.; König, R.; Flechtner, F. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys. J. Int. 2017, 211, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Bandikova, T.; Flury, J. Improvement of the GRACE star camera data based on the revision of the combination method. Adv. Space Res. 2014, 54, 1818–1827. [Google Scholar] [CrossRef]
- Klinger, B.; Mayer-Gürr, T. The role of accelerometer data calibration within GRACE gravity field recovery: Results from ITSG-Grace2016. Adv. Space Res. 2016, 58, 1597–1609. [Google Scholar] [CrossRef] [Green Version]
- Bandikova, T.; McCullough, C.; Kruizinga, G.L.; Save, H.; Christophe, B. GRACE accelerometer data transplant. Adv. Space Res. 2019, 64, 623–644. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; Rodell, M.; Li, B.; Reichle, R.; Zaitchik, B.F. Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Döll, P.; Schmied Müller, H.; Schuh, C.; Portmann, F.T.; Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 2014, 50, 5698–5720. [Google Scholar] [CrossRef]
- Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.; Kusche, J. Does GRACE see the terrestrial water cycle “intensifying”? J. Geophys. Res. Atmos. 2016, 121, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G.; Lombard, A.; Cazenave, A.; Ivins, E.R.; Llubes, M.; Remy, F.; Biancale, R. Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob. Planet. Chang. 2006, 53, 198–208. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet. Science 2006, 313, 1958–1960. [Google Scholar] [CrossRef]
- Velicogna, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Schrama, E.J.O.; Wouters, B. Revisiting Greenland ice sheet mass loss observed by GRACE. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Forsberg, R.; Sørensen, L.; Simonsen, S. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. In Integrative Study of the Mean Sea Level and Its Components; Cazenave, A., Champollion, N., Paul, F., Benveniste, J., Eds.; Space Sciences Series of ISSI; Springer: Cham, Switzerland, 2017; Volume 58, ISBN 978-3-319-56489-0. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.P. Observing seasonal steric sea level variations with GRACE and satellite altimetry. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Cazenave, A.; Dominh, K.; Guinehut, S.; Berthier, E.; Llovel, W.; Ramillien, G.; Ablain, M.; Larnicol, G. Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob. Planet. Chang. 2009, 65, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Leuliette, E.W.; Miller, L. Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Sheard, B.S.; Heinzel, G.; Danzmann, K.; Shaddock, D.A.; Klipstein, W.M.; Folkner, W.M. Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geod. 2012, 86, 1083–1095. [Google Scholar] [CrossRef]
- Abich, K.; Abramovici, A.; Amparan, B.; Baatzsch, A.; Okihiro, B.B.; Barr, D.C.; Bize, M.P.; Bogan, C.; Braxmaier, C.; Burke, M.J.; et al. In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. Phys. Rev. Lett. 2019, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.H.; Kruizinga, G.; Paik, M.; Landerer, F.; Bertiger, W.; Sakamura, C.; Bandikova, T.; McCullough, C. Gravity Recovery and Climate Experiment Follow-On (GRACE-FO), Level-1 Data Product User Handbook, JPL D-56935 (URS270772). 2019. Available online: ftp://isdcftp.gfz-potsdam.de/grace-fo/DOCUMENTS/Level-1/ (accessed on 24 March 2021).
- McCullough, C.M.; Harvey, N.; Save, H.; Bandikova, T. Description of Calibrated GRACE-FO Accelerometer Data Products (ACT), Level-1 Product Version 04, JPL D-103863. 2019. Available online: ftp://isdcftp.gfz-potsdam.de/grace-fo/DOCUMENTS/Level-1/ (accessed on 24 March 2021).
- Jäggi, A.; Meyer, U.; Lasser, M.; Jenny, B.; Lopez, T.; Flechtner, F.; Dahle, C.; Förste, C.; Mayer-Gürr, T.; Kvas, A.; et al. International Combination Service for Time-Variable Gravity Fields (COST-G). In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Jean, Y.; Meyer, U.; Jäggi, A. Combination of GRACE monthly gravity field solutions from different processing strategies. J. Geod. 2018, 92, 1313–1328. [Google Scholar] [CrossRef] [Green Version]
- Meyer, U.; Jean, Y.; Kvas, A.; Dahle, C.; Lemoine, J.-M.; Jäggi, A. Combination of GRACE monthly gravity fields on the normal equation level. J. Geod. 2019, 93, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Meyer, U.; Lasser, M.; Jäggi, A.; Dahle, C.; Flechtner, F.; Kvas, A.; Behzadpour, S.; Mayer-Gürr, T.; Lemoine, J.-M.; Koch, I.; et al. International Combination Service for Time-variable Gravity Fields (COST-G) Monthly GRACE-FO Series. V. 01. GFZ Data Serv. 2020. [Google Scholar] [CrossRef]
- Heiskanen, W.A.; Moritz, H. Physical Geodesy; W. H. Freeman and Company: San Francisco, CA, USA; London, UK, 1967. [Google Scholar]
- Torge, W.; Müller, J. Geodesy, 4th ed.; Walter de Gruyter: Berlin, Germany, 2012; ISBN 978-3-11-020718-7. [Google Scholar]
- Petit, G.; Luzum, B. IERS Conventions (2010), IERS Technical Note No. 36; Verlag des Bundesamts für Kartographie: Frankfurt am Main, Germany, 2010; ISBN 3-89888-989-6. [Google Scholar]
- Seeber, G. Satellite Geodesy, 2nd ed.; Walter de Gruyter: Berlin, Germany, 2003; ISBN 3-11-017549-5. [Google Scholar]
- Montenbruck, O.; Gill, E. Satellite Orbits—Models, Methods and Applications, 3rd ed.; Springer: Berlin, Germany, 2005; ISBN 978-3-642-63547-2. [Google Scholar] [CrossRef]
- Folkner, W.M.; Williams, J.G.; Boggs, D.H.; Park, R.S.; Kuchynka, P. The Planetary and Lunar Ephemerides DE430 and DE431, IPN Progress Report 42-196. 2014; pp. 1–81. Available online: https://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf (accessed on 24 March 2021).
- Mayer-Gürr, T.; Kvas, A. COST-G Software Comparison, FES2014b Admittance. Available online: ftp://ftp.tugraz.at/outgoing/ITSG/COST-G/softwareComparison/models/FES2014b_oceanTide/admittance/ (accessed on 24 March 2021).
- Desai, S.D. Observing the pole tide with satellite altimetry. J. Geophys. Res. Oceans 2002, 107. [Google Scholar] [CrossRef]
- Behzadpour, S.; Mayer-Gürr, T.; Krauss, S. GRACE Follow-On accelerometer data recovery. J. Geophys. Res. Solid Earth 2021. [Google Scholar] [CrossRef]
- Naeimi, M. A modified Gauss-Jackson method for the numerical integration of the variational equations. Presented at the EGU General Assembly 2018, Vienna, Austria, 8–13 April 2018. [Google Scholar]
- Lasser, M.; Meyer, U.; Jäggi, A.; Mayer-Gürr, T.; Kvas, A.; Neumayer, K.H.; Dahle, C.; Flechtner, F.; Lemoine, J.-M.; Koch, I.; et al. Benchmark data for verifying background model implementations in orbit and gravity field determination software. Adv. Geosci. 2020, 55, 1–11. [Google Scholar] [CrossRef]
- Kusche, J.; Springer, A. Parameter Estimation for Satellite Gravity Field Modeling. In Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data; Naeimi, M., Flury, J., Eds.; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-49940-6. [Google Scholar] [CrossRef]
- Kim, J. Simulation Study of A Low-Low Satellite-to-Satellite Tracking Mission. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2000. [Google Scholar]
- Physical Oceanography Distributed Active Archive Center (PO.DAAC). GRACE-FO Level-1B Release Version 4.0 from JPL in ASCII; Jet Propulsion Laboratory: Pasadena, CA, USA, 2019. Available online: https://podaac-tools.jpl.nasa.gov/drive/files/allData/gracefo/L1B/JPL/RL04/ASCII (accessed on 24 March 2021).
- Information System and Data Center (ISDC). GRACE-FO Gravity Data and Documentation. In GFZ German Research Centre for Geosciences; Helmholtz Centre: Potsdam, Germany, 2019; Available online: ftp://isdcftp.gfz-potsdam.de/grace-fo/ (accessed on 24 March 2021).
- Arnold, D.; Jäggi, A. AIUB GRACE-FO Kinematic Orbits; Astronomical Institute, University of Bern: Bern, Switzerland, 2020; Available online: http://www.aiub.unibe.ch/download/LEO_ORBITS/GRACE-FO (accessed on 24 March 2021). [CrossRef]
- GRACE-FO. GRACEFO_L2_CSR_MONTHLY_0060. Ver. 6. PO.DAAC, CA, USA. 2019. Available online: https://podaac.jpl.nasa.gov/dataset/GRACEFO_L2_CSR_MONTHLY_0060 (accessed on 24 March 2021).
- Save, H. CSR Level-2 Processing Standards Document for Level-2 Product Release 06, CSR GRFO-19-01, (GRACE-FO D-103920). 2019. Available online: ftp://isdcftp.gfz-potsdam.de/grace-fo/DOCUMENTS/Level-2/ (accessed on 24 March 2021).
- Dahle, C.; Flechtner, F.; Murböck, M.; Michalak, G.; Neumayer, K.H.; Abrykosov, O.; Reinhold, A.; König, R. GRACE-FO Geopotential GSM Coefficients GFZ RL06. V. 6.0. GFZ Data Services. 2019. Available online: https://dataservices.gfz-potsdam.de/gravis/showshort.php?id=escidoc:4289898 (accessed on 24 March 2021). [CrossRef]
- Dahle, C.; Flechtner, F.; Murböck, M.; Michalak, G.; Neumayer, H.; Abrykosov, O.; Reinhold, A.; König, R. GRACE-FO D-103919 (Gravity Recovery and Climate Experiment Follow-On), GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, 3 June 2019), (Scientific Technical Report STR-Data; 19/09). 2019. Available online: ftp://isdcftp.gfz-potsdam.de/grace-fo/DOCUMENTS/Level-2/ (accessed on 24 March 2021). [CrossRef]
- GRACE-FO. GRACEFO_L2_JPL_MONTHLY_0060. Ver. 6. PO.DAAC, CA, USA. 2019. Available online: https://podaac.jpl.nasa.gov/dataset/GRACEFO_L2_JPL_MONTHLY_0060 (accessed on 24 March 2021).
- Mayer-Gürr, T.; Behzadpour, S.; Kvas, A.; Strasser, S. ITSG-Gracefo2018—Monthly, Daily and Static Gravity Field Solutions from GRACE-FO. GFZ Data Services. 2019. Available online: https://dataservices.gfz-potsdam.de/icgem/showshort.php?id=escidoc:3600910 (accessed on 24 March 2021). [CrossRef]
- Lasser, M.; Meyer, U.; Arnold, D.; Jäggi, A. AIUB-GRACE-FO-Operational—Operational GRACE Follow-On Monthly Gravity Field Solutions. GFZ Data Services. 2020. Available online: https://dataservices.gfz-potsdam.de/icgem/showshort.php?id=4c95fc04-fd9d-11ea-9603-497c92695674 (accessed on 24 March 2021). [CrossRef]
- Ince, E.S.; Barthelmes, F.; Reißland, S.; Elger, K.; Förste, C.; Flechtner, F.; Schuh, H. ICGEM—15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst. Sci. Data 2019, 11, 647–674. [Google Scholar] [CrossRef] [Green Version]
- Loomis, B.D.; Rachlin, K.E.; Wiese, D.N.; Landerer, F.W.; Luthcke, S.B. Replacing GRACE/GRACE-FO C30 With Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Loomis, B.D.; Rachlin, K.E. TN-14_C30_C20_SLR_GSFC, NASA GSFC SLR C20 and C30 Solutions. Available online: ftp://isdcftp.gfz-potsdam.de/grace-fo/DOCUMENTS/TECHNICAL_NOTES (accessed on 24 March 2021).
- Beutler, G.; Jäggi, A.; Mervart, L.; Meyer, U. The celestial mechanics approach: Theoretical foundations. J. Geod. 2010, 84, 605–624. [Google Scholar] [CrossRef] [Green Version]
- Ellmer, M. Contributions to GRACE Gravity Field Recovery: Improvements in Dynamic Orbit Integration Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations. Ph.D. Thesis, Graz University of Technology, Graz, Austria, 2018. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res. Solid Earth 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Sud, Y.C. Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network. Earth Interact. 1998, 2. [Google Scholar] [CrossRef]
- Total Runoff Integrating Pathways (TRIP). Vector Files of Major River Basin Boundaries, Corresponding to TRIP Version 22 May 1997. 1997. Available online: http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/Data/RBvect.html (accessed on 24 March 2021).
- Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). Antarctica and Greenland Ice Sheet Drainage Basins. 2020. Available online: http://imbie.org/wp-content/uploads/2016/09/GRE_Basins_IMBIE2_v1.3.zip (accessed on 24 March 2021).
- Behzadpour, S.; Mayer-Gürr, T.; Flury, J.; Klinger, B.; Goswami, S. Multiresolution wavelet analysis applied to GRACE range rate residuals. Geosci. Instrum. Method. Data Syst. 2019, 8, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Goswami, S.; Devaraju, B.; Weigelt, M.; Mayer-Gürr, T. Analysis of GRACE range-rate residuals with focus on KBR instrument system noise. Adv. Space Res. 2018, 62, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Harvey, N.; Dunn, C.E.; Kruizinga, G.L.; Young, L.E. Triggering Conditions for GRACE Ranging Measurement Signal-to-Noise Ratio Dips. J. Spacecr. Rockets 2017, 54. [Google Scholar] [CrossRef]
- International Centre for Global Earth Models (ICGEM). LUH/LUH-GRACE-FO-2020. Available online: http://icgem.gfzpotsdam.de/series/10.25835/0062546 (accessed on 24 March 2021).
- Koch, I.; Duwe, M.; Flury, J.; Shabanloui, A. Dataset: LUH-GRACE-FO-2020. Available online: https://data.uni-hannover.de/dataset/luh-grace-fo-2020 (accessed on 24 March 2021).
- Koch, K.-R. Parameter Estimation and Hypothesis Testing in Linear Models, 2nd ed.; Springer: Berlin, Germany, 2013; ISBN 978-3-642-08461-4. [Google Scholar] [CrossRef]
- Niemeier, W. Ausgleichungsrechnung: Statistische Auswertemethoden, 2nd ed.; Walter de Gruyter: Berlin, Germany, 2008; ISBN 978-3-11-019055-7. [Google Scholar] [CrossRef]
- Jäggi, A.; Arnold, D. Precise Orbit Determination. In Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data; Naeimi, M., Flury, J., Eds.; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-49940-6. [Google Scholar] [CrossRef]
- Rummel, R.; Reigber, C.; Ilk, K.-H. The use of satellite to satellite tracking for gravity parameter recovery. In Proceedings of the European Workshop on Space Oceanography, Navigation and Geodynamics (SONG), Schloss Elmau, Germany, 16-21 January 1978; ESA SP-137. European Space Agency Special Publications: Neuilly-sur-Seine, France, 1978; pp. 153–161. [Google Scholar]
- Vallado, D.A. Fundamentals of Astrodynamics and Applications, 2nd ed.; Microcosm Press: El Segundo, CA, USA; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; ISBN 0-7923-6903-3. [Google Scholar]
i | Force/Acceleration | Models and Parameters |
---|---|---|
- | Gravity field | GOCO06s (static: d/o 300, time-variable: d/o 200) [17] |
1 | Direct tides | Moon, Sun, Mercury–Saturn (DE430 ephemerides [54]); |
J2 effect considered for the Moon | ||
2 | Solid Earth tides | Moon and Sun (d/o: 4); anelastic Earth [51]; |
3 | Ocean tides | FES2014b (d/o: 180) [19]; |
361 minor waves based on admittance [55]; | ||
4 | Relativistic effects | IERS Conventions 2010 [51] |
5 | Solid earth pole tides | IERS Conventions 2010 [51] |
6 | Ocean pole tides | IERS Conventions 2010/Desai (d/o: 180) [51,56] |
7 | Atmospheric tides | AOD1B RL06 (d/o: 180) [21] |
8 | De-aliasing | AOD1B RL06 (d/o: 180) [21] |
GRACE-C: ACT1B products [43]; | ||
- | Non-gravitational | GRACE-D: alternative ACT products [57] |
Step 1 | Orbit Pre-Adjustment |
---|---|
arc length | 3 h |
numerical integration | modified Gauss-Jackson with 5 s step size |
observations | KBRR with 5 s sampling; |
kinematic positions with 30 s sampling | |
weights | VCE per observation group |
local parameters | initial state, accelerometer biases |
global parameters | no |
constraints and regularization | not applied |
Step 2 | Orbit Adjustment and Gravity Field Recovery |
arc length | same as in step 1 |
numerical integration | same as in step 1 |
observations | same as in step 1 |
weights | KBRR: m/s; |
positions: orbit covariance matrix | |
local parameters | initial state, accelerometer biases |
empirical KBRR parameters | |
global parameters | gravitational potential up to d/o 96; |
full accelerometer scale matrix | |
constraints and regularization | not applied |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, I.; Duwe, M.; Flury, J.; Shabanloui, A. Earth’s Time-Variable Gravity from GRACE Follow-On K-Band Range-Rates and Pseudo-Observed Orbits. Remote Sens. 2021, 13, 1766. https://doi.org/10.3390/rs13091766
Koch I, Duwe M, Flury J, Shabanloui A. Earth’s Time-Variable Gravity from GRACE Follow-On K-Band Range-Rates and Pseudo-Observed Orbits. Remote Sensing. 2021; 13(9):1766. https://doi.org/10.3390/rs13091766
Chicago/Turabian StyleKoch, Igor, Mathias Duwe, Jakob Flury, and Akbar Shabanloui. 2021. "Earth’s Time-Variable Gravity from GRACE Follow-On K-Band Range-Rates and Pseudo-Observed Orbits" Remote Sensing 13, no. 9: 1766. https://doi.org/10.3390/rs13091766
APA StyleKoch, I., Duwe, M., Flury, J., & Shabanloui, A. (2021). Earth’s Time-Variable Gravity from GRACE Follow-On K-Band Range-Rates and Pseudo-Observed Orbits. Remote Sensing, 13(9), 1766. https://doi.org/10.3390/rs13091766