An Innovative Slepian Approach to Invert GRACE KBRR for Localized Hydrological Information at the Sub-Basin Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Drainage Basin
- (a)
- The tropical Congo river basin
- (b)
- The semi-arid basin of the Nile
2.2. Global Land Assimilation System (GLDAS)
2.3. KBRR GRACE Data
2.4. Construction of an Orthogonal Slepian Function Basis
2.5. Optimization of Slepian Function Parameterization
2.5.1. Coefficient of Truncation
2.5.2. Bandwidth Analysis
2.5.3. Polar Reduction
2.6. SF Reduction of the Gravity Inverse Problem
3. Results
3.1. Analysis of the Slepian Coefficient Truncation
3.2. Analysis of the Bandwidth
3.3. Analysis of the Resulting Time Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Gravity Recovery and Climate Experiment: Mission Overview and Early Results—Tapley—2004—Geophysical Research Letter—Wiley Online Library. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2004GL019920 (accessed on 3 February 2021).
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to Understanding Climate Change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Eicker, A.; Jensen, L.; Wöhnke, V.; Dobslaw, H.; Kvas, A.; Mayer-Gürr, T.; Dill, R. Daily GRACE Satellite Data Evaluate Short-Term Hydro-Meteorological Fluxes from Global Atmospheric Reanalyses. Sci. Rep. 2020, 10, 4504. [Google Scholar] [CrossRef]
- Chambers, D.P. Evaluation of New GRACE Time-Variable Gravity Data over the Ocean. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Uebbing, B.; Kusche, J.; Rietbroek, R.; Landerer, F.W. Processing Choices Affect Ocean Mass Estimates From GRACE. J. Geophys. Res. Ocean 2019, 124, 1029–1044. [Google Scholar] [CrossRef]
- Ramillien, G.; Seoane, L.; Schumacher, M.; Forootan, E.; Frappart, F.; Darrozes, J. Recovery of Rapid Water Mass Changes (RWMC) by Kalman Filtering of GRACE Observations. Remote Sens. 2020, 12, 1299. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J. Global Evaluation of New GRACE Mascon Products for Hydrologic Applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1995; ISBN 978-0-521-41508-8. [Google Scholar]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved Methods for Observing Earth’s Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Loomis, B.D.; Rachlin, K.E.; Luthcke, S.B. Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise. Geophys. Res. Lett. 2019, 46, 6910–6917. [Google Scholar] [CrossRef]
- Rateb, A.; Kuo, C.Y.; Imani, M.; Tseng, K.-H.; Lan, W.-H.; Ching, K.-E.; Tseng, T.-P. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods. Sensors 2017, 17, 566. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-C.; Simons, F.J. Spatiospectral Localization of Global Geopotential Fields from the Gravity Recovery and Climate Experiment (GRACE) Reveals the Coseismic Gravity Change Owing to the 2004 Sumatra-Andaman Earthquake. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Cambiotti, G.; Sabadini, R. Gravitational Seismology Retrieving Centroid-Moment-Tensor Solution of the 2011 Tohoku Earthquake. J. Geophys. Res. Solid Earth 2013, 118, 183–194. [Google Scholar] [CrossRef]
- Harig, C.; Simons, F.J. Mapping Greenland’s Mass Loss in Space and Time. Proc. Natl. Acad. Sci. USA 2012, 109, 19934–19937. [Google Scholar] [CrossRef]
- Beveridge, A.K.; Harig, C.; Simons, F.J. The Changing Mass of Glaciers on the Tibetan Plateau, 2002–2016, Using Time-Variable Gravity from the GRACE Satellite Mission. J. Geod. Sci. 2018, 8, 83–97. [Google Scholar] [CrossRef]
- Xie, X.; Xu, C.; Wen, Y.; Li, W. Monitoring Groundwater Storage Changes in the Loess Plateau Using GRACE Satellite Gravity Data, Hydrological Models and Coal Mining Data. Remote Sens. 2018, 10, 605. [Google Scholar] [CrossRef]
- von Hippel, M.; Harig, C. Long-Term and Inter-Annual Mass Changes in the Iceland Ice Cap Determined from GRACE Gravity Using Slepian Functions. Front. Earth Sci. 2019, 7. [Google Scholar] [CrossRef]
- Harig, C.; Simons, F.J. Accelerated West Antarctic Ice Mass Loss Continues to Outpace East Antarctic Gains. Earth Planet. Sci. Lett. 2015, 415, 134–141. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Contribution of Ice Sheet and Mountain Glacier Melt to Recent Sea Level Rise. Nat. Geosci. 2013, 6, 549–552. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time Variability of the Earth’s Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Goudie, A.S. The Drainage of Africa since the Cretaceous. Geomorphology 2005, 67, 437–456. [Google Scholar] [CrossRef]
- Oberg, K.; Shelton, J.M.; Gardiner, N.; Jackson, P.R. Discharge and Other Hydraulic Measurements for Characterizing the Hydraulics of Lower Congo River. Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Discharge-and-other-hydraulic-measurements-for-the-Oberg-Shelton/b2f8c1b75be176d405d2f216d29013181fab01ea (accessed on 3 March 2021).
- Munzimi, Y.A.; Hansen, M.C.; Asante, K.O. Estimating Daily Streamflow in the Congo Basin Using Satellite-Derived Data and a Semi-Distributed Hydrological Model. Hydrol. Sci. J. 2019, 64, 1472–1487. [Google Scholar] [CrossRef]
- Sonwa, D.J.; Oumarou Farikou, M.; Martial, G.; Félix, F.L. Living under a Fluctuating Climate and a Drying Congo Basin. Sustainability 2020, 12, 2936. [Google Scholar] [CrossRef]
- Crowley, J.W.; Mitrovica, J.X.; Bailey, R.C.; Tamisiea, M.E.; Davis, J.L. Land Water Storage within the Congo Basin Inferred from GRACE Satellite Gravity Data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Lee, H.; Beighley, R.E.; Alsdorf, D.; Jung, H.C.; Shum, C.K.; Duan, J.; Guo, J.; Yamazaki, D.; Andreadis, K. Characterization of Terrestrial Water Dynamics in the Congo Basin Using GRACE and Satellite Radar Altimetry. Remote Sens. Environ. 2011, 115, 3530–3538. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, J.; Arsenault, K.; Brian, C.; Radakovich, J.; MG, B.; et al. The Global Land Data Assimilation System. BAMS 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Bruinsma, S.; Lemoine, J.-M.; Biancale, R.; Valès, N. CNES/GRGS 10-Day Gravity Field Models (Release 2) and Their Evaluation. Adv. Space Res. 2010, 45, 587–601. [Google Scholar] [CrossRef]
- Jekeli, C. The Determination of Gravitational Potential Differences from Satellite-to-Satellite Tracking. Celest. Mech. Dyn. Astron. 1999, 75, 85–101. [Google Scholar] [CrossRef]
- Han, S.-C.; Shum, C.K.; Jekeli, C. Precise Estimation of in Situ Geopotential Differences from GRACE Low-Low Satellite-to-Satellite Tracking and Accelerometer Data. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Ramillien, G.; Biancale, R.; Gratton, S.; Vasseur, X.; Bourgogne, S. GRACE-Derived Surface Water Mass Anomalies by Energy Integral Approach: Application to Continental Hydrology. J. Geod. 2011, 85, 313–328. [Google Scholar] [CrossRef]
- Bates, A.P.; Khalid, Z.; Kennedy, R.A. Efficient Computation of Slepian Functions for Arbitrary Regions on the Sphere. IEEE Trans. Signal Process. 2017, 65, 4379–4393. [Google Scholar] [CrossRef]
- Simons, F.J.; Dahlen, F.A. Spherical Slepian Functions and the Polar Gap in Geodesy. Geophys. J. Int. 2006, 166, 1039–1061. [Google Scholar] [CrossRef]
- Simons, F.J. Slepian Functions and Their Use in Signal Estimation and Spectral Analysis. In Handbook of Geomathematics; Freeden, W., Nashed, M.Z., Sonar, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 891–923. ISBN 978-3-642-01546-5. [Google Scholar]
- Bian, Y. Comparisons of GRACE and GLDAS Derived Hydrological Loading and the Impacts on the GPS Time Series in Europe. Acta Geodynamica Geomaterialia 2020, 297–310. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Aballa, D.O.; Marinda, D.O.; Tateishi, R.; Hahn, M. Use of GRACE Time-Variable Data and GLDAS-LSM for Estimating Groundwater Storage Variability at Small Basin Scales: A Case Study of the Nzoia River Basin. Int. J. Remote Sens. 2015, 36, 5707–5736. [Google Scholar] [CrossRef]
- Rzepecka, Z.; Birylo, M. Groundwater Storage Changes Derived from GRACE and GLDAS on Smaller River Basins—A Case Study in Poland. Geosciences 2020, 10, 124. [Google Scholar] [CrossRef]
- Syed, T.; Famiglietti, J.; Rodell, M.; Chen, J.; Wilson, C. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Hastenrath, S. Circulation Mechanisms of Climate Anomalies in East Africa and Equatorial Indian Ocean. Dyn. Atmos. Ocean 2007, 43, 25–35. [Google Scholar] [CrossRef]
- Becker, M.; LLovel, W.; Cazenave, A.; Güntner, A.; Crétaux, J.-F. Recent Hydrological Behavior of the East African Great Lakes Region Inferred from GRACE, Satellite Altimetry and Rainfall Observations. Comptes Rendus Geosci. 2010, 342, 223–233. [Google Scholar] [CrossRef]
- Becker, M.; Da Silva, J.; Calmant, S.; Robinet, V.; Linguet, L.; Seyler, F. Water Level Fluctuations in the Congo Basin Derived from ENVISAT Satellite Altimetry. Remote Sens. 2014, 6, 9340–9358. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Long-Term Trends in Rainfall and Temperature Using High-Resolution Climate Datasets in East Africa. Sci. Rep. 2019, 9, 11376. [Google Scholar] [CrossRef] [PubMed]
- Barthelmes, F. Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models: Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM). Revised Edition. 2013, pp. 1–32. Available online: https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemFullPage.jsp?itemId=item_8786_4&view=EXPORT (accessed on 28 February 2021). [CrossRef]
- Cheng, M.; Ries, J.C.; Tapley, B.D. Variations of the Earth’s Figure Axis from Satellite Laser Ranging and GRACE. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
Catchment | Congo | Nile |
---|---|---|
Kopt | 78 | 77 |
K | 34 | 29 |
Area (106 km2) | 4.01 | 3.24 |
Shape Ratio (SR) SR = long/short axis | 1.12 | 2.31 |
Discharge (m3/s) | 41,200 | 2830 |
Rainfall (103 mm) | ||
Max | 1.6–1.7 | 0.15–0.25 |
Min | 0.05–03 | 0.01–0.05 |
T °C | ||
Max | 30–37 | 26–29 |
Min | 9–11 | 12–14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramillien, G.; Seoane, L.; Darrozes, J. An Innovative Slepian Approach to Invert GRACE KBRR for Localized Hydrological Information at the Sub-Basin Scale. Remote Sens. 2021, 13, 1824. https://doi.org/10.3390/rs13091824
Ramillien G, Seoane L, Darrozes J. An Innovative Slepian Approach to Invert GRACE KBRR for Localized Hydrological Information at the Sub-Basin Scale. Remote Sensing. 2021; 13(9):1824. https://doi.org/10.3390/rs13091824
Chicago/Turabian StyleRamillien, Guillaume, Lucía Seoane, and José Darrozes. 2021. "An Innovative Slepian Approach to Invert GRACE KBRR for Localized Hydrological Information at the Sub-Basin Scale" Remote Sensing 13, no. 9: 1824. https://doi.org/10.3390/rs13091824
APA StyleRamillien, G., Seoane, L., & Darrozes, J. (2021). An Innovative Slepian Approach to Invert GRACE KBRR for Localized Hydrological Information at the Sub-Basin Scale. Remote Sensing, 13(9), 1824. https://doi.org/10.3390/rs13091824