Monitoring of Vegetation Disturbance around Protected Areas in Central Tanzania Using Landsat Time-Series Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Preparation
2.3. Conceptual Model of Vegetation Changes
2.4. Mapping Savannah Changes Using the LandTrendr Algorithm
3. Results
3.1. Accuracy Assessment
3.2. Spatial and Temporal Patterns of Savannah Disturbance
3.3. Vegetation Cover Changes in the Surrounding Areas of the PAs
3.4. Characterization of Vegetation Disturbance
4. Discussion
4.1. Spatiotemporal Distribution of Vegetation Disturbance
4.2. Relationship between Vegetation Disturbance and Wildlife Conservation
4.3. Utilizing LandTrendr for the Assessment of Vegetation Disturbance and Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geldmann, J.; Barnes, M.; Coad, L.; Craigie, I.D.; Hockings, M.; Burgess, N.D. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 2013, 161, 230–238. [Google Scholar] [CrossRef]
- Nelson, A.; Chomitz, K.M. Effectiveness of Strict vs. Multiple Use Protected Areas in Reducing Tropical Forest Fires: A Global Analysis Using Matching Methods. PLoS ONE 2011, 6, e22722. [Google Scholar] [CrossRef]
- Le Saout, S.; Hoffmann, M.; Shi, Y.; Hughes, A.; Bernard, C.; Brooks, T.M.; Bertzky, B.; Butchart, S.H.M.; Stuart, S.N.; Badman, T.; et al. Protected areas and effective biodiversity conservation. Science 2013, 342, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Wittemyer, G.; Elsen, P.; Bean, W.T.; Burton, A.C.O.; Brashares, J.S. Accelerated human population growth at protected area edges. Science 2008, 321, 123–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, E.C. Anthropogenic transformation of the terrestrial biosphere. Trans. R. Soc. A 2011, 369, 1010–1035. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.J.; DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 2007, 17, 974–988. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.; Hansen, A.; Turner, B.L.; Reid, R.; Liu, J. Land Use Change around Protected Areas: Management To Balance Human Needs and Ecological Function. Ecol. Appl. 2007, 17, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.; Hansen, A.; Newton, A.C.; Hansen, M.C. Increasing isolation of protected areas in tropical forest over the past twenty years. Ecol. Appl. 2005, 15, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Linderman, M.; Ouyang, Z.; An, L.; Yang, J.; Zhang, H. Ecological degradation in protected areas: The case of Wolong nature reserve for giant pandas. Science 2001, 292, 98–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- McIntyre, S.; Hobbs, R. A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv. Biol. 1999, 13, 1282–1292. [Google Scholar] [CrossRef]
- Betts, M.G.; Wolf, C.; Ripple, W.J.; Phalan, B.; Millers, K.A.; Duarte, A.; Butchart, S.H.M.; Levi, T. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 2017, 547, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.C.; Antill, E.C.; Kreft, H. All Is Not Loss: Plant Biodiversity in the Anthropocene. PLoS ONE 2012, 7, e30535. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, B.J.; Higuera, P.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.W.; et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.G.; Tarantino, C.; Adamo, M.; Mairota, P. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 2013, 33, 45–59. [Google Scholar] [CrossRef]
- Willis, K.S. Remote sensing change detection for ecological monitoring in United States protected areas. Biol. Conserv. 2015, 182, 233–242. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. A spatial and temporal analysis of forest dynamics using Landsat time-series. Remote Sens. Environ. 2018, 217, 461–475. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wu, L.; Tang, Y.; Meng, Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sens. 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wei, X.; Li, D.; Lu, D. Examining Forest Disturbance and Recovery in the Subtropical Forest Region of Zhejiang Province Using Landsat Time-Series Data. Remote Sens. 2017, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Stuart Chapin, F.; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2012; ISBN 9781441995049. [Google Scholar]
- Newmark, W.D. Isolation of African protected areas. Front. Ecol. Environ. 2008, 6, 321–328. [Google Scholar] [CrossRef]
- Lorenzen, E.D.; Heller, R.; Siegismund, H.R. Comparative phylogeography of African savannah ungulates. Mol. Ecol. 2012, 21, 3656–3670. [Google Scholar] [CrossRef]
- Andela, N.; Liu, Y.Y.; van Dijk, A.I.J.M.; de Jeu, R.A.M.; McVicar, T.R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: Comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 2013, 10, 6657–6676. [Google Scholar] [CrossRef] [Green Version]
- Campo-Bescós, M.A.; Muñoz-Carpena, R.; Kaplan, D.A.; Southworth, J.; Zhu, L.; Waylen, P.R. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation. PLoS ONE 2013, 8, e72348. [Google Scholar] [CrossRef] [PubMed]
- Estes, L.D.; Searchinger, T.; Spiegel, M.; Tian, D.; Sichinga, S.; Mwale, M.; Kehoe, L.; Kuemmerle, T.; Berven, A.; Chaney, N.; et al. Reconciling agriculture, carbon and biodiversity in a savannah transformation frontier. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, C.N.; Joppa, L. Expansion of the global terrestrial protected area system. Biol. Conserv. 2009, 142, 2166–2174. [Google Scholar] [CrossRef]
- Kendall, C.J. The spatial and agricultural basis of crop raiding by the Vulnerable common hippopotamus Hippopotamus amphibius around Ruaha National Park, Tanzania. Oryx 2011, 45, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Bartlam-Brooks, H.L.A.; Bonyongo, M.C.; Harris, S. Will reconnecting ecosystems allow long-distance mammal migrations to resume? A case study of a zebra Equus burchelli migration in Botswana. Oryx 2011, 45, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Serneels, S.; Lambin, E.F. Impact of land-use changes on the wildebeest migration in the northern part of the Serengeti-Mara ecosystem. J. Biogeogr. 2002, 28, 391–407. [Google Scholar] [CrossRef]
- Ogutu, J.O.; Owen-Smith, N.; Piepho, H.P.; Said, M.Y. Continuing wildlife population declines and range contraction in the Mara region of Kenya during 1977-2009. J. Zool. 2011, 285, 99–109. [Google Scholar] [CrossRef]
- Tanzania Program > Landscapes > Ruaha/Katavi. Available online: https://tanzania.wcs.org/landscapes/ruaha-katavi.aspx (accessed on 9 January 2021).
- Fratkin, E. East African Pastoralism in Transition: Maasai, Boran, and Rendille Cases. Afr. Stud. Rev. 2001, 44, 1–25. [Google Scholar] [CrossRef]
- Rufino, M.C.; Thornton, P.K.; Ng’ang’a, S.K.; Mutie, I.; Jones, P.G.; van Wijk, M.T.; Herrero, M. Transitions in agro-pastoralist systems of East Africa: Impacts on food security and poverty. Agric. Ecosyst. Environ. 2013, 179, 215–230. [Google Scholar] [CrossRef]
- Newmark, W.D.; Manyanza, D.N.; Gamassa, D.-G.M.; Sariko, H.I. The Conflict between Wildlife and Local People Living Adjacent to Protected Areas in Tanzania: Human Density as a Predictor. Conserv. Biol. 1994, 8, 249–255. [Google Scholar] [CrossRef]
- Kwaslema, M.H.; Robert, D.F.; Jafari, R.K.; Eivin, R. Assessing crop and livestock losses along the Rungwa-Katavi Wildlife Corridor, South-Western Tanzania. Int. J. Biodivers. Conserv. 2017, 9, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Abade, L.; Macdonald, D.W.; Dickman, A.J. Assessing the relative importance of landscape and husbandry factors in determining large carnivore depredation risk in Tanzania’s Ruaha landscape. Biol. Conserv. 2014, 180, 241–248. [Google Scholar] [CrossRef]
- Hariohay, K.M.; Ranke, P.S.; Fyumagwa, R.D.; Kideghesho, J.R.; Røskaft, E. Drivers of conservation crimes in the Rungwa-Kizigo-Muhesi Game Reserves, Central Tanzania. Glob. Ecol. Conserv. 2019, 17, e00522. [Google Scholar] [CrossRef]
- URT. The Wildlife Policy of Tanzania. 1998, pp 1–39. Available online: http://www.tzonline.org/pdf/wildlifepolicy.pdf. (accessed on 22 March 2021).
- Jones, T.; Bamford, A.J.; Ferrol-Schulte, D.; Hieronimo, P.; McWilliam, N.; Rovero, F. Vanishing Wildlife Corridors and Options for Restoration: A Case Study from Tanzania. Trop. Conserv. Sci. 2012, 5, 463–474. [Google Scholar] [CrossRef]
- NASA JPL. NASA Shuttle Radar Topography Mission Global 1 Arc Second; NASA JPL: Pasadena, CA, USA, 2019. Available online: https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (accessed on 13 October 2019).
- Sosovele, H.; Ngwale, J. Socio-Economic Root Causes of the Loss of Biodiversity in the Ruaha Catchment Area. 2002. Available online: https://wwfeu.awsassets.panda.org/downloads/rcareportruaha.pdf (accessed on 22 March 2021).
- Sankaran, M.; Hanan, N.P.; Scholes, R.J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le Roux, X.; Ludwig, F.; et al. Determinants of woody cover in African savannas. Nature 2005, 438, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, D.R.; Stocks, B.J.; Levine, J.S.; Cofer, W.; O’Neill, K.P. Seasonal distribution of African savanna fires. Nature 1992, 359, 812–815. [Google Scholar] [CrossRef]
- Ratnam, J.; Bond, W.J.; Fensham, R.J.; Hoffmann, W.A.; Archibald, S.; Lehmann, C.E.R.; Anderson, M.T.; Higgins, S.I.; Sankaran, M. When is a “forest” a savanna, and why does it matter? Glob. Ecol. Biogeogr. 2011, 20, 653–660. [Google Scholar] [CrossRef]
- Nahonyo, C. Assessment of anti-poaching effort in Ruaha National Park, Tanzania. Tanzania J. Sci. 2009, 31, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Farm Size | Family Farming Knowledge Platform. Available online: http://www.fao.org/family-farming/data-sources/dataportrait/farm-size/en (accessed on 18 April 2020).
- Hariohay, K.M.; Munuo, W.A.; Røskaft, E. Human–elephant interactions in areas surrounding the Rungwa, Kizigo, and Muhesi Game Reserves, central Tanzania. Oryx 2019, 54, 612620. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Hafemann Fragal, E.; Sanna, T.; Silva, F.; Márcia, E.; De, L.; Novo, M. Reconstructing historical forest cover change in the Lower Amazon floodplains using the LandTrendr algorithm. Acta Amaz. 2016, 46, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Flood, N. Seasonal composite landsat TM/ETM+ Images using the medoid (a multi-dimensional median). Remote Sens. 2013, 5, 6481–6500. [Google Scholar] [CrossRef] [Green Version]
- Key, C.H.; Benson, N.C. LA-1 Landscape Assessment (LA) Sampling and Analysis Methods. In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; USDA Forest Service: Washington, DC, USA, 2005. [Google Scholar]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1985, GE-22, 256–263. [Google Scholar] [CrossRef]
- Munuo, W. Distribution Patterns of Human Elephant Conflict in Areas Adjacent to Rungwa Game Reserve, Tanzania. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2016. [Google Scholar]
- Lobora, A.L.; Nahonyo, C.L.; Munishi, L.K.; Caro, T.; Foley, C.; Beale, C.M. Modelling habitat conversion in miombo woodlands: Insights from Tanzania. J. Land Use Sci. 2017, 12, 391–403. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Braaten, J.; Copass, C.; Antonova, N.; Jordan, C.; Nelson, P. Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sens. Environ. 2015, 166, 271–285. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Disturbance-Informed Annual Land Cover Classification Maps of Canada’s Forested Ecosystems for a 29-Year Landsat Time Series. Can. J. Remote Sens. 2018, 44, 67–87. [Google Scholar] [CrossRef]
- USGS Landsat Surface Reflectance-Derived Spectral Indices. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-surface-reflectance-derived-spectral-indices?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 2 January 2021).
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Schleeweis, K.; Thomas, N.; Masek, J.G.; Zhu, Z. Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States. Remote Sens. Environ. 2009, 113, 1430–1442. [Google Scholar] [CrossRef]
- Kauzeni, A.S.; Kikula, I.S.; Mohamed, S.A.; Lyimo, J.G.; Dalal-Clayton, D.B. Land Use Planning and Resource Assessment in Tanzania: A Case Study; The International Institute for Environment and Development: London, UK, 1993; ISBN 1843692023. [Google Scholar]
- Funakawa, S.; Yoshida, H.; Watanabe, T.; Sugihara, S.; Kilasara, M.; Kosaki, T. Soil Fertility Status and Its Determining Factors in Tanzania. Soil Health Land Use Manag. 2012. [Google Scholar] [CrossRef] [Green Version]
- LP DAAC-Data Citation and Policies. Available online: https://lpdaac.usgs.gov/data/data-citation-and-policies/ (accessed on 10 March 2021).
- Croon, I.; Deutsch, J.; Temu, A.E.M. Maize Production in TAanzania’s Southern Highlands: Current Status and Recommendation for the Future, Mexico, Mexico. 1984. Available online: https://repository.cimmyt.org/handle/10883/3795 (accessed on 22 March 2021).
- Madulu, N.F. Population Dynamics and Sustainable Conservation of Protected Areas in Tanzania: The case of Swagaswaga Game Reserve in Kondoa District. In Proceedings of the 24th IUSSP Conference, Bahia, Brasil, 18–24 August 2001; Volume 2. [Google Scholar]
- Caro, T.; Jones, T.; Davenport, T.R.B. Realities of documenting wildlife corridors in tropical countries. Biol. Conserv. 2009, 142, 2807–2811. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Lobora, A.L.; Nahonyo, C.L.; Munishi, L.K.; Caro, T.; Foley, C.; Beale, C.M. Efficacy of land use designation in protecting habitat in the miombo woodlands: Insights from Tanzania. bioRxiv 2017, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Herrero, H.; Waylen, P.; Southworth, J.; Khatami, R.; Yang, D.; Child, B. A Healthy Park Needs Healthy Vegetation: The Story of Gorongosa National Park in the 21st Century. Remote Sens. 2020, 12, 476. [Google Scholar] [CrossRef] [Green Version]
- URT, The United Republic of Tanzania. SINGIDA SOCIO-ECONOMIC PROFILE; Dar es Salaam: National Bureau of Statistics. 2017. Available online: https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=856838 (accessed on 22 March 2021).
- Knapp, E.J.; Peace, N.; Bechtel, L. Poachers and Poverty: Assessing Objective and Subjective Measures of Poverty among Illegal Hunters Outside Ruaha National Park, Tanzania. Conserv. Soc. 2017, 15, 24–32. [Google Scholar] [CrossRef]
- Loibooki, M.; Hofer, H.; Campbell, K.L.I.; East, M.L. Bushmeat hunting by communities adjacent to the Serengeti National Park, Tanzania: The importance of livestock ownership and alternative sources of protein and income. Environ. Conserv. 2002, 29, 391–398. [Google Scholar] [CrossRef]
- ‘Operation Imparnati’: The sedentarization of the pastoral Maasai in Tanzania. Available online: https://www.jstor.org/stable/43124000?seq=1 (accessed on 28 September 2020).
- Coppolillo, P. A Preliminary Situation Analysis for the Ruaha-Rungwa Landscape, Tanzania; Wildlife Conservation Society: Iringa, Tanzania, 2004; p. 25. [Google Scholar]
- Estes, A.B.; Kuemmerle, T.; Kushnir, H.; Radeloff, V.C.; Shugart, H.H. Land-cover change and human population trends in the greater Serengeti ecosystem from 1984–2003. Biol. Conserv. 2012, 147, 255–263. [Google Scholar] [CrossRef]
- Hariohay, K.M.; Fyumagwa, R.D.; Kideghesho, J.R.; Røskaft, E. Awareness and attitudes of local people toward wildlife conservation in the Rungwa Game Reserve in Central Tanzania. Hum. Dimens. Wildl. 2018, 23, 503–514. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
Changed Pixel | Stable Pixel | Total | User Accuracy (%) | |
---|---|---|---|---|
Changed pixel | 194 | 48 | 242 | 80.17 |
Stable pixel | 17 | 212 | 229 | 92.58 |
Total | 211 | 260 | ||
Producer accuracy (%) | 91.94 | 81.54 | 86.37 Overall |
RKMGR | RNP | |||||
---|---|---|---|---|---|---|
Total Area Analyzed (km2) | Changed Area (km2) | Percentage Change | Total Area Analyzed (km2) | Changed Area (km2) | Percentage Change | |
Within the PA | 17340.00 | 130.68 | 0.75% | 20226.00 | 227.21 | 1.12% |
Zone 1 (0–10 km) | 4690.6 | 2673.59 | 57.10% | 5680.0 | 340.66 | 6.11% |
Zone 2 (10–20 km) | 4792.5 | 2491.52 | 52.58% | 5572.5 | 668.75 | 12.20% |
Zone 3 (20–30 km) | 4954.3 | 1337.41 | 35.79% | 5811.6 | 1336.89 | 23.75% |
Zone 4 (30–40 km) | 5182.9 | 1865.19 | 36.25% | 6097.9 | 2499.18 | 41.05% |
Zone 5 (40–50 km) | 5415.6 | 1949.95 | 36.48% | 6254.94 | 2501.88 | 40.67% |
Total | 10,448.34 | 7574.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komba, A.W.; Watanabe, T.; Kaneko, M.; Chand, M.B. Monitoring of Vegetation Disturbance around Protected Areas in Central Tanzania Using Landsat Time-Series Data. Remote Sens. 2021, 13, 1800. https://doi.org/10.3390/rs13091800
Komba AW, Watanabe T, Kaneko M, Chand MB. Monitoring of Vegetation Disturbance around Protected Areas in Central Tanzania Using Landsat Time-Series Data. Remote Sensing. 2021; 13(9):1800. https://doi.org/10.3390/rs13091800
Chicago/Turabian StyleKomba, Atupelye W., Teiji Watanabe, Masami Kaneko, and Mohan Bahadur Chand. 2021. "Monitoring of Vegetation Disturbance around Protected Areas in Central Tanzania Using Landsat Time-Series Data" Remote Sensing 13, no. 9: 1800. https://doi.org/10.3390/rs13091800
APA StyleKomba, A. W., Watanabe, T., Kaneko, M., & Chand, M. B. (2021). Monitoring of Vegetation Disturbance around Protected Areas in Central Tanzania Using Landsat Time-Series Data. Remote Sensing, 13(9), 1800. https://doi.org/10.3390/rs13091800