A Performance Evaluation of Vis/NIR Hyperspectral Imaging to Predict Curcumin Concentration in Fresh Turmeric Rhizomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design Overview
2.2. Sample Collection and Preparation
2.3. Hyperspectral Imaging and Image Acquisition
2.4. Data Pre-Processing: Region of Interest Selection, Outlier Detection and Data Set Assignment
2.5. Curcumin Quantitation Using HPLC
2.6. Calibration Model Development and Spectral Data Transformations
2.7. Wavelength Selection Using Jack-Knife Uncertainty Testing
2.8. Evaluation of Calibration Models Using Test Data
2.9. Statistical Analysis of the Different Turmeric Varieties
3. Results
3.1. Quantitation of Three Curcuminoids and Total Curcumin in Varieties of C. longa
3.2. Descriptive Statistics for Data Sets Used in Model Calibration and Prediction
3.3. Attributes of Developed Prediction Models Using the Full Spectrum and Transformed Spectra
3.4. Attributes of Developed Prediction Models Following Spectral Wavelength Selection
4. Discussion
4.1. Curcumin Concentration among the Turmeric Varieties
4.2. Assessment of Model Accuracy and Prediction Performance using Images of Rhizome Flesh
4.3. Assessment of Model Accuracy and Prediction Performance using Images of Rhizome Outer-Skin
4.4. Implications of This Scoping Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravikanth, L.; Jayas, D.S.; White, N.D.G.; Fields, P.G.; Sun, D.W. Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products. Food Bioprocess Technol. 2017, 10, 1–33. [Google Scholar] [CrossRef]
- Huang, H.; Liu, L.; Ngadi, M.O. Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors 2014, 14, 7248–7276. [Google Scholar] [CrossRef] [Green Version]
- Malmir, M.; Tahmasbian, I.; Xu, Z.; Farrar, M.B.; Bai, S.H. Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique. Geoderma 2019, 340, 70–80. [Google Scholar] [CrossRef]
- Gama, T.; Wallace, H.M.; Trueman, S.J.; Tahmasbian, I.; Bai, S.H. Hyperspectral imaging for non-destructive prediction of total nitrogen concentration in almond kernels. Acta Hortic. 2018, 1219, 259–264. [Google Scholar] [CrossRef]
- Anderson, A.M.; Mitchell, M.S.; Mohan, R.S. Isolation of curcumin from turmeric. J. Chem. Educ. 2000, 77. [Google Scholar] [CrossRef]
- Rohman, A. Analysis of curcuminoids in food and pharmaceutical products. Int. Food Res. J. 2012, 19, 19–27. [Google Scholar]
- Pothitirat, W.; Gritsanapan, W. Variability of curcuminoids: Antioxidative components in ethanolic turmeric extract determined by UV and HPLC methods. Acta Hortic. 2008, 786, 175–183. [Google Scholar] [CrossRef]
- Farrar, M.B.; Wallace, H.M.; Xu, C.-Y.; Joseph, S.; Dunn, P.K.; Nguyen, T.T.N.; Bai, S.H. Biochar co-applied with organic amendments increased soil-plant potassium and root biomass but not crop yield. J. Soils Sediments 2021, 21, 784–798. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Wallace, H.M.; Gama, T.; Bai, S.H. An automated non-destructive prediction of peroxide value and free fatty acid level in mixed nut samples. LWT 2021, 143, 110893. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Non-invasive analytical technology for the detection of contamination, adulteration, and authenticity of meat, poultry, and fish: A review. Anal. Chim. Acta 2015, 853, 19–29. [Google Scholar] [CrossRef] [PubMed]
- ElMasry, G.; Kamruzzaman, M.; Sun, D.W.; Allen, P. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Steffens, M. The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Appl. Environ. Soil Sci. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Sun, D.W.; Zeng, X.A. Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food. Bioprocess Technol. 2014, 7, 307–323. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W. Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle. Food. Eng. Rev. 2017, 9, 36–49. [Google Scholar] [CrossRef]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Wang, W.; Ni, X.; Lawrence, K.C.; Zhuang, H.; Yoon, S.C.; Gao, Z. Essential processing methods of hyperspectral images of agricultural and food products. Chemom. Intellig. Lab. Syst. 2020, 198, 103936. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Hosseini Bai, S.; Wang, Y.; Boyd, S.; Zhou, J.; Esmaeilani, R.; Xu, Z. Using laboratory-based hyperspectral imaging method to determine carbon functional group distributions in decomposing forest litterfall. Catena 2018, 167, 18–27. [Google Scholar] [CrossRef]
- Lin, S.-R.; Fu, Y.-S.; Tsai, M.-J.; Cheng, H.; Weng, C.-F. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int. J. Mol. Sci. 2017, 18, 1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauf, A.; Imran, M.; Orhan, I.E.; Bawazeer, S. Health perspectives of a bioactive compound curcumin: A review. Trends Food Sci. Technol. 2018, 74, 33–45. [Google Scholar] [CrossRef]
- Mishra, A.; Pathak, Y.; Choudhir, G.; Kumar, A.; Mishra, S.K.; Tripathi, V. Natural compounds as potential inhibitors of novel Coronavirus (COVID-19) main protease: An in silico study. Res. Sq. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Jayaprakasha, G.; Rao, L.J.M.; Sakariah, K. Chemistry and biological activities of C. longa. Trends Food Sci. Technol. 2005, 16, 533–548. [Google Scholar] [CrossRef]
- Nair, K.P. The Agronomy and Economy of Turmeric and Ginger; Elsevier: London, UK, 2013. [Google Scholar]
- Sasikumar, B. Genetic resources of Curcuma: Diversity, characterization and utilization. Plant Genet. Resour. 2005, 3, 230–251. [Google Scholar] [CrossRef]
- Wichitnithad, W.; Jongaroonngamsang, N.; Pummangura, S.; Rojsitthisak, P. A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem. Anal. 2009, 20, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Tayyem, R.F.; Heath, D.D.; Al-Delaimy, W.K.; Rock, C.L. Curcumin content of turmeric and curry powders. Nutr. Cancer 2006, 55, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Bandara, W.G.C.; Prabhath, G.W.K.; Dissanayake, D.W.S.C.B.; Herath, V.R.; Godaliyadda, G.M.R.I.; Ekanayake, M.P.B.; Demini, D.; Madhujith, T. Validation of multispectral imaging for the detection of selected adulterants in turmeric samples. J. Food Eng. 2020, 266, 109700. [Google Scholar] [CrossRef]
- Chao, K.; Dhakal, S.; Schmidt, W.F.; Qin, J.; Kim, M.; Peng, Y.; Huang, Q. Raman and IR spectroscopic modality for authentication of turmeric powder. Food Chem. 2020, 320, 126567. [Google Scholar] [CrossRef] [PubMed]
- Su, W.H.; Sun, D.W. Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of powdery foods: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 104–122. [Google Scholar] [CrossRef]
- Tanaka, K.; Kuba, Y.; Sasaki, T.; Hiwatashi, F.; Komatsu, K. Quantitation of curcuminoids in curcuma rhizome by near-infrared spectroscopic analysis. J. Agric. Food Chem. 2008, 56, 8787–8792. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Opara, U.L. Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. J. Food Eng. 2018, 217, 11–23. [Google Scholar] [CrossRef]
- Joyce, M.; (Mighty Bean Organics, Cooloolabin, Queensland, Australia). Personal communication, 2021.
- Remashree, A.; Balachandran, I. Anatomical and histochemical studies on four species of Curcuma. Phytomorphology 2006, 56, 1–8. [Google Scholar]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Parsimonious model development for real-time monitoring of moisture in red meat using hyperspectral imaging. Food Chem. 2016, 196, 1084–1091. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Xu, Z.; Boyd, S.; Zhou, J.; Esmaeilani, R.; Che, R.; Hosseini Bai, S. Laboratory-based hyperspectral image analysis for predicting soil carbon, nitrogen and their isotopic compositions. Geoderma 2018, 330, 254–263. [Google Scholar] [CrossRef]
- Qin, N.; Yang, F.; Wang, Y.; Li, S. Quantitative determination of eight components in rhizome (Jianghuang) and tuberous root (Yujin) of Curcuma longa using pressurized liquid extraction and gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2007, 43, 486–492. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intellig. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Van Roon, P.; Zakizadeh, J.; Chartier, S. Partial least squares tutorial for analyzing neuroimaging data. Quant. Methods Psychol. 2014, 10, 200–215. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Anal. Chim. Acta 2012, 714, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.H.; Tahmasbian, I.; Zhou, J.; Nevenimo, T.; Hannet, G.; Walton, D.; Randall, B.; Gama, T.; Wallace, H.M. A non-destructive determination of peroxide values, total nitrogen and mineral nutrients in an edible tree nut using hyperspectral imaging. Comput. Electron. Agric. 2018, 151, 492–500. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Fearn, T. On orthogonal signal correction. Chemom. Intellig. Lab. Syst. 2000, 50, 47–52. [Google Scholar] [CrossRef]
- Li, B.; Liew, O.W.; Asundi, A.K. Pre-visual detection of iron and phosphorus deficiency by transformed reflectance spectra. J. Photochem. Photobiol. B: Biol. 2006, 85, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Knadel, M.; Gislum, R.; Schelde, K.; Thomsen, A.; Greve, M.H. Quantification of SOC and clay content using visible near-infrared reflectance–mid-infrared reflectance spectroscopy with Jack-knifing partial least squares regression. Soil Sci. 2014, 179, 325–332. [Google Scholar] [CrossRef]
- Karaman, İ.; Qannari, E.M.; Martens, H.; Hedemann, M.S.; Knudsen, K.E.B.; Kohler, A. Comparison of Sparse and Jack-knife partial least squares regression methods for variable selection. Chemom. Intellig. Lab. Syst. 2013, 122, 65–77. [Google Scholar] [CrossRef]
- Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosys. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Saeys, W.; Mouazen, A.M.; Ramon, H. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosys. Eng. 2005, 91, 393–402. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2016. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Akter, J.; Hossain, M.A.; Takara, K.; Islam, M.Z.; Hou, D.X. Antioxidant activity of different species and varieties of turmeric (Curcuma spp.): Isolation of active compounds. Comp. Biochem. Physiol. Part C 2019, 215, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Raizada, S.; Kumar, A.; Dhyani, B.P.; Shahi, U.P.; Senger, R.S.; Singh, R.R. Productivity and quality of Turmeric (Curcuma longa L.) under different nutritional level supplemented through organic and inorganic sources. J. Community Mob. Sustain. Dev. 2018, 13, 286–290. [Google Scholar]
- Kulyal, P.; Kuchibhatla, L.N.; Maheshwari, K.U.; Babu, K.N.; Tetali, S.D.; Raghavendra, A.S. Highly sensitive HPLC method for estimation of total or individual curcuminoids in Curcuma cultivars and commercial turmeric powders. Curr. Sci. 2016, 1816–1824. [Google Scholar] [CrossRef]
- Sherlija, K.; Remashree, A.; Unnikrishnan, K.; Ravindran, P. Comparative rhizome anatomy of four species of Curcuma. J. Spices Aromat. Crop. 1998, 7, 103–109. [Google Scholar]
- Davey, M.W.; Saeys, W.; Hof, E.; Ramon, H.; Swennen, R.L.; Keulemans, J. Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. J. Agric. Food Chem. 2009, 57, 1742–1751. [Google Scholar] [CrossRef]
- Williams, P. A short course in the practical implementation of near-infrared spectroscopy for the user. In Near-Infrared Technology: Getting the Best Out of Light; Antoniszyn, J., Manley, M., Eds.; African Sun Media: Nanaimo, Canada, 2019. [Google Scholar]
- Kämper, W.; Trueman, S.J.; Tahmasbian, I.; Bai, S.H. Rapid determination of nutrient concentrations in Hass avocado fruit by Vis/NIR hyperspectral imaging of flesh or skin. Remote Sens. 2020, 12, 3409. [Google Scholar] [CrossRef]
- Esbensen, K.H.; Swarbrick, B.; Westad, F.; Whitcombe, P.; Anderson, M. Multivariate Data Analysis: An Introduciton to Multivariate Data Analysis, Process Analytical Technology and Quality by Design, 6th ed.; CAMO Software: Oslo, Norway, 2019. [Google Scholar]
- Kawano, S. New application of nondestructive methods for quality evaluation of fruits and vegetables in Japan (quality and its evaluation of horticultural products, for further development of horticulture in East Asia). J. Jpn. Soc. Hort. Sci. 1998, 67, 1176–1179. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Liu, Z.; Khoshelham, K.; Bai, S.H. Quality estimation of nuts using deep learning classification of hyperspectral imagery. Comput. Electron. Agric. 2021, 180, 105868. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Morgan, N.K.; Hosseini Bai, S.; Dunlop, M.W.; Moss, A.F. Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat. Remote Sens. 2021, 13, 1128. [Google Scholar] [CrossRef]
- Walsh, K.; McGlone, V.; Han, D. The uses of near infra-red spectroscopy in postharvest decision support: A review. Postharvest Biol. Technol. 2020, 163, 111139. [Google Scholar] [CrossRef]
All Samples | Calibration Set | Test Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variety | All Varieties | Variety | All Varieties | Variety | All Varieties | |||||||
Location | Yellow | Orange | Red | Yellow | Orange | Red | Yellow | Orange | Red | |||
Mt. Mellum 1 | 6 | 55 | 7 | 68 | 6 | 44 | 5 | 55 | 0 | 11 | 2 | 13 |
Mt. Mellum 2 | 9 | 17 | 8 | 34 | 8 | 13 | 7 | 28 | 1 | 4 | 1 | 6 |
Lake MacDonald | 0 | 10 | 0 | 10 | 0 | 7 | 0 | 7 | 0 | 3 | 0 | 3 |
Kandanga | 0 | 24 | 0 | 24 | 0 | 21 | 0 | 21 | 0 | 3 | 0 | 3 |
Josh Rust | 4 | 12 | 0 | 16 | 2 | 8 | 0 | 10 | 2 | 4 | 0 | 6 |
Total | 19 | 118 | 15 | 152 | 16 | 93 | 12 | 121 | 3 | 25 | 3 | 31 |
All Samples | Calibration Set | Test Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variety | All Varieties (%) | Variety | All Varieties (%) | Variety | All Varieties (%) | |||||||
Yellow (%) | Orange (%) | Red (%) | Yellow (%) | Orange (%) | Red (%) | Yellow (%) | Orange (%) | Red (%) | ||||
Mean | 0.023 | 0.369 | 0.830 | 0.372 | 0.023 | 0.368 | 0.805 | 0.366 | 0.021 | 0.371 | 0.929 | 0.391 |
SD | 0.022 | 0.121 | 0.224 | 0.227 | 0.023 | 0.120 | 0.232 | 0.226 | 0.018 | 0.126 | 0.192 | 0.241 |
SE | 0.005 | 0.011 | 0.058 | 0.018 | 0.006 | 0.012 | 0.067 | 0.021 | 0.010 | 0.025 | 0.111 | 0.043 |
CV | 0.957 | 0.328 | 0.270 | 0.611 | 0.997 | 0.327 | 0.288 | 0.618 | 0.838 | 0.340 | 0.207 | 0.617 |
Min | 0.003 | 0.062 | 0.388 | 0.003 | 0.003 | 0.062 | 0.388 | 0.003 | 0.007 | 0.105 | 0.708 | 0.007 |
Max | 0.076 | 0.673 | 1.133 | 1.133 | 0.076 | 0.673 | 1.133 | 1.133 | 0.041 | 0.648 | 1.050 | 1.050 |
Skewness | 1.336 | −0.177 | −0.345 | 0.836 | 1.352 | −0.129 | −0.172 | 0.817 | 1.212 | −0.365 | −1.711 | 0.983 |
Model | Images | Transformation | WL | LV | R2C | R2cv | RMSEC | RMSECV | R2P | RMSEP | RPD |
---|---|---|---|---|---|---|---|---|---|---|---|
Three varieties pooled with: | |||||||||||
wavelength selection | Flesh | 95 | 8 | 0.71 | 0.64 | 0.12 | 0.14 | 0.55 | 0.16 | 1.52 | |
Skin | 9 | 4 | 0.25 | 0.18 | 0.19 | 0.21 | 0.27 | 0.20 | 1.19 | ||
best transformation/s | Flesh | SG | 462 | 14 | 0.95 | 0.74 | 0.05 | 0.12 | 0.37 | 0.19 | 1.28 |
Skin | SG | 462 | 6 | 0.63 | 0.43 | 0.14 | 0.17 | 0.48 | 0.17 | 1.41 | |
best transformation/s + wavelength selection | Flesh | SG | 25 | 4 | 0.71 | 0.67 | 0.12 | 0.13 | 0.52 | 0.16 | 1.47 |
Skin | SG | 88 | 3 | 0.55 | 0.48 | 0.15 | 0.16 | 0.41 | 0.18 | 1.32 | |
Orange variety only with: | |||||||||||
wavelength selection | Flesh | 28 | 8 | 0.70 | 0.58 | 0.07 | 0.08 | 0.51 | 0.09 | 1.46 | |
Skin | 180 | 2 | 0.20 | 0.17 | 0.11 | 0.11 | 0.11 | 0.11 | 1.15 | ||
best transformation/s | Flesh | SG | 462 | 9 | 0.85 | 0.61 | 0.05 | 0.08 | 0.57 | 0.08 | 1.56 |
Skin | SG + MSC | 462 | 1 | 0.19 | 0.16 | 0.11 | 0.11 | 0.08 | 0.12 | 1.07 | |
best transformation/s + wavelength selection | Flesh | SG | 33 | 3 | 0.75 | 0.71 | 0.06 | 0.07 | 0.51 | 0.09 | 1.45 |
Skin | SG + MSC | 54 | 3 | 0.28 | 0.22 | 0.10 | 0.11 | 0.24 | 0.11 | 1.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrar, M.B.; Wallace, H.M.; Brooks, P.; Yule, C.M.; Tahmasbian, I.; Dunn, P.K.; Hosseini Bai, S. A Performance Evaluation of Vis/NIR Hyperspectral Imaging to Predict Curcumin Concentration in Fresh Turmeric Rhizomes. Remote Sens. 2021, 13, 1807. https://doi.org/10.3390/rs13091807
Farrar MB, Wallace HM, Brooks P, Yule CM, Tahmasbian I, Dunn PK, Hosseini Bai S. A Performance Evaluation of Vis/NIR Hyperspectral Imaging to Predict Curcumin Concentration in Fresh Turmeric Rhizomes. Remote Sensing. 2021; 13(9):1807. https://doi.org/10.3390/rs13091807
Chicago/Turabian StyleFarrar, Michael B., Helen M. Wallace, Peter Brooks, Catherine M. Yule, Iman Tahmasbian, Peter K. Dunn, and Shahla Hosseini Bai. 2021. "A Performance Evaluation of Vis/NIR Hyperspectral Imaging to Predict Curcumin Concentration in Fresh Turmeric Rhizomes" Remote Sensing 13, no. 9: 1807. https://doi.org/10.3390/rs13091807
APA StyleFarrar, M. B., Wallace, H. M., Brooks, P., Yule, C. M., Tahmasbian, I., Dunn, P. K., & Hosseini Bai, S. (2021). A Performance Evaluation of Vis/NIR Hyperspectral Imaging to Predict Curcumin Concentration in Fresh Turmeric Rhizomes. Remote Sensing, 13(9), 1807. https://doi.org/10.3390/rs13091807