Enhanced Pulsed-Source Localization with 3 Hydrophones: Uncertainty Estimates
Abstract
:1. Introduction
2. Bayesian Inversion Framework
2.1. 3D Localization
2.1.1. Step 1: Range/Depth Estimation
2.1.2. Step 2: Localization in the Horizontal
2.2. 2D Localization
3. Numerical Results
3.1. 3D Localization Uncertainty
3.1.1. Range/Depth Estimation
3.1.2. Localization in the Horizontal
3.2. 2D localization Uncertainty
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bahr, A.; Leonard, J.J.; Fallon, M.F. Cooperative Localization for Autonomous Underwater Vehicles. Int. J. Robot. Res. 2009, 28, 714–728. [Google Scholar] [CrossRef]
- Kelland, N.C. Deep-Water Black Box Retrieval. Hydro International. 2009. Available online: Https://www.hydro-international.com/content/article/deep-water-black-box-retrieval (accessed on 1 September 2020).
- Hastie, G.D.; Wu, G.; Moss, S.; Jepp, P.; MacAulay, J.; Lee, A.; Sparling, C.E.; Evers, C.; Gillespie, D. Automated detection and tracking of marine mammals: A novel sonar tool for monitoring effects of marine industry. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, J.A.; Frasier, K.E.; Baumann-Pickering, S.; Wiggins, S.M.; Merkens, K.P.; Garrison, L.P.; Soldevilla, M.S.; McDonald, M.A. Assessing Seasonality and Density From Passive Acoustic Monitoring of Signals Presumed to be From Pygmy and Dwarf Sperm Whales in the Gulf of Mexico. Front. Mar. Sci. 2019, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Delikaris-Manias, S.; McCormack, L.; Huhtakallio, I.; Pulkki, V. Real-Time Underwater Spatial Audio: A Feasibility Study. In Proceedings of the the 144th Audio Engineering Society Convention, Milan, Italy, 23–26 May 2018. [Google Scholar]
- Wahlberg, M.; Møhl, B.; Teglberg, M.P. Estimating source position accuracy of a large-aperture hydrophone array for bioacoustics. J. Acoust. Soc. Am. 2001, 109, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Nosal, E.; Neil Frazer, L. Track of a sperm whale from delays between direct and surface-reflected clicks. Appl. Acoust. 2006, 67, 1187–1201. [Google Scholar] [CrossRef]
- Rideout, B.P.; Dosso, S.E.; Hannay, D.E. Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea. J. Acoust. Soc. Am. 2013, 134, 2534–2545. [Google Scholar] [CrossRef]
- Watkins, W.A.; Schevill, W.E. Sound source location by arrival-times on a non-rigid three-dimensional hydrophone array. Deep Sea Res. Oceanogr. Abstr. 1972, 19, 691–706. [Google Scholar] [CrossRef]
- Skarsoulis, E.K.; Frantzis, A.; Kalogerakis, M. Passive localization of pulsed sound sources with a 2-hydrophone array. In Proceedings of the Seventh European Conference on Underwater Acoustics (ECUA), Delft, The Netherlands, 5–8 July 2004. [Google Scholar]
- Thode, A. Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive acoustic array. J. Acoust. Soc. Am. 2004, 116, 245–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, J.; Griffiths, E.T. Precision and bias in estimating detection distances for beaked whale echolocation clicks using a two-element vertical hydrophone array. J. Acoust. Soc. Am. 2017, 141, 4388–4397. [Google Scholar] [CrossRef]
- Skarsoulis, E.K.; Kalogerakis, M.A. Ray-theoretic localization of an impulsive source in a stratified ocean using two hydrophones. J. Acoust. Soc. Am. 2005, 118, 2934–2943. [Google Scholar] [CrossRef]
- Thode, A. Three-dimensional passive acoustic tracking of sperm whales (Physeter macrocephalus) in ray-refracting environments. J. Acoust. Soc. Am. 2005, 118, 3575–3584. [Google Scholar] [CrossRef]
- Skarsoulis, E.K.; Kalogerakis, M.A. Two-hydrophone localization of a click source in the presence of refraction. Appl. Acoust. 2006, 67, 1202–1212. [Google Scholar] [CrossRef]
- Skarsoulis, E.K.; Dosso, S.E. Linearized two-hydrophone localization of a pulsed acoustic source in the presence of refraction: Theory and simulations. J. Acoust. Soc. Am. 2015, 138, 2221–2234. [Google Scholar] [CrossRef] [PubMed]
- Skarsoulis, E.K.; Piperakis, G.; Kalogerakis, M.; Orfanakis, E.; Papadakis, P.; Dosso, S.E.; Frantzis, A. Underwater acoustic pulsed source localization with a pair of hydrophones. Remote Sens. 2018, 10, 883. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.; Dawson, S.; Vennell, R. Underwater behavior of sperm whales off Kaikoura, New Zealand, as revealed by a three-dimensional hydrophone array. J. Acoust. Soc. Am. 2013, 134, 2690–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrissey, R.; Ward, J.; DiMarzio, N.; Jarvis, S.; Moretti, D.J. Passive acoustic detection and localization of sperm whales (Physeter macrocephalus) in the tongue of the ocean. Appl. Acoust. 2006, 67, 1091–1105. [Google Scholar] [CrossRef]
- Miller, B.; Dawson, S. A large-aperture low-cost hydrophone array for tracking whales from small boats. J. Acoust. Soc. Am. 2009, 126, 2248–2256. [Google Scholar] [CrossRef] [Green Version]
- Baggenstoss, P.M. An algorithm for the localization of multiple interfering sperm whales using multi-sensor time difference of arrival. J. Acoust. Soc. Am. 2011, 130, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Brunoldi, M.; Bozzini, G.; Casale, A.; Corvisiero, P.; Grosso, D.; Magnoli, N.; Alessi, J.; Bianchi, C.N.; Mandich, A.; Morri, C.; et al. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea. PLoS ONE 2016, 11, 1–35. [Google Scholar] [CrossRef]
- Leaper, R.; Chappell, O.; Gordon, J.C.D. The development of practical techniques for surveying sperm whale populations acoustically. In Report of the International Whaling Commission 42; The Red House: Cambridge, UK, 1992; pp. 549–560. [Google Scholar]
- Urazghildiiev, I.R.; Hannay, D. Maximum likelihood estimators and Cramér–Rao bound for estimating azimuth and elevation angles using compact arrays. J. Acoust. Soc. Am. 2017, 141, 2548–2555. [Google Scholar] [CrossRef]
- Urazghildiiev, I.R.; Hannay, D.E. Localizing Sources Using a Network of Asynchronous Compact Arrays. IEEE J. Ocean. Eng. 2020, 45, 1091–1098. [Google Scholar] [CrossRef]
- Sanguineti, M.; Alessi, J.; Brunoldi, M.; Cannarile, G.; Cavalleri, O.; Cerruti, R.; Falzoi, N.; Gaberscek, F.; Gili, C.; Gnone, G.; et al. An automated passive acoustic monitoring system for real time sperm whale (Physeter macrocephalus) threat prevention in the Mediterranean Sea. Appl. Acoust. 2021, 172, 107650. [Google Scholar] [CrossRef]
- Barlow, J.; Griffiths, E.T.; Klinck, H.; Harris, D.V. Diving behavior of Cuvier’s beaked whales inferred from three-dimensional acoustic localization and tracking using a nested array of drifting hydrophone recorders. J. Acoust. Soc. Am. 2018, 144, 2030–2041. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.; Fregosi, S.; Thomas, L.; Harris, D.; Griffiths, E.T. Acoustic detection range and population density of Cuvier’s beaked whales estimated from near-surface hydrophones. J. Acoust. Soc. Am. 2021, 149, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, M.; Henderson, E.; Wiggins, S.M.; Roch, M.A.; Hildebrand, J.A. Offshore killer whale tracking using multiple hydrophone arrays. J. Acoust. Soc. Am. 2013, 134, 3513–3521. [Google Scholar] [CrossRef]
- Gassmann, M.; Wiggins, S.M.; Hildebrand, J.A. Three-dimensional tracking of Cuvier’s beaked whales’ echolocation sounds using nested hydrophone arrays. J. Acoust. Soc. Am. 2015, 138, 2483–2494. [Google Scholar] [CrossRef] [Green Version]
- Dosso, S.E.; Ebbeson, G.R. Array element localization accuracy and survey design. Can. Acoust. 2006, 34, 3–13. [Google Scholar]
- Thomson, D.; Dosso, S. AUV localization in an underwater acoustic positioning system. In Proceedings of the 2013 MTS/IEEE OCEANS—Bergen, Bergen, Norway, 10–14 June 2013; pp. 1–6. [Google Scholar]
- Warner, G.A.; Dosso, S.E.; Hannay, D.E. Bowhead whale localization using time-difference-of-arrival data from asynchronous recorders. J. Acoust. Soc. Am. 2017, 141, 1921–1935. [Google Scholar] [CrossRef]
- Apostol, T.M. Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability, 2nd ed.; J. Wiley: Hoboken, NJ, USA, 1975; Volume 2. [Google Scholar]
- Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 1985. [Google Scholar]
- Tarantola, A. Inverse Problem Theory, 1st ed.; Elsevier: New York, NY, USA, 1987; Volume 2. [Google Scholar]
- Niu, X.; Yan, K.; Zhang, T.; Zhang, Q.; Zhang, H.; Liu, J. Quality evaluation of the pulse per second (PPS) signals from commercial GNSS receivers. GPS Solut. 2015, 19, 141–150. [Google Scholar] [CrossRef]
- Godin, O.A.; Fuks, I.M. Travel-time statistics for signals scattered at a rough surface. Waves Random Media 2003, 13, 205–221. [Google Scholar] [CrossRef]
- Giraudet, P.; Glotin, H. Real-time 3D tracking of whales by echo-robust precise TDOA estimates with a widely-spaced hydrophone array. Appl. Acoust. 2006, 67, 1106–1117. [Google Scholar] [CrossRef]
- Taniguchi, N.; Sakuno, Y.; Mutsuda, H.; Arai, M. Revisiting a coastal acoustic tomography experiment in Hiroshima Bay: Temporal variations in path-averaged currents and its relation to wind. Appl. Ocean Res. 2020, 102, 102303. [Google Scholar] [CrossRef]
- Goold, J.C.; Jones, S.E. Time and frequency domain characteristics of sperm whale clicks. J. Acoust. Soc. Am. 1995, 98, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlidi, D.; Skarsoulis, E.K. Enhanced Pulsed-Source Localization with 3 Hydrophones: Uncertainty Estimates. Remote Sens. 2021, 13, 1817. https://doi.org/10.3390/rs13091817
Pavlidi D, Skarsoulis EK. Enhanced Pulsed-Source Localization with 3 Hydrophones: Uncertainty Estimates. Remote Sensing. 2021; 13(9):1817. https://doi.org/10.3390/rs13091817
Chicago/Turabian StylePavlidi, Despoina, and Emmanuel K. Skarsoulis. 2021. "Enhanced Pulsed-Source Localization with 3 Hydrophones: Uncertainty Estimates" Remote Sensing 13, no. 9: 1817. https://doi.org/10.3390/rs13091817
APA StylePavlidi, D., & Skarsoulis, E. K. (2021). Enhanced Pulsed-Source Localization with 3 Hydrophones: Uncertainty Estimates. Remote Sensing, 13(9), 1817. https://doi.org/10.3390/rs13091817