Failure Mechanism and Long Short-Term Memory Neural Network Model for Landslide Risk Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. On-Site Monitoring
2.3. LSTM Algorithms and Displacement Forecasting Model
2.3.1. LSTM Algorithms
2.3.2. Data Preprocessing
2.3.3. Loss Function
2.3.4. Machine Learning Model
2.3.5. Model Forecast Accuracy Evaluation
2.4. Discrete Element Numerical Method
3. Results
3.1. Displacement Monitoring Results
3.1.1. Surface Displacement
3.1.2. Deep Seated Displacement
3.1.3. Displacement with Rainfall and Blasting
3.2. Comprehensive Prediction Results of Landslide Risk
3.2.1. The LSTM Model for Deformation Process Prediction
3.2.2. Prediction of Influence Range of Landslide Mass by Using Discrete Element Method
Displacement Back Analysis of the Joint Persistence Ratio
Rockslide Damage Influence Scope Prediction by Using Discrete Element Method
4. Discussion
4.1. Mechanisms of the Stepped Rock Mass Landslide
4.2. Applicability and Accuracy of LSTM Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troncone, A.; Conte, E.; Donato, A. Two and three-dimensional numerical analysis of the progressive failure that occurred in an excavation-induced landslide. Eng. Geol. 2014, 183, 265–275. [Google Scholar] [CrossRef]
- Bunkholt, H.; Redfield, T.F.; Osmundsen, P.T.; Oppikofer, T.; Dehls, J. Landslide processes in hard rock in Troms, Norway. In Landslides and Engineered Slopes: Protecting Society through Improved Understanding; Taylor & Francis Group: London, UK, 2018; ISBN 978-0-415-62123-6. [Google Scholar]
- Tang, H.M.; Zou, Z.X.; Xiong, C.R.; Wu, Y.P.; Hu, X.L.; Wang, L.Q.; Lu, S.; Criss, R.E.; Li, C.D. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China. Eng. Geol. 2015, 186, 17–27. [Google Scholar] [CrossRef]
- Huang, R. Mechanisms of large-scale landslides in China. Bull. Eng. Geol. Environ. 2012, 71, 161–170. [Google Scholar] [CrossRef]
- Huang, R.Q.; Pei, X.J.; Cui, S.H. Cataclastic characteristics and formation mechanism of rock mass in sliding zone of Daguangbao landslide. Chin. J. Rock Mech. Eng. 2016, 35, 1–15. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, R.Q.; Yan, M.; Chen, G.Q. Step-path failure mechanism of rock slopes based on crack coalescence modes in rock mass. Chin. J. Geotech. Eng. 2017, 39, 1216–1224. [Google Scholar] [CrossRef]
- Call, R.D.; Nicholas, D.E. Prediction of Step Path Failure Geometry for Slope Stability Analysis. In Proceedings of the 19th U.S. Symp. on Rock Mechanics, Lake Tahoe, NV, USA, 1–3 May 1978. [Google Scholar] [CrossRef]
- Siad, L.; Megueddem, M. Stability analysis of jointed rock slope. Mech. Res. Commun. 1998, 25, 661–670. [Google Scholar] [CrossRef]
- Li, S.; Zhao, H.; Ru, Z.; Sun, Q. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope. Eng. Geol. 2016, 203, 178–190. [Google Scholar] [CrossRef]
- Zhao, L.; Li, D.; Tan, H.; Cheng, X.; Zuo, S. Characteristics of failure area and failure mechanism of a bedding rockslide in Libo County, Guizhou, China. Landslides 2019, 16, 1367–1374. [Google Scholar] [CrossRef]
- Lin, F.; Huang, R.Q.; Yan, M. Geodynamical process and evolution mechanism of deeply-inclined river velley slope at Xiaowan power station. J. Eng. Geol. 2010, 18, 766–773. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=GCDZ201005030&uniplatform=NZKPT&v=-zVgWhg1iJkyvujtGX-D7ty0BU7pL0FGxljxf7Vaxc1RWxiR8bqilalSki-XUYaU (accessed on 20 December 2021).
- Bian, K.; Liu, J.; Hu, X.J. Study on failure mode and dynamic response of rock slope with non-persistent joint under earthquake. Rock Soil Mech. 2018, 39, 3029–3037. [Google Scholar] [CrossRef]
- Cen, D.F.; Huang, D.; Huang, R.Q. Step-path failure mode and stability calculation of jointed rock slopes. Chin. J. Geot. Eng. 2014, 36, 695–706. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, J.; Zhang, L.M.; Tang, W.H. Stability analysis of rainfall-induced slope failure: A review. Geotech. Eng. 2011, 164, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Li, W.C.; Dai, F.C.; Wei, Y.Q.; Wang, M.L.; Min, H.; Lee, L.M. Implication of subsurface flow on rainfall-induced landslide: A case study. Landslides 2016, 13, 1109–1123. [Google Scholar] [CrossRef]
- Cogan, J.; Gratchev, I.; Wang, G.H. Rainfall-induced shallow landslides caused by ex-Tropical Cyclone Debbie, 31 March 2017. Landslides 2018, 15, 1215–1221. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Perna, A.; Martinelli, M. Modelling the spatio-temporal evolution of a rainfall-induced retrogressive landslide in an unsaturated slope. Eng. Geol. 2021, 294, 106371. [Google Scholar] [CrossRef]
- Peng, J.; Fan, Z.; Wu, D.; Huang, Q.; Wang, Q.; Zhuang, J.; Che, W. Landslides triggered by excavation in the loess plateau of China: A case study of Middle Pleistocene loess slopes. J. Asian Earth Sci. 2019, 171, 246–258. [Google Scholar] [CrossRef]
- Gariano, S.L.; Supplizi, G.V.; Ardizzone, F.; Salvati, P.; Bianchi, C.; Morbidelli, R.; Saltalippi, C. Long-term analysis of rainfall-induced landslides in Umbria, central Italy. Nat. Hazards 2021, 106, 2207–2225. [Google Scholar] [CrossRef]
- Chigira, M. September 2005 rain-induced catastrophic rockslides on slopes affected by deep-seated gravitational deformations, Kyushu, southern Japan. Eng. Geol. 2009, 108, 1–15. [Google Scholar] [CrossRef]
- Islam, S.; Begum, A.; Hasan, M. Slope stability analysis of the Rangamati District using geotechnical and geochemical parameters. Nat. Hazards 2021, 108, 1659–1686. [Google Scholar] [CrossRef]
- Li, D.-Q.; Qi, X.-H.; Phoon, K.-K.; Zhang, L.; Zhou, C. Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes. Struct. Saf. 2014, 49, 45–55. [Google Scholar] [CrossRef]
- Gioda, G.; Sakurai, S. Back analysis procedures for the interpretation of field measurements in geomechanics. Int. J. Numer. Anal. Methods Géoméch. 1987, 11, 555–583. [Google Scholar] [CrossRef]
- Xing, H.; Zhang, H.; Liu, L.; Yao, D. Comprehensive monitoring of talus slope deformation and displacement back analysis of mechanical parameters based on back-propagation neural network. Landslides 2021, 18, 1889–1907. [Google Scholar] [CrossRef]
- Zhigang, T.; Chun, Z.; Manchao, H.; Kuiming, L. Research on the safe mining depth of anti-dip bedding slope in Changshanhao Mine. Géoméch. Geophys. Geo-Energy Geo-Resour. 2020, 6, 1–20. [Google Scholar] [CrossRef]
- Tao, Z.; Geng, Q.; Zhu, C.; He, M.; Cai, H.; Pang, S.; Meng, X. The mechanical mechanisms of large-scale toppling failure for counter-inclined rock slopes. J. Geophys. Eng. 2019, 16, 541–558. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Huang, J.; Jiang, S.; Zhou, C. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng. Geol. 2017, 218, 173–186. [Google Scholar] [CrossRef]
- Ma, J.; Tang, H.; Liu, X.; Hu, X.; Sun, M.; Song, Y. Establishment of a deformation forecasting model for a step-like landslide based on decision tree C5.0 and two-step cluster algorithms: A case study in the Three Gorges Reservoir area, China. Landslides 2017, 14, 1275–1281. [Google Scholar] [CrossRef]
- Neaupane, K.; Achet, S. Use of backpropagation neural network for landslide monitoring: A case study in the higher Himalaya. Eng. Geol. 2004, 74, 213–226. [Google Scholar] [CrossRef]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H.; Chen, C.L.P. Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2683–2695. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Multiple neural networks switched prediction for landslide displacement. Eng. Geol. 2015, 186, 91–99. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, K.; Alexander, D.E.; Zhou, C. Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors. Landslides 2016, 13, 725–736. [Google Scholar] [CrossRef]
- Haghshenas, S.S.; Haghshenas, S.S.; Geem, Z.W.; Kim, T.-H.; Mikaeil, R.; Pugliese, L.; Troncone, A. Application of Harmony Search Algorithm to Slope Stability Analysis. Land 2021, 10, 1250. [Google Scholar] [CrossRef]
- Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 2016, 259, 105–118. [Google Scholar] [CrossRef]
- Krkač, M.; Gazibara, S.B.; Arbanas, Ž.; Sečanj, M.; Arbanas, S.M. A comparative study of random forests and multiple linear regression in the prediction of landslide velocity. Landslides 2020, 17, 2515–2531. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Unsupervised feature learning and deep learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1–30. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides 2019, 16, 677–694. [Google Scholar] [CrossRef]
- Xu, S.; Niu, R. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China. Comput. Geosci. 2018, 111, 87–96. [Google Scholar] [CrossRef]
- Sahoo, B.B.; Jha, R.; Singh, A.; Kumar, D. Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophys. 2019, 67, 1471–1481. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Sundermeyer, M.; Schlüter, R.; Ney, H. LSTM Neural Networks for Language Modeling. Available online: https://www.semanticscholar.org/paper/LSTM-Neural-Networks-for-Language-Modeling-Sundermeyer-Schl%C3%BCter/f9a1b3850dfd837793743565a8af95973d395a4e (accessed on 20 December 2021).
- Qiu, X.P. Neural Network and Deep Learning; Machinery Industry Press: Beijing, China, 2020; pp. 147–148. (In Chinese) [Google Scholar]
- Christopher, O. Understanding LSTM Networks, Posted on 27 August 2015. Available online: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed on 20 December 2021).
- Liang, Z.; Gong, B.; Tang, C.; Zhang, Y.; Ma, T. Displacement back analysis for a high slope of the Dagangshan hydroelectric power station based on BP neural network and particle swarm optimization. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1980, 30, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Wang, S.N.; Liu, L. Research of avalanche disaster numerical simulation based on granular discrete element method of high-steep slope under seismic loads. Chin. J. Rock Mech. Eng. 2013, 32 (Suppl. S1), 2798–2805. [Google Scholar]
- Mora, P.; Place, D. A lattice solid model for the nonlinear dynamics of earthquakes. Int. J. Mod. Phys. C 1993, 4, 1059–1074. [Google Scholar] [CrossRef]
- Hardy, S.; Finch, E. Discrete element modelling of the influence of cover strength on basement-involved fault- propagation folding. Tectonophysics 2006, 415, 238. [Google Scholar] [CrossRef]
- Liu, C.; Pollard, D.D.; Shi, B. Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. J. Geophys. Res. Solid Earth 2013, 118, 71–82. [Google Scholar] [CrossRef]
Rainy Season | Date | Monitoring Station | Cumulative Rainfall, mm | ||||
---|---|---|---|---|---|---|---|
YII1 | YII2 | YII3-3 | YII4-3 | YII5-1 | |||
The first | 16 June 2018 | 2.2 | 29.9 | 26.9 | 44.9 | 46.4 | 0.5 |
14 September 2018 | 12.4 | 135.3 | 120.2 | 186.9 | 196.8 | 347.0 | |
Accelerated displacement (mm/d) | 0.113 | 1.171 | 1.037 | 1.578 | 1.671 | ||
The second | 13 June 2019 | 33.8 | 216.6 | 199 | 303.4 | 323.9 | 0.5 |
15 September 2019 | 52.9 | 267.5 | 251.1 | 372.1 | 405.2 | 254.0 | |
Accelerated displacement (mm/d) | 0.212 | 0.566 | 0.579 | 0.763 | 0.903 |
Rock Mass | Φ (°) | c (kPa) | Natural Density (kN/m3) | Saturated Density (kN/m3) | Poisson Ratio (ν) | Elastic Modulus (×104 MPa) |
---|---|---|---|---|---|---|
Strongly weathered granite | 27 | 50 | 24.1 | 24.6 | 0.38 | 0.50 |
Weakly weathered granite | 31 | 350 | 25.0 | 25.3 | 0.23 | 0.60 |
Slightly weathered granite | 35 | 1050 | 26.0 | 26.2 | 0.18 | 0.75 |
Joint Type | Cohesive c (MPa) | Internal Friction Angle φ (°) | Normal Stiffness (Pa/m) | Tangential Stiffness (Pa/m) |
---|---|---|---|---|
Fault | 0.024 | 16 | 4 × 109 | 9.5 × 108 |
joint | 0.048 | 20 | 4 × 109 | 1.1 × 109 |
Route of Failure Surface | Cohesion c (MPa) | Internal Friction Angle φ (°) | JPR (k) |
---|---|---|---|
Shear outlet at EL.1230 | 0.218 | 23.976 | 0.85 |
Shear outlet at EL.1215 | 0.158 | 22.598 | 0.90 |
Shear outlet at EL.1185 | 0.108 | 21.429 | 0.95 |
Calculation Time Step T | Sliding Distance in Sliding Direction (m) | Accumulation Width of Landslide Mass (m) | Front Elevation of Landslide Accumulation Mass (m) |
---|---|---|---|
7000 | Tension slide start | 1185 | |
10,000 | 46 | 126 | 1170 |
13,000 | 94 | 168 | 1140 |
16,000 | 132 | 183 | 1100 |
19,000 | 135 | 190 | 1100 |
22,000 | 138 | 198 | 1100 |
25,000 | 146 | 211 | 1100 |
28,000 | 152 | 216 | 1100 |
Monitoring Station | RMSE (mm) | R | MAE (mm) | MAPE (%) |
---|---|---|---|---|
YII1 | 1.20 | 0.956 | 1.29 | 0.87 |
YII2 | 0.52 | 0.977 | 0.82 | 0.19 |
YII3-3 | 0.67 | 0.976 | 0.65 | 0.16 |
YII4-3 | 1.35 | 0.936 | 1.24 | 0.22 |
YII5-1 | 1.09 | 0.962 | 1.91 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhu, C.; He, M.; Dong, M.; Zhang, G.; Zhang, F. Failure Mechanism and Long Short-Term Memory Neural Network Model for Landslide Risk Prediction. Remote Sens. 2022, 14, 166. https://doi.org/10.3390/rs14010166
Zhang X, Zhu C, He M, Dong M, Zhang G, Zhang F. Failure Mechanism and Long Short-Term Memory Neural Network Model for Landslide Risk Prediction. Remote Sensing. 2022; 14(1):166. https://doi.org/10.3390/rs14010166
Chicago/Turabian StyleZhang, Xuan, Chun Zhu, Manchao He, Menglong Dong, Guangcheng Zhang, and Faming Zhang. 2022. "Failure Mechanism and Long Short-Term Memory Neural Network Model for Landslide Risk Prediction" Remote Sensing 14, no. 1: 166. https://doi.org/10.3390/rs14010166
APA StyleZhang, X., Zhu, C., He, M., Dong, M., Zhang, G., & Zhang, F. (2022). Failure Mechanism and Long Short-Term Memory Neural Network Model for Landslide Risk Prediction. Remote Sensing, 14(1), 166. https://doi.org/10.3390/rs14010166