Remote Sensing Mapping of Peat-Fire-Burnt Areas: Identification among Other Wildfires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Source Data
2.3. Methodology
3. Results
3.1. Identification of Peat Fires from Terra/Aqua MODIS Data and Peatland Map
3.2. Applicability of Different Indices for Mapping Burnt Peatlands from Landsat-5 TM Data
3.3. Mapping of Peatland Burnt Areas by Changes in Spectral Characteristics before and after Fires
3.4. Estimated Burnt Area in Peatlands in the Moscow Region According to Landsat-5 TM Data
3.5. Characteristics of Peat and Other Wildfires
3.6. Comparison of Peatland Fire Detection Results from Different Data
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; Sirin, A.; et al. 2019: Land–climate interactions. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; 2019; in press. [Google Scholar]
- Parish, F.; Sirin, A.; Charman, D.; Joosten, H.; Minayeva, T.; Silvius, M.; Stringer, L. (Eds.) Assessment on Peatlands, Biodiversity and Climate Change: Main Report; Global Environment Centre: Kuala Lumpur, Malaysia; Wetlands International: Wageningen, The Netherlands, 2008; 179p. [Google Scholar]
- Rein, G. Smouldering fires and natural fuels. In Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science; Belcher, C.M., Ed.; Wiley: New York, NY, USA, 2013; pp. 15–34. ISBN 9780470657485. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; van der Werf, G.R.; Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Hu, Y.; Fernandez-Anez, N.; Smith, T.E.L.; Rein, G. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 2018, 27, 293–312. [Google Scholar] [CrossRef]
- Schulte, M.L.; McLaughlin, D.L.; Wurster, F.C.; Varner, J.M.; Stewart, R.D.; Aust, W.M.; Jones, C.N.; Gile, B. Short- and long-term hydrologic controls on smouldering fire in wetland soils. Int. J. Wildland Fire 2019, 28, 177–186. [Google Scholar] [CrossRef] [Green Version]
- IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G., Eds.; IPCC: Geneva, Switzerland, 2014; 354p, Available online: https://www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories-wetlands/ (accessed on 30 October 2021).
- Poulter, B.; Christensen, N.L., Jr.; Halpin, P.N. Carbon emissions from a temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases. J. Geophys. Res. Atmos. 2006, 111, D06301:1–D06301:11. [Google Scholar] [CrossRef]
- Huang, X.; Rein, G. Downward spread of smouldering peat fire: The role of moisture, density and oxygen supply. Int. J. Wildland Fire 2017, 26, 907–918. [Google Scholar] [CrossRef]
- Marlier, M.E.; Liu, T.; Yu, K.; Buonocore, J.J.; Koplitz, S.N.; DeFries, R.S.; Mickley, L.J.; Jacob, D.J.; Schwartz, J.; Wardhana, B.S.; et al. Fires, smoke exposure, and public health: An integrative framework to maximize health benefits from peatland restoration. GeoHealth 2019, 3, 178–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safronov, A.N.; Fokeeva, E.V.; Rakitin, V.S.; Grechko, E.I.; Shumsky, R.A. Severe Wildfires near Moscow, Russia in 2010: Modeling of Carbon Monoxide Pollution and Comparisons with Observations. Remote Sens. 2014, 7, 395–429. [Google Scholar] [CrossRef] [Green Version]
- Sirin, A.A.; Medvedeva, M.A.; Makarov, D.A.; Maslov, A.A.; Joosten, H. Multispectral satellite based monitoring of land cover change and associated fire reduction after large-scale peatland rewetting following the 2010 peat fires in Moscow region (Russia). Ecol. Eng. 2020, 158, 106044:1–106044:10. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Konovalov, I.B.; Beekmann, M.; Kuznetsova, I.N.; Yurova, A.; Zvyagintsev, A.M. Atmospheric impacts of the 2010 Russian wildfires: Integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmos. Chem. Phys. 2011, 11, 10031–10056. [Google Scholar] [CrossRef] [Green Version]
- Shaposhnikov, D.; Revich, B.; Bellander, T.; Bedada, G.B.; Bottai, M.; Kharkova, T.; Kvasha, E.; Lind, T.; Pershagen, G. Long-Term Impact of Moscow Heat Wave and Wildfires on Mortality. Epidemiology 2015, 26, 21–22. [Google Scholar] [CrossRef]
- Rossi, S.; Tubiello, F.N.; Prosperi, P.; Salvatore, M.; Jacobs, H.; Biancalani, R.; House, J.I.; Boschetti, L. FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires. Clim. Chang. 2016, 135, 699–711. [Google Scholar] [CrossRef] [Green Version]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef] [Green Version]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.-D.V.; Jaya, A.; Limin, S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef]
- Minayeva, T.; Sirin, A.; Stracher, G.B. The Peat Fires of Russia. In Coal and Peat Fires: A Global Perspective. V.2: Photographs and Multimedia Tours; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 375–394. ISBN 9780444594129. [Google Scholar]
- Vompersky, S.E.; Ivanov, A.I.; Tsyganova, O.P.; Valyaeva, N.A.; Dubinin, A.I.; Glukhov, A.I.; Markelova, L.G. Bog organic soils and bogs of Russia and carbon pool of their peats. Eurasian Soil Sci. 1996, 28, 91–105. [Google Scholar]
- Tanneberger, F.; Tegetmeyer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Mariné, A.M.; Jenderedjian, K.; Steiner, G.M.; Essl, F.; Etzold, J.; et al. The peatland map of Europe. Mires Peat 2017, 19, 22:1–22:17. [Google Scholar] [CrossRef]
- Vompersky, S.E.; Sirin, A.A.; Sal’nikov, A.A.; Tsyganova, O.P.; Valyaeva, N.A. Estimation of forest cover extent over peatlands and paludified shallow-peat lands in Russia. Contemp. Probl. Ecol. 2011, 4, 734–741. [Google Scholar] [CrossRef]
- Vomperskii, S.E.; Glukhova, T.V.; Smagina, M.V.; Kovalev, A.G. Conditions and consequences of wildfires in pine forests on the drained mires. Russ. J. For. Sci. 2007, 6, 35–44. (In Russian) [Google Scholar]
- Glukhova, T.V.; Sirin, A.A. Losses of soil carbon upon a fire on a drained forested raised bog. Eurasian Soil Sci. 2018, 51, 542–549. [Google Scholar] [CrossRef]
- Joosten, H.; Sirin, A.; Couwenberg, J.; Laine, J.; Smith, P. The role of peatlands in climate regulation. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Bonn, A., Joosten, H., Evans, M., Stoneman, R., Allott, T., Eds.; Ecological Reviews; Cambridge University Press: Cambridge, UK, 2016; pp. 63–76. [Google Scholar] [CrossRef]
- Sirin, A.; Minayeva, T.; Vozbrannaya, A.; Bartalev, S. How to avoid peat fires? Sci. Russ. 2011, 2, 13–21. [Google Scholar]
- Sirin, A.; Maslov, A.; Makarov, D.; Gulbe, Y.; Joosten, H. Assessing Wood and Soil Carbon Losses from a Forest-Peat Fire in the Boreo-Nemoral Zone. Forests 2021, 12, 880. [Google Scholar] [CrossRef]
- Blain, D.; Row, C.; Alm, J.; Byrne, K.; Parish, F.; Duchemin, É.; Huttunen, J.T.; Tremblay, A.; Delmas, R.; Menezes, C.F.S.; et al. Agriculture, forestry and other land use. Volume 4. Chapter 7. Wetlands. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006; 24p, Available online: https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 30 October 2021).
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 30 October 2021).
- Burke, C.; Wich, S.; Kusin, K.; McAree, O.; Harrison, M.E.; Ripoll, B.; Ermiasi, Y.; Mulero-Pázmány, M.; Longmore, S. Thermal-Drones as a Safe and Reliable Method for Detecting Subterranean Peat Fires. Drones 2019, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489. [Google Scholar] [CrossRef] [Green Version]
- Bartalev, S.A.; Egorov, V.A.; Efremov, V.Y.; Loupian, E.A.; Stytsenko, F.V.; Flitman, E.V. Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2012, 9, 9–27. (In Russian) [Google Scholar]
- Myachina, K.V.; Pavleichik, V.M. Opyt analiza garei v stepnykh raionakh yuzhnogo Predural’ya na osnove izobrazhenii sputnika Landsat (Experience in the analysis of burns in the steppes of the southern Urals based on Landsat satellite images). Izv. Orenb. Otd. Rus. Geogr. Obs. 2017, 9, 45–52. (In Russian) [Google Scholar]
- Shikhov, A.N.; Zaripov, A.S. Mnogoletnyaya dinamika poter’ lesov ot pozharov i vetrovalov na severo-vostoke evropeiskoi Rossii po sputnikovym dannym (Long-term dynamics of fireand wind-related forest losses in northeast European Russia from satellite data). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2018, 15, 114–128. (In Russian) [Google Scholar] [CrossRef]
- Shinkarenko, S.S. Pozharnyi rezhim landshaftov severnogo Prikaspiya po dannym ochagov aktivnogo goreniya (Fire regime of North Caspian landscapes according to the data of active burning centers). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2019, 16, 121–133. (In Russian) [Google Scholar] [CrossRef]
- Alonso-Cana, I.; Chuvieco, E. Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sens. Environ. 2015, 163, 140–152. [Google Scholar] [CrossRef]
- Medvedeva, M.A.; Vozbrannaya, A.E.; Sirin, A.A.; Maslov, A.A. Capabilities of Multispectral Remote-Sensing Data in an Assessment of the Status of Abandoned Fire Hazardous and Rewetting Peat Extraction Lands. Izv. Atmos. Ocean. Phys. 2017, 53, 1070–1078. [Google Scholar] [CrossRef]
- Sirin, A.; Medvedeva, M.; Maslov, A.; Vozbrannaya, A. Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data. Land 2018, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Sirin, A.A.; Maslov, A.A.; Valyaeva, T.A.; Tsyganova, O.P.; Glukhova, T.V. Mapping of Peatlands in the Moscow Oblast Based on High Resolution Remote Sensing Data. Contemp. Probl. Ecol. 2014, 79, 809–815. [Google Scholar] [CrossRef]
- Sirin, A.; Minayeva, T.; Yurkovskaya, T.; Kuznetsov, O.; Smagin, V.; Fedotov, Y.U. Russian Federation (European Part). In Mires and Peatlands of Europe: Status, Distribution and Conservation; Joosten, H., Tanneberger, F., Moen, A., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2017; pp. 589–616. [Google Scholar] [CrossRef]
- Loupian, E.A.; Proshin, A.A.; Bourtsev, M.A.; Kashnitskii, A.V.; Balashov, I.V.; Bartalev, S.A.; Konstantinova, A.M.; Kobets, D.A.; Mazurov, A.A.; Marchenkov, V.V.; et al. Opyt ekspluatatsii i razvitiya tsentra kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh (CKP “IKI-Monitoring”) (Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2019, 16, 151–170. (In Russian) [Google Scholar] [CrossRef]
- Bartalev, S.A.; Egorov, V.A.; Efremov, V.Y.; Flitman, E.V.; Loupian, E.A.; Stytsenko, F.V. Assessment of Burned Forest Areas over the Russian Federation from MODIS and Landsat-TM/ETM+ Imagery. In Global Forest Monitoring from Earth Observation; Achard, F., Hansen, M.C., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 259–286. [Google Scholar]
- Freeborn, P.H.; Wooster, M.J.; Roy, D.P.; Cochrane, M.A. Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation. Geophys. Res. Lett. 2014, 41, 1988–1994. [Google Scholar] [CrossRef]
- Loupian, E.A.; Balashov, I.V.; Senko, K.S.; Burtsev, M.A.; Stytsenko, F.V.; Mazurov, A.A. Obnovlennyi mnogoletnii ryad dannykh o pozharakh na territorii Rossii po dannym MODIS kollektsii 6 (An updated long-term series of data on fires on the territory of Russia according to MODIS collection 6). In Proceedings of the 18th All-Russian Open Conference “Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa”, Moscow, Russia, 10–16 October 2020; Space Research Institute of the Russian Academy of Sciences: Moscow, Russia, 2020; p. 341. (In Russian). [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Justice, C.O.; Flynn, L.P.; Kendall, J.D.; Prins, E.M.; Giglio, L.; Ward, D.E.; Menzel, W.P.; Setzer, A.W. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res. 1998, 103, 32215–32238. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium; Washington, DC, USA, 10–14 December 1973, NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Gao, B. NDWI–A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. The Normalized Burn Ratio (NBR): A Landsat TM Radiometric Measure of Burn Severity; United States Geological Survey, Northern Rocky Mountain Science Center: Bozeman, MT, USA, 1999.
- Trigg, S.; Flasse, S. An evaluation of different bispectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens. 2001, 22, 2641–2647. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martin, M.P.; Palacios, A. Assessment of different spectral indices in the red–near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Martín, M.; Gómez, I.; Chuvieco, E. Burnt area index (BAIM) for burned area discrimination at regional scaleusing MODIS data. For. Ecol. Manag. 2006, 234, s221. [Google Scholar] [CrossRef]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A. Mapping burned areas in a Mediterranean environment using softintegration of spectral indices from high-resolution satellite images. Earth Interact. 2010, 14, 1–20. [Google Scholar] [CrossRef]
- Spiridonova, N.S. Primenenie Dannykh Distantsionnogo Zondirovaniya Srednego Razresheniya Dlya Vydeleniya Povrezhdennykh Drevostoev (Application of Medium-Resolution Remote Sensing Data to Identify Damaged Stands). Master’s Thesis, SFU, Krasnoyarsk, Russia, 2017; 69p. (In Russian). [Google Scholar]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. Int. J. Wildland Fire 2010, 19, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Georgopoulos, N.; Stavrakoudis, D.; Gitas, I.Z. Towards a fully automated burned area mapping methodology based on sentinel-2 imagery. GeoScience 2018, 1, 4–11. [Google Scholar]
- Yurikova, E.A.; Kokutenko, A.A.; Sukhinin, A.I. Issledovanie vozmozhnosti primeneniya dannykh SPOT-4 dlya deshifrirovaniya povrezhdennykh pozharami uchastkov rastitel’nosti (Research of opportunities of application of data SPOT-4 for interpretation the areas of vegetation damaged by fires). Reshetnev Sib. State Univ. Sci. Technol. 2008, 4, 75–78. (In Russian) [Google Scholar]
- Bogdanov, A.P.; Karpov, A.A.; Demina, N.A.; Aleshko, R.A. Sovershenstvovanie monitoringa lesov putem ispol’zovaniya oblachnykh tekhnologii kak elementa ustoichivogo lesoupravleniya (Improving forest monitoring by using cloud technologies as an element of sustainable forest management). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2018, 15, 89–100. (In Russian) [Google Scholar] [CrossRef]
- Labutina, I.A. Deshifrirovanie Aerokosmicheskikh Snimkov: Ucheb. Posobie Dlia Studentov Vuzov (Interpretation of Remote Sensing Images: A Textbook for University Students); Aspekt Press: Moscow, Russia, 2004; 184p. (In Russian) [Google Scholar]
- Matritsa Oshibok i Raschet Pokazatelei Tochnosti Tematicheskikh Kart (Matrix of Errors and Calculation of Indicators of Accuracy of Thematic Maps). 2010. Available online: http://gis-lab.info/qa/error-matrix.html (accessed on 7 November 2021). (In Russian).
- Stytsenko, F.V.; Bartalev, S.A.; Ivanova, A.A.; Loupian, E.A.; Sychugov, I.G. Vozmozhnosti otsenki ploshchadei lesnykh pozharov v regionakh Rossii na osnove dannykh sputnikovogo detektirovaniya aktivnogo goreniya (Forest burnt area assessment possibilities in regions of Russia based on active fires detection by satellites). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2016, 13, 289–298. (In Russian) [Google Scholar] [CrossRef]
- Fornacca, D.; Ren, G.; Xiao, W. Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Remote Sens. 2018, 10, 1196. [Google Scholar] [CrossRef] [Green Version]
- Medvedeva, M.A.; Vozbrannaya, A.E.; Bartalev, S.A.; Sirin, A.A. Otsenka sostoyaniya zabroshennykh torforazrabotok po mnogospektral’nym sputnikovym izobrazheniyam (Multispectral remote sensing for assessing changes on abandoned peat extraction lands). Issled. Zemli Iz Kosm. 2011, 5, 80–88. (In Russian) [Google Scholar]
- Medvedeva, M.A.; Vozbrannaya, A.E.; Sirin, A.A.; Maslov, A.A. Vozmozhnosti razlichnykh mul’tispektral’nykh kosmicheskikh dannykh dlya monitoringa neispol’zuemykh pozharoopasnykh torfyanikov i effektivnosti ikh obvodneniya (Potential of different multispectral satellite data for monitoring abandoned fire hazardous peatlands and rewetting effectiveness). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2019, 16, 150–159. (In Russian) [Google Scholar] [CrossRef]
- Global Peatland Database. Available online: https://www.greifswaldmoor.de/global-peatland-database-en.html (accessed on 7 November 2021).
Index | Calculatuion Formula 1 | Reference |
---|---|---|
Normalized Difference Vegetation Index | [47] | |
Normalized Difference Moisture Index | [48] | |
Normalized Burn Ratio | [49] | |
Normalized Burn Ratio 2 | [49] | |
Mid Infrared Burn Index | [50] | |
Burn Area Index | [51] |
Index | Index2011 | ΔIndex 1 | ||
---|---|---|---|---|
Value 2 | Accuracy 3, % | Value | Accuracy, % | |
NDMI | −0.25–0.03 | 81 | >0.23 | 93 |
NBR | −0.3–0.3 | 78 | >0.3 | 92 |
NBR2 | 0–0.25 | 76 | >0.1 | 87 |
NDVI | 0.2–0.55 | 68 | >0.2 | 86 |
BAI | 40–120 | 65 | <−30 | 72 |
MIRBI | 1.4–1.7 | 58 | <−0.2 | 59 |
Ground Truth Data | ||||
---|---|---|---|---|
EO Data 1 | Burnt | Unburnt | Σ | User’s Accuracy, % |
Burnt | 328 | 4 | 332 | 98.8% |
Unburnt | 26 | 240 | 266 | 90.2% |
Σ | 354 | 244 | 598 | |
Producer’s accuracy, % | 92.7% | 98.4% | 94.98% 2 |
Fires | Number * | Mean | Median | Min | Max |
---|---|---|---|---|---|
Duration_peat ** | 241 | 1.83 | 0 | 0 | 33.67 |
Duration_peat *** | 92 | 3.6 | 0.20 | 0 | 33.7 |
Duration_nopeat ** | 758 | 0.51 | 0 | 0 | 14.01 |
MaxFRP_peat ** | 241 | 38.02 | 17.5 | 4 | 854.5 |
MaxFRP_peat *** | 92 | 111.9 | 16.2 | 4.5 | 784 |
MaxFRP_nopeat ** | 758 | 19.75 | 11.3 | 3.2 | 511.5 |
MaxT_peat ** | 241 | 319.02 | 314.3 | 300 | 444.1 |
MaxT_peat *** | 92 | 325.7 | 318.6 | 300.5 | 444.1 |
MaxT_nopeat ** | 758 | 311.97 | 308.2 | 300 | 430.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirin, A.; Medvedeva, M. Remote Sensing Mapping of Peat-Fire-Burnt Areas: Identification among Other Wildfires. Remote Sens. 2022, 14, 194. https://doi.org/10.3390/rs14010194
Sirin A, Medvedeva M. Remote Sensing Mapping of Peat-Fire-Burnt Areas: Identification among Other Wildfires. Remote Sensing. 2022; 14(1):194. https://doi.org/10.3390/rs14010194
Chicago/Turabian StyleSirin, Andrey, and Maria Medvedeva. 2022. "Remote Sensing Mapping of Peat-Fire-Burnt Areas: Identification among Other Wildfires" Remote Sensing 14, no. 1: 194. https://doi.org/10.3390/rs14010194
APA StyleSirin, A., & Medvedeva, M. (2022). Remote Sensing Mapping of Peat-Fire-Burnt Areas: Identification among Other Wildfires. Remote Sensing, 14(1), 194. https://doi.org/10.3390/rs14010194