Mapping Deforestation in Cerrado Based on Hybrid Deep Learning Architecture and Medium Spatial Resolution Satellite Time Series
Abstract
:1. Introduction
1.1. Cerrado Biome in Brazil
1.2. Monitoring Cerrado Vegetation
1.3. Mapping Vegetation Cover Changes Using Artificial Intelligence Techniques
1.4. Research Scope
2. Materials and Methods
2.1. Study Areas
2.2. Input Data
2.3. Deforestation Detection
2.3.1. Approaches for Training Samples Selection
2.3.2. Long Short-Term Memory Training and Prediction
2.3.3. U-Net Training and Prediction
2.4. Validation
3. Results
4. Discussion
4.1. Study Areas, Input Data and Training Samples
4.2. Comparison with PRODES
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
B | Blue |
BDC | Brazil Data Cube |
BFAST | Breaks for Additive Season and Trend |
BIP | Brazilian Investment Plan |
DETER | Near Real-Time Deforestation Detection |
DL | Deep Learning |
e | Standard error |
EVI | Enhanced Vegetation Index |
FIP | Forest Investment Program |
FMask | Function of Mask |
GIZ | German Corporation for International Cooperation |
G | Green |
INPE | National Institute for Space Research |
JUST | Jumps Upon Spectrum and Trend |
KFW | Credit Institute for Reconstruction |
LSTM | Long Short-Term Memory |
LULC | Land Use and Land Cover |
MCTI | Ministry of Science, Technology and Innovation |
MMA | Ministry of the Environment |
MSI | MultiSpectral Instrument |
N | Population size |
n | Number of validation points |
NDVI | Normalized Difference Vegetation Index |
NIR | Near Infrared |
OLI | Operational Land Imager |
PROBIO | Conservation and Sustainable Use of Brazilian Biological Diversity Project |
PRODES | Satellite Deforestation Monitoring Project |
R | Red |
REDD+ | Reducing Emissions from Deforestation and Forest Degradation |
SE | Standard Error |
SIAD | Integrated System of Deforestation Alerts |
SRTM | Shuttle Radar Topography Mission |
SWIR | Short Wave Infrared |
tanh | Hyperbolic Tangent |
UNFCCC | United Nations Framework Convention on Climate Change |
z | Deviation from the mean value for the desired confidence level |
Significance level | |
Micro | |
Variance |
References
- Strassburg, B.B.N.; Brooks, T.; Feltran-Barbieri, R.; Iribarrem, A.; Crouzeilles, R.; Loyola, R.; Latawiec, A.E.; Oliveira Filho, F.J.B.; Scaramuzza, C.A.d.M.; Scarano, F.R.; et al. Moment of Truth for the Cerrado Hotspot. Nat. Ecol. Evol. 2017, 1, 0099. [Google Scholar] [CrossRef] [PubMed]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas; Zachos, F.E., Habel, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–22. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística—IBGE. Brasil em Síntese. Available online: https://brasilemsintese.ibge.gov.br/territorio.html (accessed on 10 June 2021).
- Agência Nacional de Águas—ANA. Regiões Hidrográficas. Available online: http://dadosabertos.ana.gov.br/datasets/b78ea64219b9498c8125cdef390715b7_0 (accessed on 10 June 2021).
- Ferreira, L. Seasonal landscape and spectral vegetation index dynamics in the Brazilian Cerrado: An analysis within the Large-Scale Biosphere–Atmosphere Experiment in Amazônia (LBA). Remote Sens. Environ. 2003, 87, 534–550. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Bezerra, L.; Davidson, E.A.; Pinto, F.; Klink, C.A.; Nepstad, D.C.; Moreira, A. Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct. Ecol. 2005, 19, 574–581. [Google Scholar] [CrossRef]
- Miranda, S.d.C.d.; Bustamante, M.; Palace, M.; Hagen, S.; Keller, M.; Ferreira, L.G. Regional Variations in Biomass Distribution in Brazilian Savanna Woodland. Biotropica 2014, 46, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Rada, N. Assessing Brazil’s Cerrado agricultural miracle. Food Policy 2013, 38, 146–155. [Google Scholar] [CrossRef]
- Rocha, G.F.; Guimarães Ferreira, L.; Clementino Ferreira, N.; Eduardo Ferreira, M. Detecção de Desmatamentos no Bioma Cerrado entre 2002 e 2009: Padrões, Tendências e Impactos. Rev. Bras. Cartogr. 2012, 63, 341–349. [Google Scholar]
- Scaramuzza, C.A.d.M.; Sano, E.E.; Adami, M.; Bolfe, E.L.; Coutinho, A.C.; Esquerdo, J.C.D.M.; Maurano, L.E.P.; Narvaes, I.S.; Oliveira, F.J.B.; Rosa, R.; et al. Land-Use and Land-Cover Mapping of the Brazilian Cerrado Based Mainly on Landsat-8 Satellite Images. Rev. Bras. Cartogr. 2017, 69, 1041–1051. [Google Scholar]
- Instituto Nacional de Pesquisas Espaciais—INPE. Monitoring Program of the Amazon and Other Biomes. Deforestation—Cerrado. Available online: http://terrabrasilis.dpi.inpe.br/download/dataset/cerrado-prodes/vector/hydrography_cerrado_biome.zip (accessed on 10 June 2021).
- Spera, S. Agricultural Intensification Can Preserve the Brazilian Cerrado: Applying Lessons from Mato Grosso and Goiás to Brazil’s Last Agricultural Frontier. Trop. Conserv. Sci. 2017, 10, 194008291772066. [Google Scholar] [CrossRef] [Green Version]
- Sano, E.E.; Rodrigues, A.A.; Martins, E.S.; Bettiol, G.M.; Bustamante, M.M.; Bezerra, A.S.; Couto, A.F.; Vasconcelos, V.; Schüler, J.; Bolfe, E.L. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 2019, 232, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Maurano, L.E.P.; Escada, M.I.S.; Renno, C.D. Padrões espaciais de desmatamento e a estimativa da exatidão dos mapas do PRODES para Amazônia Legal Brasileira. Ciênc. Florest. 2019, 29, 1763. [Google Scholar] [CrossRef]
- Instituto Nacional de Pesquisas Espaciais—INPE. PRODES Annual Increment of Deforested Areas in the Brazilian Cerrado. Available online: http://www.obt.inpe.br/cerrado (accessed on 10 June 2021).
- Sano, E.E.; Rosa, R.; Brito, J.L.S.; Ferreira, L.G. Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesqui. Agropecu. Bras. 2008, 43, 153–156. [Google Scholar] [CrossRef]
- Ferreira, N.C.; Ferreira, L.G.; Huete, A.R.; Ferreira, M.E. An operational deforestation mapping system using MODIS data and spatial context analysis. Int. J. Remote Sens. 2007, 28, 47–62. [Google Scholar] [CrossRef]
- Maurano, L.E.P.; Almeida, C.A.d.; Meira, M.B. Monitoramento do Desmatamento no Cerrado Brasileiro por Satélite—Projeto Monitoramento do Cerrado. In Proceedings of the Simpósio Brasileiro de Sensoriamento Remoto; INPE: São José dos Campos, Brazil, 2019; pp. 191–194. [Google Scholar]
- Ministério do Meio Ambiente—MMA. Government Publicizes Deforestation in Cerrado. Available online: http://redd.mma.gov.br/en/component/content/article/160-central-content/top-news/1021-government-publicizes-deforestation-in-cerrado (accessed on 20 June 2021).
- Ministério da Ciência, Tecnologia e Inovações—MCTI. FIP—Monitoramento Cerrado. Available online: https://monitoramentocerrado.mcti.gov.br/ (accessed on 13 June 2021).
- Ministério do Meio Ambiente—MMA. Desenvolvimento de Sistemas de Prevenção de Incêndios Florestais e Monitoramento da Cobertura Vegetal no Cerrado Brasileiro. Available online: http://fip.mma.gov.br/projeto-fm/ (accessed on 13 June 2021).
- Ministério do Meio Ambiente—MMA. Programa de Investimento Florestal no Brasil. Available online: http://fip.mma.gov.br/ (accessed on 13 June 2021).
- Instituto Nacional de Pesquisas Espaciais—INPE. DETER Monitoring Program of the Amazon and Other Biomes. Notices—Cerrado. Available online: http://terrabrasilis.dpi.inpe.br/downloads/ (accessed on 10 June 2021).
- Parente, L.; Nogueira, S.; Baumann, L.; Almeida, C.; Maurano, L.; Affonso, A.G.; Ferreira, L. Quality assessment of the PRODES Cerrado deforestation data. Remote Sens. Appl. Soc. Environ. 2021, 21, 100444. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef] [Green Version]
- Sano, E.E.; Rosa, R.; Brito, J.L.; Ferreira, L.G. Land Cover Mapping of the Tropical Savanna Region in Brazil. Environ. Monit. Assess. 2010, 166, 113–124. [Google Scholar] [CrossRef]
- Müller, H.; Rufin, P.; Griffiths, P.; Siqueira, A.J.B.; Hostert, P. Mining Dense Landsat Time Series for Separating Cropland and Pasture in a Heterogeneous Brazilian Savanna Landscape. Remote Sens. Environ. 2015, 156, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.; Wesson, K.; Desbiez, A.; Ochoa-Quintero, J.; Leimgruber, P. Using Remote Sensing and Random Forest to Assess the Conservation Status of Critical Cerrado Habitats in Mato Grosso do Sul, Brazil. Land 2016, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Parente, L.; Taquary, E.; Silva, A.; Souza, C.; Ferreira, L. Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data. Remote Sens. 2019, 11, 2881. [Google Scholar] [CrossRef] [Green Version]
- Belward, A.S.; Skøien, J.O. Who launched what, when and why: Trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 2015, 103, 115–128. [Google Scholar] [CrossRef]
- Maretto, R.V.; Fonseca, L.M.G.; Jacobs, N.; Korting, T.S.; Bendini, H.N.; Parente, L.L. Spatio-Temporal Deep Learning Approach to Map Deforestation in Amazon Rainforest. IEEE Geosci. Remote Sens. Lett. 2020, 18, 771–775. [Google Scholar] [CrossRef]
- Bendini, H.N.; Fonseca, L.M.; Schwieder, M.; Rufin, P.; Korting, T.S.; Koumrouyan, A.; Hostert, P. Combining environmental and landsat analysis ready data for vegetation mapping: A case study in the Brazilian Savanna Biome. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 43, 953–960. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Masiliūnas, D.; Tsendbazar, N.E.; Herold, M.; Verbesselt, J. BFAST Lite: A Lightweight Break Detection Method for Time Series Analysis. Remote Sens. 2021, 13, 3308. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T. Change Detection within Remotely Sensed Satellite Image Time Series via Spectral Analysis. Remote Sens. 2020, 12, 4001. [Google Scholar] [CrossRef]
- de Bem, P.; de Carvalho, O., Jr.; Guimarães, R.F.; Gomes, R.T. Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef] [Green Version]
- Adarme, M.O.; Feitosa, R.Q.; Happ, P.N.; Almeida, C.A.D.; Gomes, A.R. Evaluation of Deep Learning Techniques for Deforestation Detection in the Brazilian Amazon and Cerrado Biomes From Remote Sensing Imagery. Remote Sens. 2020, 12, 910. [Google Scholar] [CrossRef] [Green Version]
- Rußwurm, M.; Körner, M. Self-attention for raw optical Satellite Time Series Classification. ISPRS J. Photogramm. Remote Sens. 2020, 169, 421–435. [Google Scholar] [CrossRef]
- Interdonato, R.; Ienco, D.; Gaetano, R.; Ose, K. DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn. ISPRS J. Photogramm. Remote Sens. 2019, 149, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Huang, J.; Li, H.; Lin, T. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- Dutta, D.; Chen, G.; Chen, C.; Gagné, S.A.; Li, C.; Rogers, C.; Matthews, C. Detecting Plant Invasion in Urban Parks with Aerial Image Time Series and Residual Neural Network. Remote Sens. 2020, 12, 3493. [Google Scholar] [CrossRef]
- Taquary, E.C. Deep Learning para Identificação Precisa de Desmatamentos Através do Uso de Imagens Satelitárias de Alta Resolução. Master’s Thesis, Universidade Federal de Goiás (UFG), Goiânia, Brazil, 2019. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Rahman Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- National Aeronautics and Space Administration—NASA. Landsat 8. Available online: https://landsat.gsfc.nasa.gov/landsat-8 (accessed on 10 July 2021).
- European Space Agency—ESA. Sentinel-2 MSI Introduction. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi (accessed on 10 July 2021).
- MapBiomas. Colection 4.0 of the Annual Series of Land Use and Land Cover in Brazil. Available online: http://plataforma.mapbiomas.org (accessed on 10 June 2021).
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Martinez, J.A.C.; Rosa, L.E.C.L.; Feitosa, R.Q.; Sanches, I.D.; Happ, P.N. Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences. ISPRS J. Photogramm. Remote Sens. 2021, 171, 188–201. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, K.R.; Queiroz, G.R.; Vinhas, L.; Marujo, R.F.B.; Simoes, R.E.O.; Picoli, M.C.A.; Camara, G.; Cartaxo, R.; Gomes, V.C.F.; Santos, L.A.; et al. Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products. Remote Sens. 2020, 12, 4033. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Dozier, J.; Painter, T.H.; Rittger, K.; Frew, J.E. Time–space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv. Water Resour. 2008, 31, 1515–1526. [Google Scholar] [CrossRef]
- Hou, J.; Huang, C.; Zhang, Y.; Guo, J.; Gu, J. Gap-Filling of MODIS Fractional Snow Cover Products via Non-Local Spatio-Temporal Filtering Based on Machine Learning Techniques. Remote Sens. 2019, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.C. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- Berlinck, C.N.; Batista, E.K. Good fire, bad fire: It depends on who burns. Flora 2020, 268, 151610. [Google Scholar] [CrossRef]
- FranÇa, H.; Setzer, A.W. AVHRR analysis of a savanna site through a fire season in Brazil. Int. J. Remote Sens. 2001, 22, 2449–2461. [Google Scholar] [CrossRef]
- Bittencourt, O.O.; Morelli, F.; Júnior, C.A.S.; Santos, R. An Approach to Classify Burned Areas Using Few Previously Validated Samples. In Computational Science and Its Applications—ICCSA 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 239–254. [Google Scholar] [CrossRef]
- Pereira, A.; Pereira, J.; Libonati, R.; Oom, D.; Setzer, A.; Morelli, F.; Machado-Silva, F.; de Carvalho, L. Burned Area Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires. Remote Sens. 2017, 9, 1161. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Y.; Zhu, Z. Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification. IEEE Trans. Cybern. 2021, 51, 1756–1768. [Google Scholar] [CrossRef] [PubMed]
- Rendón, E.; Alejo, R.; Castorena, C.; Isidro-Ortega, F.J.; Granda-Gutiérrez, E.E. Data Sampling Methods to Deal with the Big Data Multi-Class Imbalance Problem. Appl. Sci. 2020, 10, 1276. [Google Scholar] [CrossRef] [Green Version]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org (accessed on 10 June 2021).
- Ribeiro, J.F.; Walter, B.M.T. As Principais Fitofisionomias do Bioma Cerrado. In Cerrado: Ecologia e Flora; Sano, S.M., Almeida, S.P., Ribeiro, J.F., Eds.; EMBRAPA: Brasília, Brazil, 2008; pp. 152–212. [Google Scholar]
- Maretto, R.V.; Korting, T.S.; Fonseca, L.M.G. An Extensible and Easy-to-use Toolbox for Deep Learning Based Analysis of Remote Sensing Images. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), Yokohama, Japan, 28 July–2 August 2019. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Lohr, S.L. Sampling: Design and Analysis, 2nd ed.; Brooks/Cole: Boston, MA, USA, 2009; Volume 1, p. 596. [Google Scholar]
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Marques, C.B.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Ribeiro, J.F.M.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Zhou, Z.; Leung, T.; Li, L.J.; Fei-Fei, L. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
- Lima, T.A.; Beuchle, R.; Langner, A.; Grecchi, R.C.; Griess, V.C.; Achard, F. Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sens. 2019, 11, 961. [Google Scholar] [CrossRef] [Green Version]
- Bueno, I.; Acerbi, F., Jr.; Silveira, E.; Mello, J.; Carvalho, L.; Gomide, L.; Withey, K.; Scolforo, J. Object-Based Change Detection in the Cerrado Biome Using Landsat Time Series. Remote Sens. 2019, 11, 570. [Google Scholar] [CrossRef] [Green Version]
- Schwieder, M.; Leitão, P.J.; da Cunha Bustamante, M.M.; Ferreira, L.G.; Rabe, A.; Hostert, P. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 361–370. [Google Scholar] [CrossRef]
- Oliveira, L.M.T.; França, G.B.; Nicácio, R.M.; Antunes, M.A.H.; Costa, T.C.C.; Torres, A.R.; França, J.R.A. A study of the El Niño-Southern Oscillation influence on vegetation indices in Brazil using time series analysis from 1995 to 1999. Int. J. Remote Sens. 2010, 31, 423–437. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Eom, K.B. Active Deep Learning for Classification of Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 712–724. [Google Scholar] [CrossRef] [Green Version]
Deforestation (2019) | Mato Grosso | Bahia |
---|---|---|
Total Area (ha) | 13,326.516 | 20,723.315 |
Mean Polygon Area (standard deviation; ha) | 18.93 (±55.38) | 61.68 (±235.60) |
Polygon Count (unit) | 704 | 336 |
Percentage of Study Area (%) | 0.484 | 0.589 |
Landsat-8/OLI | Sentinel-2/MSI | Description | ||
---|---|---|---|---|
Name | Wavelength (m) | Name | Wavelength (m) | |
Band 2 | 0.452–0.512 | Band 2 | 0.458–0.523 | Blue, surface reflectance. |
Band 3 | 0.533–0.590 | Band 3 | 0.543–0.578 | Green, surface reflectance. |
Band 4 | 0.636–0.673 | Band 4 | 0.650–0.680 | Red, surface reflectance. |
Band 5 | 0.851–0.879 | Band 8a | 0.855–0.875 | Near Infrared (NIR), surface reflectance. |
Band 6 | 1.566–1.651 | Band 11 | 1.565–1.655 | Short Wave Infrared 1 (SWIR 1), surface reflectance. |
Band 7 | 2.107–2.294 | Band 12 | 2.100–2.280 | Short Wave Infrared 2 (SWIR 2), surface reflectance. |
NDVI | – | NDVI | – | Normalized Difference Vegetation Index. |
EVI | – | EVI | – | Enhanced Vegetation Index. |
Class | Description |
---|---|
Deforestation | Total natural vegetation removal (change) caused by human activity in 2019. |
Natural Vegetation | Natural vegetation (no change) during 2019. |
Past Deforestation | Deforestation detected by PRODES before 2019 (masked). |
Study Area | Time Series | Samples | Class | Population (Pixels) | Samples Probability | Samples Weight | Sample Size | |
---|---|---|---|---|---|---|---|---|
Map | Strata | |||||||
Mato Grosso | Landsat | Approach 1 | Deforestation | 40,663 | 0.002459 | 407 | 1067 | 100 |
Natural Vegetation | 6,749,089 | 0.000143 | 6979 | 967 | ||||
Approach 2 | Deforestation | 41,997 | 0.002381 | 420 | 1067 | 100 | ||
Natural Vegetation | 6,473,917 | 0.000149 | 6695 | 967 | ||||
Approach 3 | Deforestation | 53,868 | 0.001856 | 539 | 1067 | 100 | ||
Natural Vegetation | 6,462,098 | 0.000150 | 6683 | 967 | ||||
Sentinel | Approach 1 | Deforestation | 359,413 | 0.000278 | 3594 | 1067 | 100 | |
Natural Vegetation | 61,159,707 | 0.000016 | 63,247 | 967 | ||||
Approach 2 | Deforestation | 147,986 | 0.000676 | 1480 | 1067 | 100 | ||
Natural Vegetation | 61,369,681 | 0.000016 | 63,464 | 967 | ||||
Approach 3 | Deforestation | 264,001 | 0.000379 | 2640 | 1067 | 100 | ||
Natural Vegetation | 61,255,249 | 0.000016 | 63,346 | 967 | ||||
Bahia | Landsat | Approach 1 | Deforestation | 64,635 | 0.001547 | 646 | 1067 | 100 |
Natural Vegetation | 9,125,501 | 0.000106 | 9437 | 967 | ||||
Approach 2 | Deforestation | 72,357 | 0.001382 | 724 | 1067 | 100 | ||
Natural Vegetation | 9,114,557 | 0.000106 | 9426 | 967 | ||||
Approach 3 | Deforestation | 92,527 | 0.001081 | 925 | 1067 | 100 | ||
Natural Vegetation | 8,853,307 | 0.000109 | 9155 | 967 | ||||
Sentinel | Approach 1 | Deforestation | 725,517 | 0.000138 | 7255 | 1067 | 100 | |
Natural Vegetation | 84,341,212 | 0.000011 | 87,219 | 967 | ||||
Approach 2 | Deforestation | 636,114 | 0.000157 | 6361 | 1067 | 100 | ||
Natural Vegetation | 84,428,617 | 0.000011 | 87,310 | 967 | ||||
Approach 3 | Deforestation | 543,672 | 0.000184 | 5437 | 1067 | 100 | ||
Natural Vegetation | 84,521,308 | 0.000011 | 87,406 | 967 |
Study Area | Time Series | Samples | Overall Accuracy | F1-Score |
---|---|---|---|---|
Mato Grosso | Landsat | Approach 1 | ||
Approach 2 | ||||
Approach 3 | ||||
Sentinel | Approach 1 | |||
Approach 2 | ||||
Approach 3 | ||||
Bahia | Landsat | Approach 1 | ||
Approach 2 | ||||
Approach 3 | ||||
Sentinel | Approach 1 | |||
Approach 2 | ||||
Approach 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matosak, B.M.; Fonseca, L.M.G.; Taquary, E.C.; Maretto, R.V.; Bendini, H.d.N.; Adami, M. Mapping Deforestation in Cerrado Based on Hybrid Deep Learning Architecture and Medium Spatial Resolution Satellite Time Series. Remote Sens. 2022, 14, 209. https://doi.org/10.3390/rs14010209
Matosak BM, Fonseca LMG, Taquary EC, Maretto RV, Bendini HdN, Adami M. Mapping Deforestation in Cerrado Based on Hybrid Deep Learning Architecture and Medium Spatial Resolution Satellite Time Series. Remote Sensing. 2022; 14(1):209. https://doi.org/10.3390/rs14010209
Chicago/Turabian StyleMatosak, Bruno Menini, Leila Maria Garcia Fonseca, Evandro Carrijo Taquary, Raian Vargas Maretto, Hugo do Nascimento Bendini, and Marcos Adami. 2022. "Mapping Deforestation in Cerrado Based on Hybrid Deep Learning Architecture and Medium Spatial Resolution Satellite Time Series" Remote Sensing 14, no. 1: 209. https://doi.org/10.3390/rs14010209
APA StyleMatosak, B. M., Fonseca, L. M. G., Taquary, E. C., Maretto, R. V., Bendini, H. d. N., & Adami, M. (2022). Mapping Deforestation in Cerrado Based on Hybrid Deep Learning Architecture and Medium Spatial Resolution Satellite Time Series. Remote Sensing, 14(1), 209. https://doi.org/10.3390/rs14010209