Flood Detection Using Multiple Chinese Satellite Datasets during 2020 China Summer Floods
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Image Preprocessing
3.2. Coarse Flood Extraction
3.3. Fine Flood Extraction
- input the noisy label datasets to the neural network to learn the probability by minimizing the unweighted loss without a noise adaption layer.
- initialize T (Equation (3)) by using the samples with the highest learned probabilities.
- in order to further exploit the true transition matrix T, a slack variable is added to the initialization T.
- learn the neural network with T by minimizing the weighted loss.
4. Experimental Results and Analysis
4.1. Coarse Water Extraction
4.2. Fine Water Extraction and Accuracy Evaluation
4.3. Flood Detection
5. Conclusions
- For different source images, we design different methods to extract the coarse water bodies. For instance, we introduce an effective binarization segmentation (OSTU) for SAR images. For multispectral and hyperspectral datasets, we define the different water indexes to extract the water bodies.
- To improve the results, we introduced the noisy label learning to remove the noise and redefine the misclassified water bodies from the previous coarse methods. More specifically, the T-revision method is adopted and slightly improves the extraction results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tralli, D.; Blom, R.; Zlotnicki, V.; Donnellan, A.; Evans, D. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [Google Scholar] [CrossRef]
- Schumann, G.J.P.; Brakenridge, G.R.; Kettner, A.J.; Kashif, R.; Niebuhr, E. Assisting Flood Disaster Response with Earth Observation Data and Products: A Critical Assessment. Remote Sens. 2018, 10, 1230. [Google Scholar] [CrossRef] [Green Version]
- Zanardo, S.; Nicotina, L.; Hilberts, A.G.J.; Jewson, S.P. Modulation of Economic Losses from European Floods by the North Atlantic Oscillation. Geophys. Res. Lett. 2019, 46, 2563–2572. [Google Scholar] [CrossRef]
- Clift, P.D.; Holbourn, A.; France-Lanord, C.; Zheng, H. Evolution of the Asian Monsoon, Eos, 101. Published on 25 June 2020. Available online: https://eos.org/science-updates/evolution-of-the-asian-monsoon (accessed on 23 July 2021).
- Excessive Monsoon Rains Flood Asia. Available online: https://earthobservatory.nasa.gov/images/147006/excessive-monsoon-rains-flood-asia (accessed on 30 November 2020).
- The Ministry of Emergency Management Announces the National Ten Natural Disasters in 2020. Available online: http://www.chinanews.com/gn/2021/01-02/9377255.shtml (accessed on 10 January 2020).
- Adriano, B.; Xia, J.; Baier, G.; Yokoya, N.; Koshimura, S. Multi-Source Data Fusion Based on Ensemble Learning for Rapid Building Damage Mapping during the 2018 Sulawesi Earthquake and Tsunami in Palu, Indonesia. Remote Sens. 2019, 11, 886. [Google Scholar] [CrossRef] [Green Version]
- Brunner, D.; Lemoine, G.; Bruzzone, L. Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2403–2420. [Google Scholar] [CrossRef] [Green Version]
- Gianinetto, M.; Villa, P.; Lechi, G. Postflood damage evaluation using Landsat TM and ETM+ data integrated with DEM. IEEE Trans. Geosci. Remote Sens. 2006, 44, 236–243. [Google Scholar] [CrossRef]
- Goffi, A.; Stroppiana, D.; Brivio, P.A.; Bordogna, G.; Boschetti, M. Towards an automated approach to map flooded areas from Sentinel-2 MSI data and soft integration of water spectral features. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101951. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wang, C.; Fu, Q. Classification of Chinese GaoFen-3 fully-polarimetric SAR images: Initial results. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 700–705. [Google Scholar]
- Li, D.; Wang, M.; Jiang, J. China’s high-resolution optical remote sensing satellites and their mapping applications. Geo-Spat. Inf. Sci. 2020, 24, 1–10. [Google Scholar] [CrossRef]
- Serpico, S.B.; Dellepiane, S.G.; Boni, G.; Moser, G.; Angiati, E.; Rudari, R. Information Extraction From Remote Sensing Images for Flood Monitoring and Damage Evaluation. Proc. IEEE 2012, 100, 2946–2970. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Leung, H. Improving Super-Resolution Flood Inundation Mapping for Multispectral Remote Sensing Image by Supplying More Spectral Information. IEEE Geosci. Remote Sens. Lett. 2019, 16, 771–775. [Google Scholar] [CrossRef]
- Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite Data for Flood Mapping. Remote Sens. 2018, 10, 1673. [Google Scholar] [CrossRef] [Green Version]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.; Bates, P.D.; Mason, D.C. A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Schlaffer, S.; Matgen, P.; Hollaus, M.; Wagner, W. Flood detection from multi-temporal SAR data using harmonic analysis and change detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. [Google Scholar] [CrossRef]
- Huang, M.; Jin, S. Rapid Flood Mapping and Evaluation with a Supervised Classifier and Change Detection in Shouguang Using Sentinel-1 SAR and Sentinel-2 Optical Data. Remote Sens. 2020, 12, 2073. [Google Scholar] [CrossRef]
- Cian, F.; Marconcini, M.; Ceccato, P. Normalized Difference Flood Index for rapid flood mapping: Taking advantage of EO big data. Remote Sens. Environ. 2018, 209, 712–730. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Mason, D.C.; Giustarini, L.; García-Pintado, J.; Cloke, H.L. Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Hashemi-Beni, L.; Gebrehiwot, A.A. Flood Extent Mapping: An Integrated Method Using Deep Learning and Region Growing Using UAV Optical Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2127–2135. [Google Scholar] [CrossRef]
- Li, Y.; Martinis, S.; Wieland, M. Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence. ISPRS J. Photogramm. Remote Sens. 2019, 152, 178–191. [Google Scholar] [CrossRef]
- Rahnemoonfar, M.; Murphy, R.; Miquel, M.V.; Dobbs, D.; Adams, A. Flooded Area Detection from Uav Images Based on Densely Connected Recurrent Neural Networks. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1788–1791. [Google Scholar] [CrossRef]
- Rudner, T.G.J.; Rußwurm, M.; Fil, J.; Pelich, R.; Bischke, B.; Kopacková, V.; Bilinski, P. Multi3Net: Segmenting Flooded Buildings via Fusion of Multiresolution, Multisensor, and Multitemporal Satellite Imagery. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 702–709. [Google Scholar]
- Bonafilia, D.; Tellman, B.; Anderson, T.; Issenberg, E. Sen1Floods11: A georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 13–19 June 2020; pp. 835–845. [Google Scholar]
- Xia, X.; Liu, T.; Wang, N.; Han, B.; Gong, C.; Niu, G.; Sugiyama, M. Are Anchor Points Really Indispensable in Label-Noise Learning? In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 6835–6846. [Google Scholar]
- Li, Y.; Niu, Z.; Xu, Z.; Yan, X. Construction of High Spatial-Temporal Water Body Dataset in China Based on Sentinel-1 Archives and GEE. Remote Sens. 2020, 12, 2413. [Google Scholar] [CrossRef]
- Nobre, A.; Cuartas, L.; Hodnett, M.; Rennó, C.; Rodrigues, G.; Silveira, A.; Waterloo, M.; Saleska, S. Height above the Nearest Drainage—A hydrologically relevant new terrain model. J. Hydrol. 2011, 404, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.P. A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- McFEETERS, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Chu, Y.; He, X. The method for water body information extraction in complex environment using GF-1 WFV images. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 213, p. 03024. [Google Scholar] [CrossRef]
- Zhang, Y.; Crawford, P. Automated Extraction of Visible Floodwater in Dense Urban Areas from RGB Aerial Photos. Remote Sens. 2020, 12, 2198. [Google Scholar] [CrossRef]
- Xie, H.; Luo, X.; Xu, X.; Tong, X.; Jin, Y.; Pan, H.; Zhou, B. New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images. J. Appl. Remote Sens. 2014, 8, 085098. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Kim, M.; Park, D.; Lee, J.G. Learning from Noisy Labels with Deep Neural Networks: A Survey. arXiv 2020, arXiv:cs.LG/2007.08199. [Google Scholar]
Satellite | Date | Mode | Bands | Lat/Lon | Spatial Resolution (m) |
---|---|---|---|---|---|
GF-3 | 2020-7-9 | Dual-Polarization | HH, HV | 118.2E/30.4N | 5 |
GF-3 | 2020-7-9 | Dual-Polarization | HH, HV | 118.5E/29.4N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 115.8E/25.2N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 116.0E/26.1N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 116.2E/27.0N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 116.4E/27.9N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 116.6E/28.8N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 116.8E/29.7N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 116.9E/30.6N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 117.1E/31.6N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 117.3E/32.5N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 117.5E/33.4N | 5 |
GF-3 | 2020-7-11 | Dual-Polarization | HH, HV | 117.7E/34.3N | 5 |
GF-3 | 2020-7-13 | Dual-Polarization | HH, HV | 116.6E/29.7N | 5 |
GF-3 | 2020-7-13 | Dual-Polarization | HH, HV | 116.9E/28.7N | 5 |
GF-3 | 2020-7-13 | Dual-Polarization | HH, HV | 115.9E/28.2N | 5 |
GF-3 | 2020-7-13 | Dual-Polarization | HH, HV | 116.2E/29.4N | 5 |
GF-3 | 2020-7-13 | Dual-Polarization | HH, HV | 116.4E/30.2N | 5 |
GF-3 | 2020-7-25 | Dual-Polarization | HH, HV | 117.5E/31.6N | 5 |
GF-1 | 2020-2-18 | Wide Field of View (WFV) | 4 bands | 116.0E/27.9N | 16 |
GF-1 | 2020-2-18 | Wide Field of View (WFV) | 4 bands | 116.4E/29.6N | 16 |
GF-1 | 2020-6-16 | Wide Field of View (WFV) | 4 bands | 116.5E/29.3N | 16 |
GF-1 | 2020-4-16 | Wide Field of View (WFV) | 4 bands | 116.5E/28.9N | 16 |
GF-1D | 2020-7-25 | Panchromatic and multispectral (PMS) | 4 bands | 116.6E/28.5N | 8 |
GF-1D | 2020-7-25 | Panchromatic and multispectral (PMS) | 4 bands | 116.7E/29.1N | 8 |
GF-6 | 2020-7-25 | Panchromatic and multispectral (PMS) | 4 bands | 117.7E/31.3N | 8 |
Zhuhai-1 | 2020-3-15 | Hyperspectral | 32 bands | 115.5E/28.8N | 10 |
Zhuhai-1 | 2020-7-17 | Hyperspectral | 32 bands | 115.5E/28.8N | 10 |
Satellite | Model | Bands |
---|---|---|
GF-1 | WFV/PMS | B1: 450–520 nm, B2: 520–590 nm, B3: 630–690 nm, B4: 770–890 nm |
GF-6 | PMS | B1: 450–520 nm, B2: 520–600 nm, B3: 630–690 nm, B4: 760–900 nm |
Zhuhai-1 | Hyperspectral | 400–1000 nm (32 bands with spectral resolution of 2.5 nm) |
Methods | GF-1 MSI | GF-3 SAR | Zhuhai-1 HSI |
---|---|---|---|
Coarse results | 82.45 (78.67) | 83.56 (81.54) | 85.21 (81.79) |
Fine results with Unet | 86.95 (82.41) | 91.37 (89.64) | 89.18 (85.33) |
Fine results with Unet and T-revision | 94.27 (91.72) | 95.74 (92.16) | 93.24 (91.72) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Xia, J. Flood Detection Using Multiple Chinese Satellite Datasets during 2020 China Summer Floods. Remote Sens. 2022, 14, 51. https://doi.org/10.3390/rs14010051
Zhang L, Xia J. Flood Detection Using Multiple Chinese Satellite Datasets during 2020 China Summer Floods. Remote Sensing. 2022; 14(1):51. https://doi.org/10.3390/rs14010051
Chicago/Turabian StyleZhang, Lianchong, and Junshi Xia. 2022. "Flood Detection Using Multiple Chinese Satellite Datasets during 2020 China Summer Floods" Remote Sensing 14, no. 1: 51. https://doi.org/10.3390/rs14010051
APA StyleZhang, L., & Xia, J. (2022). Flood Detection Using Multiple Chinese Satellite Datasets during 2020 China Summer Floods. Remote Sensing, 14(1), 51. https://doi.org/10.3390/rs14010051