Estimation of Maximum Hail Diameters from FY-4A Satellite Data with a Machine Learning Method
Abstract
:1. Introduction
2. Data and Method
2.1. Data
2.2. Method
- Sample preparation: This step calculates hailstorms’ environmental and cloud-top parameters to serve as sample features. First, we identify storms on the satellite images with an approach introduced by Liu et al. [106]. Their method can effectively reduce the impact of the anvil clouds. Second, the closest storm to an observed hail event in time and space is marked as a hailstorm. Moreover, the time interval between the storm and hail event should be less than 5 min (satellite time resolution), and the storm should be within 20 km (~5 satellite pixels) from the hail event location. The MHD of the hail event will be assigned to the matched hailstorm. The largest MHD will be accepted if more than one hail event matches the same storm. Third, each pixel or grid’s environmental and cloud-top parameters within the hailstorm boundary are calculated with FY-4A satellite or ERA5 reanalysis data. The final parameters of the hailstorm are the average of all grid or pixel values. Figure 3 demonstrates a hailstorm sample at 09:53 (UTC) on June 6th, 2018. After this step, we obtain 150 hailstorm samples, each of which has 29 features. The original sample set is recorded as , where and represent the number of features and samples, respectively. is a row vector composed of th feature values of all samples.
- Feature selection: This step employed a PCA technique [107,108] to select appropriate features to train the machine learning model. The input to PCA is the matrix , where , and , representing the mean and variance of . After PCA calculation, the output is the principal component matrix:
- Model establishment: This step trains a regression BPNN model with selected features of hail samples and their corresponding MHDs. At first, the sample set (, where is the number of selected features) is randomly divided into three subsets: training, validation, and test by ratios of 0.7, 0.15, and 0.15. The sample sizes of training (), validation (), and test () sets are 105, 23, and 22, individually. Then, the training and validation sets are utilized for training a two-layer BPNN model (see Figure 2). The training set is input to the BPNN, and the associated target outputs are the corresponding MHDs. Levenberg–Marquardt optimization [109] updates the weight and bias values. The active functions of the hidden and output layer are sigmoid and linear, respectively. The mean square error function measures the loss. We try the hidden layer size from 20 to 50 with an interval of 5, and it proves that the size of 35 has the best performance on the validation set . The validation set also makes the training stop early if the network performance fails to improve for 42 epochs. After the BPNN model optimization, the test set is utilized to evaluate the performance of the obtained model on new data. In Section 4.1, the linear fitting contrasts the targeted MHDs and predicted MHDs.
3. Results of PCA-Based Feature Selection
3.1. The Selected Features
3.2. Feature Change with Hail Sizes
4. Model Evaluation
4.1. Comparison between the Observed and Predicted MHD
4.2. Case Studies
5. Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knight, C.A.; Knight, N.C. Very Large Hailstones From Aurora, Nebraska. Bull. Am. Meteorol. Soc. 2005, 86, 1773–1782. [Google Scholar] [CrossRef] [Green Version]
- Kumjian, M.R.; Lebo, Z.J.; Ward, A.M. Storms Producing Large Accumulations of Small Hail. J. Appl. Meteorol. Climatol. 2019, 58, 341–364. [Google Scholar] [CrossRef]
- Mahoney, K.; Alexander, M.A.; Thompson, G.; Barsugli, J.J.; Scott, J.D. Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat. Clim. Chang. 2012, 2, 125–131. [Google Scholar] [CrossRef]
- Allen, J.T.; Tippett, M.K. The Characteristics of United States Hail Reports: 1955–2014. E-J. Sev. Storms Meteorol. 2015, 10, 1–31. [Google Scholar]
- Allen, J.T. Hail potential heating up. Nat. Clim. Chang. 2017, 7, 474–475. [Google Scholar] [CrossRef]
- Brimelow, J.C.; Burrows, W.R.; Hanesiak, J.M. The changing hail threat over North America in response to anthropogenic climate change. Nat. Clim. Chang. 2017, 7, 516–522. [Google Scholar] [CrossRef]
- Trapp, R.J.; Hoogewind, K.A.; Lasher-Trapp, S. Future Changes in Hail Occurrence in the United States Determined through Convection-Permitting Dynamical Downscaling. J. Clim. 2019, 32, 5493–5509. [Google Scholar] [CrossRef]
- Raupach, T.H.; Martius, O.; Allen, J.T.; Kunz, M.; Lasher-Trapp, S.; Mohr, S.; Rasmussen, K.L.; Trapp, R.J.; Zhang, Q. The effects of climate change on hailstorms. Nat. Rev. Earth Environ. 2021, 2, 213–226. [Google Scholar] [CrossRef]
- Brown, T.M.; Pogorzelski, W.H.; Giammanco, I.M. Evaluating Hail Damage Using Property Insurance Claims Data. Weather Clim. Soc. 2015, 7, 197–210. [Google Scholar] [CrossRef]
- Punge, H.J.; Bedka, K.M.; Kunz, M.; Werner, A. A new physically based stochastic event catalog for hail in Europe. Nat. Hazards 2014, 73, 1625–1645. [Google Scholar] [CrossRef]
- Grieser, J.; Hill, M. How to Express Hail Intensity—Modeling the Hailstone Size Distribution. J. Appl. Meteorol. Climatol. 2019, 58, 2329–2345. [Google Scholar] [CrossRef]
- Webb, J.D.C.; Elsom, D.M.; Reynolds, D.J. Climatology of severe hailstorms in Great Britain. Atmos. Res. 2001, 56, 291–308. [Google Scholar] [CrossRef]
- Dessens, J.; Berthet, C.; Sanchez, J.L. A point hailfall classification based on hailpad measurements: The ANELFA scale. Atmos. Res. 2007, 83, 132–139. [Google Scholar] [CrossRef]
- Hohl, R.; Schiesser, H.-H.; Knepper, I. The use of weather radars to estimate hail damage to automobiles: An exploratory study in Switzerland. Atmos. Res. 2002, 61, 215–238. [Google Scholar] [CrossRef]
- Hohl, R.; Schiesser, H.-H.; Aller, D. Hailfall: The relationship between radar-derived hail kinetic energy and hail damage to buildings. Atmos. Res. 2002, 63, 177–207. [Google Scholar] [CrossRef]
- Allen, J.T.; Giammanco, I.M.; Kumjian, M.R.; Jurgen Punge, H.; Zhang, Q.; Groenemeijer, P.; Kunz, M.; Ortega, K. Understanding Hail in the Earth System. Rev. Geophys. 2020, 58, e2019RG000665. [Google Scholar] [CrossRef] [Green Version]
- Punge, H.J.; Kunz, M. Hail observations and hailstorm characteristics in Europe: A review. Atmos. Res. 2016, 176–177, 159–184. [Google Scholar] [CrossRef]
- Martius, O.; Hering, A.; Kunz, M.; Manzato, A.; Mohr, S.; Nisi, L.; Trefalt, S. Challenges and Recent Advances in Hail Research. Bull. Am. Meteorol. Soc. 2018, 99, ES51–ES54. [Google Scholar] [CrossRef] [Green Version]
- Cintineo, J.L.; Smith, T.M.; Lakshmanan, V.; Brooks, H.E.; Ortega, K.L. An Objective High-Resolution Hail Climatology of the Contiguous United States. Weather Forecast. 2012, 27, 1235–1248. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Kugel, P.I.S. Detection of hail signatures from single-polarization C-band radar reflectivity. Atmos. Res. 2015, 153, 565–577. [Google Scholar] [CrossRef]
- Ortega, K.L.; Krause, J.M.; Ryzhkov, A.V. Polarimetric Radar Characteristics of Melting Hail. Part III: Validation of the Algorithm for Hail Size Discrimination. J. Appl. Meteorol. Climatol. 2016, 55, 829–848. [Google Scholar] [CrossRef]
- Wang, P.; Shi, J.; Hou, J.; Hu, Y. The Identification of Hail Storms in the Early Stage Using Time Series Analysis. J. Geophys. Res. Atmos. 2018, 123, 929–947. [Google Scholar] [CrossRef]
- Czernecki, B.; Taszarek, M.; Marosz, M.; Półrolniczak, M.; Kolendowicz, L.; Wyszogrodzki, A.; Szturc, J. Application of machine learning to large hail prediction—The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmos. Res. 2019, 227, 249–262. [Google Scholar] [CrossRef]
- Witt, A.; Eilts, M.D.; Stumpf, G.J.; Johnson, J.T.; Mitchell, E.D.W.; Thomas, K.W. An Enhanced Hail Detection Algorithm for the WSR-88D. Weather Forecast. 1998, 13, 286–303. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Xue, M.; Zhu, K.; Zhou, B. Explicit Prediction of Hail in a Long-Lasting Multicellular Convective System in Eastern China Using Multimoment Microphysics Schemes. J. Atmos. Sci. 2018, 75, 3115–3137. [Google Scholar] [CrossRef]
- Nisi, L.; Hering, A.; Germann, U.; Martius, O. A 15-year hail streak climatology for the Alpine region. Q. J. R. Meteorol. Soc. 2018, 144, 1429–1449. [Google Scholar] [CrossRef] [Green Version]
- Ortega, K.L. Evaluating multi-radar, multi-sensor products for surface hailfall diagnosis. E-J. Sev. Storms Meteorol. 2018, 13, 1–36. [Google Scholar]
- Lee, S.; Han, H.; Im, J.; Jang, E.; Lee, M.I. Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data. Atmos. Meas. Tech. 2017, 10, 1859–1874. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Min, M.; Li, J.; Sun, F.; Di, D.; Ai, Y.; Li, Z.; Qin, D.; Li, G.; Lin, Y.; et al. Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements. Remote Sens. 2019, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Qin, D.; Min, M.; Li, B.; Wang, F. Convective Initiation Nowcasting Over China from Fengyun-4A Measurements Based on TV-L1 Optical Flow and BP_Adaboost Neural Network Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4284–4296. [Google Scholar] [CrossRef]
- Cintineo, J.L.; Pavolonis, M.J.; Sieglaff, J.M.; Wimmers, A.; Brunner, J.; Bellon, W. A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images. Weather Forecast. 2020, 35, 2567–2588. [Google Scholar] [CrossRef]
- Li, W.; Zhang, F.; Yu, Y.; Iwabuchi, H.; Shen, Z.; Wang, G.; Zhang, Y. The semi-diurnal cycle of deep convective systems over Eastern China and its surrounding seas in summer based on an automatic tracking algorithm. Clim. Dyn. 2021, 56, 357–379. [Google Scholar] [CrossRef]
- Kuligowski, R.J.; Li, Y.; Hao, Y.; Zhang, Y. Improvements to the GOES-R Rainfall Rate Algorithm. J. Hydrometeorol. 2016, 17, 1693–1704. [Google Scholar] [CrossRef]
- Beusch, L.; Foresti, L.; Gabella, M.; Hamann, U. Satellite-Based Rainfall Retrieval: From Generalized Linear Models to Artificial Neural Networks. Remote Sens. 2018, 10, 939. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Han, D.; Ahn, M.-H.; Im, J.; Lee, S.J. Retrieval of Total Precipitable Water from Himawari-8 AHI Data: A Comparison of Random Forest, Extreme Gradient Boosting, and Deep Neural Network. Remote Sens. 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yu, X. A Novel Tensor Network for Tropical Cyclone Intensity Estimation. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3226–3243. [Google Scholar] [CrossRef]
- Zhang, C.J.; Wang, X.J.; Ma, L.M.; Lu, X.Q. Tropical Cyclone Intensity Classification and Estimation Using Infrared Satellite Images with Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2070–2086. [Google Scholar] [CrossRef]
- Merino, A.; López, L.; Sánchez, J.L.; García-Ortega, E.; Cattani, E.; Levizzani, V. Daytime identification of summer hailstorm cells from MSG data. Nat. Hazards Earth Syst. Sci. 2014, 14, 1017–1033. [Google Scholar] [CrossRef] [Green Version]
- Melcón, P.; Merino, A.; Sánchez, J.L.; López, L.; Hermida, L. Satellite remote sensing of hailstorms in France. Atmos. Res. 2016, 182, 221–231. [Google Scholar] [CrossRef]
- Punge, H.J.; Bedka, K.M.; Kunz, M.; Reinbold, A. Hail frequency estimation across Europe based on a combination of overshooting top detections and the ERA-INTERIM reanalysis. Atmos. Res. 2017, 198, 34–43. [Google Scholar] [CrossRef]
- López, L.; Marcos, J.L.; Sánchez, J.L.; Castro, A.; Fraile, R. CAPE values and hailstorms on northwestern Spain. Atmos. Res. 2001, 56, 147–160. [Google Scholar] [CrossRef]
- López, L.; García-Ortega, E.; Sánchez, J.L. A short-term forecast model for hail. Atmos. Res. 2007, 83, 176–184. [Google Scholar] [CrossRef]
- Fraile, R.; Castro, A.; López, L.; Sánchez, J.L.; Palencia, C. The influence of melting on hailstone size distribution. Atmos. Res. 2003, 67–68, 203–213. [Google Scholar] [CrossRef]
- Brooks, H.E. Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmos. Res. 2009, 93, 546–553. [Google Scholar] [CrossRef]
- Brooks, H.E. Severe thunderstorms and climate change. Atmos. Res. 2013, 123, 129–138. [Google Scholar] [CrossRef]
- Palencia, C.; Giaiotti, D.; Stel, F.; Castro, A.; Fraile, R. Maximum hailstone size: Relationship with meteorological variables. Atmos. Res. 2010, 96, 256–265. [Google Scholar] [CrossRef]
- García-Ortega, E.; Merino, A.; López, L.; Sánchez, J.L. Role of mesoscale factors at the onset of deep convection on hailstorm days and their relation to the synoptic patterns. Atmos. Res. 2012, 114–115, 91–106. [Google Scholar] [CrossRef]
- Eccel, E.; Cau, P.; Riemann-Campe, K.; Biasioli, F. Quantitative hail monitoring in an alpine area: 35-year climatology and links with atmospheric variables. Int. J. Climatol. 2012, 32, 503–517. [Google Scholar] [CrossRef]
- Merino, A.; García-Ortega, E.; López, L.; Sánchez, J.L.; Guerrero-Higueras, A.M. Synoptic environment, mesoscale configurations and forecast parameters for hailstorms in Southwestern Europe. Atmos. Res. 2013, 122, 183–198. [Google Scholar] [CrossRef]
- Mohr, S.; Kunz, M. Recent trends and variabilities of convective parameters relevant for hail events in Germany and Europe. Atmos. Res. 2013, 123, 211–228. [Google Scholar] [CrossRef]
- Zheng, L.; Sun, J.; Zhang, X.; Liu, C. Organizational Modes of Mesoscale Convective Systems over Central East China. Weather Forecast. 2013, 28, 1081–1098. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.W.; Sugden, K.E. Evaluation of sounding-derived thermodynamic and wind-related parameters associated with large hail events. E-J. Sev. Storms Meteorol. 2014, 9, 1–42. [Google Scholar]
- Gascón, E.; Merino, A.; Sánchez, J.L.; Fernández-González, S.; García-Ortega, E.; López, L.; Hermida, L. Spatial distribution of thermodynamic conditions of severe storms in southwestern Europe. Atmos. Res. 2015, 164–165, 194–209. [Google Scholar] [CrossRef]
- Vujović, D.; Paskota, M.; Todorović, N.; Vučković, V. Evaluation of the stability indices for the thunderstorm forecasting in the region of Belgrade, Serbia. Atmos. Res. 2015, 161–162, 143–152. [Google Scholar] [CrossRef]
- Melcón, P.; Merino, A.; Sánchez, J.L.; López, L.; García-Ortega, E. Spatial patterns of thermodynamic conditions of hailstorms in southwestern France. Atmos. Res. 2017, 189, 111–126. [Google Scholar] [CrossRef]
- Prein, A.F.; Holland, G.J. Global estimates of damaging hail hazard. Weather Clim. Extrem. 2018, 22, 10–23. [Google Scholar] [CrossRef]
- Li, M.; Zhang, D.-L.; Sun, J.; Zhang, Q. A Statistical Analysis of Hail Events and Their Environmental Conditions in China during 2008–2015. J. Appl. Meteorol. Climatol. 2018, 57, 2817–2833. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; MacKenzie, W.M.; König, M.; Muller, S. Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part II: Use of Visible Reflectance. J. Appl. Meteorol. Climatol. 2010, 49, 2544–2558. [Google Scholar] [CrossRef] [Green Version]
- Park, M.-S.; Kim, M.; Lee, M.-I.; Im, J.; Park, S. Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees. Remote Sens. Environ. 2016, 183, 205–214. [Google Scholar] [CrossRef]
- Yao, H.; Li, X.; Pang, H.; Sheng, L.; Wang, W. Application of random forest algorithm in hail forecasting over Shandong Peninsula. Atmos. Res. 2020, 244, 105093. [Google Scholar] [CrossRef]
- Marzban, C.; Witt, A. A Bayesian Neural Network for Severe-Hail Size Prediction. Weather Forecast. 2001, 16, 600–610. [Google Scholar] [CrossRef]
- Manzato, A. Hail in Northeast Italy: A Neural Network Ensemble Forecast Using Sounding-Derived Indices. Weather Forecast. 2013, 28, 3–28. [Google Scholar] [CrossRef]
- Han, L.; Sun, J.; Zhang, W.; Xiu, Y.; Feng, H.; Lin, Y. A machine learning nowcasting method based on real-time reanalysis data. J. Geophys. Res. Atmos. 2017, 122, 4038–4051. [Google Scholar] [CrossRef]
- Lazri, M.; Labadi, K.; Brucker, J.M.; Ameur, S. Improving satellite rainfall estimation from MSG data in Northern Algeria by using a multi-classifier model based on machine learning. J. Hydrol. 2020, 584, 124705. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Zhang, F.; Song, Q. CloudNet: Ground-Based Cloud Classification with Deep Convolutional Neural Network. Geophys. Res. Lett. 2018, 45, 8665–8672. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM Network: A machine learning approach for precipitation nowcasting. In Proceedings of the Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 1, pp. 802–810. [Google Scholar]
- Xiao, H.; Zhang, F.; He, Q.; Liu, P.; Yan, F.; Miao, L.; Yang, Z. Classification of Ice Crystal Habits Observed from Airborne Cloud Particle Imager by Deep Transfer Learning. Earth Space Sci. 2019, 6, 1877–1886. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, F.; Xiao, H.; Wang, F.; Hong, X.; Wu, K.; Zhang, J. A Novel Ground-Based Cloud Image Segmentation Method by Using Deep Transfer Learning. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.-H.; Moon, Y.-J.; Park, E.; Shin, G.; Kim, T.; Kim, Y.; Hong, S. Nighttime Reflectance Generation in the Visible Band of Satellites. Remote Sens. 2019, 11, 2087. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Zhang, Q.; Liu, C.; Li, X.; Zou, T.; Lin, J.; Kong, H.; Ren, Z. Decreased hail size in China since 1980. Sci. Rep. 2017, 7, 10913. [Google Scholar] [CrossRef]
- Hans, H.; Bell, W.; Berrisford, P.; Andras, H.; Muñoz-Sabater, J.; Nicolas, J.; Raluca, R.; Dinand, S.; Adrian, S.; Cornel, S.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar]
- Moncrieff, M.W.; Miller, M.J. The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 1976, 102, 373–394. [Google Scholar] [CrossRef]
- Colby, F.P., Jr. Convective inhibition as a predictor of convection during AVE-SESAME II. Mon. Weather Rev. 1984, 112, 2239–2252. [Google Scholar] [CrossRef] [Green Version]
- George, J.J. Weather Forecasting for Aeronautics; Academic Press: San Diego, CA, USA, 1960. [Google Scholar]
- Miller, R. Notes on Analysis and Severe-Storm Forecasting Procedures of the Air Force Global Weather Central; Technical Report 200 (Rev); AWS, U.S. Air Force: Scott AFB, IL, USA, 1972; 102p. [Google Scholar]
- Showalter, A.K. A Stability Index for Thunderstorm Forecasting. Bull. Am. Meteorol. Soc. 1953, 34, 250–252. [Google Scholar] [CrossRef] [Green Version]
- Galway, J.G. The Lifted Index as a Predictor of Latent Instability. Bull. Am. Meteorol. Soc. 1956, 37, 528–529. [Google Scholar] [CrossRef] [Green Version]
- Boyden, C. A simple instability index for use as a synoptic parameter. Meteor. Mag. 1963, 92, 198–210. [Google Scholar]
- Dessens, J.; Berthet, C.; Sanchez, J.L. Change in hailstone size distributions with an increase in the melting level height. Atmos. Res. 2015, 158–159, 245–253. [Google Scholar] [CrossRef]
- Johns, R.H.; Doswell, C.A. Severe Local Storms Forecasting. Weather Forecast. 1992, 7, 588–612. [Google Scholar] [CrossRef] [Green Version]
- Fawbush, E.J.; Miller, R.C. A Method for Forecasting Hailstone Size at the Earth’s Surface. Bull. Am. Meteorol. Soc. 1953, 34, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Knight, C.A.; Knight, N.C. Hailstorms. In Severe Convective Storms; Meteorol. Monogr; Doswell, C.A., Ed.; American Meteorological Society: Boston, MA, USA, 2001; Volume 28, pp. 223–248. [Google Scholar]
- Weisman, M.L.; Klemp, J.B. The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy. Mon. Weather Rev. 1982, 110, 504–520. [Google Scholar] [CrossRef]
- Weisman, M.L.; Klemp, J.B. Characteristics of Isolated Convective Storms. In Mesoscale Meteorology and Forecasting; Ray, P.S., Ed.; American Meteorological Society: Boston, MA, USA, 1986; pp. 331–358. [Google Scholar]
- Ziegler, C.L.; Ray, P.S.; Knight, N.C. Hail Growth in an Oklahoma Multicell Storm. J. Atmos. Sci. 1983, 40, 1768–1791. [Google Scholar] [CrossRef] [Green Version]
- Tuovinen, J.-P.; Rauhala, J.; Schultz, D.M. Significant-Hail-Producing Storms in Finland: Convective-Storm Environment and Mode. Weather Forecast. 2015, 30, 1064–1076. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, Q.; Wang, Y. Observed Characteristics of Hail Size in Four Regions in China during 1980–2005. J. Clim. 2010, 23, 4973–4982. [Google Scholar] [CrossRef]
- Weisman, M.L.; Klemp, J.B. The structure and classification of numerically simulated convective stormsin directionally varying wind shears. Mon. Weather Rev. 1984, 112, 2479–2498. [Google Scholar] [CrossRef]
- Davies-Jones, R.; Burgess, D.; Foster, M. Test of helicity as a tornado forecast parameter. In Proceedings of the 16th Conference on Severe Local Storms, Kananaskis Provincial Park, AB, Canada, 22–26 October 1990; pp. 107–111. [Google Scholar]
- Maddox, R.A. An Evaluation of Tornado Proximity Wind and Stability Data. Mon. Weather Rev. 1976, 104, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Rossby, C. Planetary flow pattern in the atmosphere. Q. J. R. Meteorol. Soc. 1940, 66, 68–87. [Google Scholar]
- Ertel, H. Ein neuer hydrodynamischer Wirbelsatz. Met. Z. 1942, 59, 277–281. [Google Scholar]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An Introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A Closer Look at the ABI on the GOES-R Series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X. Summertime convective initiation nowcasting over southeastern China based on Advanced Himawari Imager observations. J. Meteorol. Soc. Jpn. Ser. II 2018, 96, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Mecikalski, J.R.; Bedka, K.M.; Paech, S.J.; Litten, L.A. A Statistical Evaluation of GOES Cloud-Top Properties for Nowcasting Convective Initiation. Mon. Weather Rev. 2008, 136, 4899–4914. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, S.A. Global Satellite Observations of Negative Brightness Temperature Differences between 11 and 6.7 µm. J. Atmos. Sci. 1996, 53, 2803–2812. [Google Scholar] [CrossRef] [Green Version]
- Schmetz, J.; Tjemkes, S.A.; Gube, M.; van de Berg, L. Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res. 1997, 19, 433–441. [Google Scholar] [CrossRef]
- Matthee, R.; Mecikalski, J.R. Geostationary infrared methods for detecting lightning-producing cumulonimbus clouds. J. Geophys. Res. Atmos. 2013, 118, 6580–6592. [Google Scholar] [CrossRef]
- Strabala, K.I.; Ackerman, S.A.; Menzel, W.P. Cloud properties inferred from 8–12-µm data. J. Appl. Meteorol. Climatol. 1994, 33, 212–229. [Google Scholar] [CrossRef] [Green Version]
- Ellrod, G.P. Impact on volcanic ash detection caused by the loss of the 12.0 μm “Split Window” band on GOES Imagers. J. Volcanol. Geotherm. Res. 2004, 135, 91–103. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Bedka, K.M. Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery. Mon. Weather Rev. 2006, 134, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T. A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res. Atmos. 1987, 92, 3991–4000. [Google Scholar] [CrossRef]
- Liu, J.; Ma, C.; Liu, C.; Qin, D.; Gu, X. An extended maxima transform-based region growing algorithm for convective cell detection on satellite images. Remote Sens. Lett. 2014, 5, 971–980. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal component analysis for special types of data. In Principal Component Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2002; pp. 338–372. [Google Scholar] [CrossRef]
- Wilks, D.S. Chapter 13—Principal Component (EOF) Analysis. In Statistical Methods in the Atmospheric Sciences, 4th ed.; Wilks, D.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 617–668. [Google Scholar]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Browning, K.A.; Foote, G.B. Airflow and hail growth in supercell storms and some implications for hail suppression. Q. J. R. Meteorol. Soc. 1976, 102, 499–533. [Google Scholar] [CrossRef]
- Heymsfield, A.J. Case Study of a Halistorm in Colorado. Part IV: Graupel and Hail Growth Mechanisms Deduced through Particle Trajectory Calculations. J. Atmos. Sci. 1983, 40, 1482–1509. [Google Scholar] [CrossRef] [Green Version]
- Foote, G.B. A Study of Hail Growth Utilizing Observed Storm Conditions. J. Appl. Meteorol. Climatol. 1984, 23, 84–101. [Google Scholar] [CrossRef]
- Musil, D.J.; Heymsfield, A.J.; Smith, P.L. Microphysical Characteristics of a Well-Developed Weak Echo Region in a High Plains Supercell Thunderstorm. J. Appl. Meteorol. Climatol. 1986, 25, 1037–1051. [Google Scholar] [CrossRef] [Green Version]
- Dennis, E.J.; Kumjian, M.R. The Impact of Vertical Wind Shear on Hail Growth in Simulated Supercells. J. Atmos. Sci. 2017, 74, 641–663. [Google Scholar] [CrossRef]
- Marcos, J.L.; Sánchez, J.L.; Merino, A.; Melcón, P.; Mérida, G.; García-Ortega, E. Spatial and temporal variability of hail falls and estimation of maximum diameter from meteorological variables. Atmos. Res. 2021, 247, 105142. [Google Scholar] [CrossRef]
Parameters | Abbreviations | Units | References |
---|---|---|---|
Convective available potential energy | CAPE | J kg−1 | Moncrieff and Miller 1976 [72] |
Convective inhibition | CIN | J kg−1 | Colby 1984 [73] |
Precipitable water | PW | cm | Li et al. 2018 [57] |
K index | KI | °C | George 1960 [74] |
Total totals | TT | °C | Miller 1972 [75] |
Showalter index | SI | °C | Showalter 1953 [76] |
Lifted index | LI | °C | Galway 1956 [77] |
Boyden index | BI | unitless | Boyden 1963 [78] |
Height of 0 °C | H0°C | km | Dessens et al. 2015; Prein and Holland 2018 [56,79] |
Height of −20 °C | H−20°C | km | Witt et al. 1998 [24] |
Wet-bulb zero height | WBZ | km | Johns and Doswell 1992; Fawbush and Miller 1953; Miller 1972 [75,80,81] |
Hail growth zone (−10~−30 °C) thickness | HGZ | km | Knight and Knight 2001; Johnson and Sugden 2014; Li et al. 2018 [52,57,82] |
0–6 km vertical wind shear | VWS0–6 | m s−1 | Weisman and Klemp 1982, 1984, 1986; Ziegler et al. 1983; Xie et al. 2010; Tuovinen et al. 2015; Allen et al. 2015; Allen 2017; Punge and Kunz 2016 [4,5,17,83,84,85,86,87,88] |
0–3 km vertical wind shear | VWS0–3 | m s−1 | |
Storm-relative helicity | SRH | m2 s−2 | Davies-Jones 1990; Maddox 1976 [89,90] |
Bulk Richardson number | BRN | unitless | Weisman and Klemp 1982 [83] |
Mean high-level (400~200 hpa) potential vorticity | PVH | K m2 kg−1 s−1 | Rossby 1940; Ertel 1942; Hoskins et al. 1985 [91,92,93] |
Name | Units | Horizontal Resolution | Pressure Levels | Temporal Resolution |
---|---|---|---|---|
Geopotential | m2 s−2 | 0.25° × 0.25° | 37 pressure levels: 1000, 975, 950, 925, 900, 875, 850, 825, 800, 775, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 225, 200, 175, 150, 125, 100, 70, 50, 30, 20, 10, 7, 5, 3, 2, 1 hPa | Hourly |
Relative humidity | % | |||
Specific humidity | kg kg−1 | |||
Temperature | K | |||
U-component of wind | m s−1 | |||
V-component of wind | m s−1 | |||
Potential vorticity | K m2 kg−1 s−1 |
Parameters | Abbreviations | Units | Descriptions | References |
---|---|---|---|---|
BT of 6.25 μm channel | BT6.25 | °C | Upper-level water vapor channel | Schmetz et al. 2002; Schmit et al. 2017; Yang et al. 2017; Zhuge and Zou 2018 [94,95,96,97] |
BT of 7.10 μm channel | BT7.10 | Midlevel water vapor channel | ||
BT of 8.50 μm channel | BT8.50 | “Cloud phase” channel | ||
BT of 10.8 μm channel | BT10.8 | “Clean” window channel | ||
BT of 12.0 μm channel | BT12.0 | “Dirty” window channel | ||
BT of 13.5 μm channel | BT13.5 | “Carbon dioxide” channel | ||
BTD between 6.25 and 10.8 μm channel | BTD6.25−10.8 | Cloud-top height relative to upper-troposphere | Mecikalski et al. 2008; Zhuge and Zou 2018; Ackerman 1996; Schmetz et al. 1997; Matthee and Mecikalski, 2013 [97,98,99,100,101] | |
BTD between 7.10 and 10.8 μm channel | BTD7.10−10.8 | Cloud-top height relative to middle-troposphere | ||
BTD between 6.25 and 7.10 μm channel | BTD6.25−7.10 | Cloud thickness/cloud-top height/water vapor distribution | ||
BTD between 8.50 and 10.8 μm channel | BTD8.50−10.8 | Cloud-top phase/effective radius | Strabala et al. 1994 [102] | |
BTD between 12.0 and 10.8 μm channel | BTD12.0−10.8 | Cloud thickness/cirrus/low-level moisture/moistening | Strabala et al. 1994; Ellrod 2004; Inoue 1987; Mecikalski and Bedka 2006 [102,103,104,105] | |
BTD between 13.5 and 10.8 μm channel | BTD13.5−10.8 | Cloud-top height/early cumulus | Mecikalski and Bedka 2006; Mecikalski et al. 2008 [98,104] |
Features | ||
---|---|---|
BT6.25 | −0.28 | 0.13 |
BT7.10 | −0.29 | 0.16 |
BT8.50 | −0.29 | 0.17 |
BT10.8 | −0.29 | 0.17 |
BT12.0 | −0.29 | 0.17 |
BT13.5 | −0.24 | 0.14 |
BTD6.25−10.8 | 0.23 | −0.23 |
BTD6.25−7.10 | 0.22 | −0.21 |
BTD13.5−10.8 | 0.21 | −0.14 |
BTD7.10−10.8 | 0.16 | −0.16 |
BTD8.50−10.8 | 0.06 | −0.02 |
BTD12.0−10.8 | −0.12 | −0.03 |
TT | 0.09 | 0.02 |
SI | −0.19 | −0.17 |
LI | −0.18 | −0.17 |
BI | 0.07 | 0.02 |
BRN | 0.04 | 0.09 |
CIN | −0.02 | 0.15 |
CAPE | 0.20 | 0.20 |
KI | 0.21 | 0.22 |
PW | 0.20 | 0.26 |
WBZ | 0.20 | 0.30 |
H0°C | 0.19 | 0.30 |
H−20°C | 0.16 | 0.29 |
SRH | −0.01 | −0.21 |
VWS0–6 | −0.04 | −0.22 |
VWS0–3 | −0.03 | −0.23 |
HGZ | 0.02 | 0.17 |
PVH | −0.14 | −0.16 |
Data | Methods | R2 (Test Set) | Study Regions | References |
---|---|---|---|---|
Radar-derived parameters, environment parameters (sounding/numerical model) | Bayesian neural network | 0.40 | United States | Marzban andWitt 2001 [61] |
Physical variables (sounding) | Linear regression (8 principle components + difference in surface pressure between 00 and 12 UTC) | 0.1074 for MHD > 10 mm | Italy | Palencia et al. 2010 [46] |
0.6899 for MHD > 15 mm | ||||
Meteorological variables (WRF simulation) | Linear regression | 0.49 | Spain | Marcos et al. 2021 [115] |
Satellite-derived cloud-top parameters, environmental parameters (ERA5) | PCA + BPNN | 0.52 | China | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Shou, Y.-X.; Ma, L.-M.; Lu, Q.; Wang, R. Estimation of Maximum Hail Diameters from FY-4A Satellite Data with a Machine Learning Method. Remote Sens. 2022, 14, 73. https://doi.org/10.3390/rs14010073
Wu Q, Shou Y-X, Ma L-M, Lu Q, Wang R. Estimation of Maximum Hail Diameters from FY-4A Satellite Data with a Machine Learning Method. Remote Sensing. 2022; 14(1):73. https://doi.org/10.3390/rs14010073
Chicago/Turabian StyleWu, Qiong, Yi-Xuan Shou, Lei-Ming Ma, Qifeng Lu, and Rui Wang. 2022. "Estimation of Maximum Hail Diameters from FY-4A Satellite Data with a Machine Learning Method" Remote Sensing 14, no. 1: 73. https://doi.org/10.3390/rs14010073
APA StyleWu, Q., Shou, Y. -X., Ma, L. -M., Lu, Q., & Wang, R. (2022). Estimation of Maximum Hail Diameters from FY-4A Satellite Data with a Machine Learning Method. Remote Sensing, 14(1), 73. https://doi.org/10.3390/rs14010073