Air–Sea Interface Parameters and Heat Flux from Neural Network and Advanced Microwave Scanning Radiometer Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. AMSR2 Brightness Temperature Observations
2.2. Buoy Measurements and Reanalysis Data
2.3. Methods
2.3.1. Air–Sea Interface Parameter Retrieval
2.3.2. Sensible and Latent Flux Estimation
- is the air density at the surface;
- , are sensible heat and latent heat turbulent exchange coefficients, respectively;
- is the latent heat of vaporization and can be represented as a function of sea surface temperature (Le = (2.501 − 0.00237 × Ts) × 106);
- is the specific heat capacity of air at constant pressure (1004.67 J/kg/K);
- is the near-surface (2-m height above the sea surface) air temperature;
- is the sea surface temperature;
- is the near-surface (2-m height above the sea surface) specific humidity;
- is the saturation specific humidity at sea surface; and
- is the wind speed at 10-m height above the sea surface.
3. Results
3.1. Validation of Air–Sea Interface Parameters from BPNN
3.2. Validation of Surface Heat Flux Estimates
3.3. Global Daily Air–Sea Interface Parameters and Heat Fluxes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsweiss, S.O.; Jelenak, Z.; Chang, P.S. Remote sensing of sea surface temperature using AMSR-2 measurements. IEEE J. Sel. Top. Earth Obs. Remote Sens. 2017, 10, 3948–3954. [Google Scholar] [CrossRef]
- Peason, K.; Merchant, C.; Embury, O.; Donlon, C. The role of Advanced Microwave Scanning Radiometer 2 channels within an optimal estimation scheme for sea surface temperature. Remote Sens. 2018, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Seo, H.-J.; Kwon, Y.-J. A unique satellite-based sea surface wind speed algorithm and its application in tropical cyclone intensity analysis. J. Atmos. Ocean. Technol. 2016, 33, 1363–1375. [Google Scholar] [CrossRef]
- Mai, M.; Zhang, B.; Li, X.; Hwang, P.A.; Zhang, J.A. Application of AMSR-E and AMSR-2 low-frequency channel brightness temperature data for hurricane wind retrieval. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4501–4512. [Google Scholar] [CrossRef]
- Zabolotskikh, E.; Mitnik, L.; Chapron, B. GCOM-W1 AMSR-2 and MetOp-A ASCAT wind speeds for the extratropical cyclones over the North Atlantic. Remote Sens. Environ. 2014, 147, 89–98. [Google Scholar] [CrossRef]
- Zong, H.; Liu, Y.; Rong, Z.; Chen, Y. Retrieval of sea surface specific humidity based on AMSR-E satellite data. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 1189–1195. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for TOGA COARE. J. Geophys. Res. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Weller, R.A. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteorol. Soc. 2007, 88, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Zhang, R.; Shi, R.; Chen, J.; He, Y.; Wang, D.; Xie, Q. Evaluation of OAFlux datasets based on in situ air-sea flux tower observations over Yongxing Island in 2016. Atmos. Meas. Tech. 2018, 11, 6091–6106. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, R.; Huang, J.; Zeng, L.; Hwang, F. Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the South China Sea. J. Geophys. Res. 2017, 122, 5088–5104. [Google Scholar] [CrossRef]
- Alsweiss, S.O.; Jelenak, Z.; Chang, P.S.; Park, J.D.; Meyers, P. Inter-calibration results of the advanced Microwave Scanning Radiometer-2 over ocean. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 4230–4238. [Google Scholar] [CrossRef]
- Okuyama, A.; Imaoka, K. Intercalibration of Advanced Microwave Scanning Radiometer-2 (AMSR-2) brightness temperature. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4568–4577. [Google Scholar] [CrossRef]
- Wu, Y.; Weng, F. Detection and correction of AMSR-E radio-frequency interference (RFI). Acta Meteorol. Sin. 2011, 25, 669–681. [Google Scholar] [CrossRef]
- McPhaden, M.J. The tropical atmosphere ocean array is completed. Bull. Am. Meteorol. Soc. 1995, 76, 739–741. [Google Scholar] [CrossRef]
- Goodberlet, M.A.; Swift, C.T.; Wilkson, J.C. Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J. Geophys. Res. 1989, 94, 14547–14555. [Google Scholar] [CrossRef]
- Alduchov, A.; Eskridge, R.E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- Mears, A.A.; Smith, D.K.; Wentz, F.J. Comparison of special sensor microwave imager and buoy-measured wind speeds from 1987 to 1997. J. Geophys. Res. Ocean. 2001, 106, 11719–11729. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; The American Institute of Physics: Woodbury, NY, USA, 1992. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rumelhart, D.; Hinton, G.; Williams, R. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Gentemann, C.L.; Hilburn, K.A. In situ validation of sea surface temperatures from the GCOM-W1 AMSR2 RSS calibrated brightness temperatures. J. Geophys. Res. Ocean. 2014, 120, 3567–3585. [Google Scholar] [CrossRef]
- Shibata, A. Features of ocean microwave emission changed by wind at 6 GHz. J. Oceanogr. 2006, 62, 321–330. [Google Scholar] [CrossRef]
- Gentemann, A.L.; Meissner, T.; Wentz, F.J. Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1009–1018. [Google Scholar] [CrossRef]
- Meng, L.; He, Y.; Wu, Y. Neural network retrieval of ocean surface parameters from SSM/I data. Mon. Weather Rev. 2007, 135, 586–597. [Google Scholar] [CrossRef]
- Hihara, T.; Kubota, M.; Okuro, A. Evaluation of sea surface temperature and wind speed observed by GCOM-W1/AMSR2 using in situ data and global products. Remote Sens. Environ. 2015, 164, 170–178. [Google Scholar] [CrossRef]
- Krasnopolsky, V.M.; Gemmill, W.H.; Breaker, L.C. A multi-parameter empirical ocean algorithm for SSM/I retrievals. Can. J. Remote Sens. 1999, 25, 486–503. [Google Scholar] [CrossRef]
- Chen, C.S.; Beardsley, R.C.; Franks, P.J.S.; Van Keuren, J. Influence of diurnal heating on stratification and residual circulation of Georges Bank. J. Geophys. Res. 2003, 108, 8008–8028. [Google Scholar] [CrossRef]
- Nielsen-Englyst, P.; Høyer, J.L.; Alerskans, E.; Pedersen, L.T.; Donlon, C. Impact of channel selection on SST retrievals from passive microwave observations. Remote Sens. Envion. 2021, 254, 112252. [Google Scholar] [CrossRef]
- Kilic, L.; Prigent, C.; Aires, F.; Boutin, J.; Heygster, G.; Tonboe, R.T.; Roquet, H.; Jimenez, C.; Donlon, C. Expected performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters. J. Geophys. Res. 2018, 123, 7564–7580. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.L.; Wick, G.A.; Bates, J.J. Near-surface retrieval of air temperature and specific humidity using multisensory microwave satellite observations. J. Geophys. Res. 2006, 111, D10306. [Google Scholar] [CrossRef]
- Xie, S.-P. Satellite observations of cool ocean-atmosphere interaction. Bull. Am. Meteorol. Soc. 2004, 85, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite measurements reveal persistent small-scale feature in ocean winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Frequency (GHz) | Beam Width (deg) | Footprint (Range × Azimuth) (km) |
---|---|---|
6.9/7.3 | 1.8 | 35 × 62 |
10.7 | 1.2 | 24 × 42 |
18.7 | 0.65 | 14 × 22 |
23.8 | 0.75 | 16 × 26 |
36.5 | 0.35 | 7 × 12 |
89.0 | 0.15 | 3 × 5 |
Parameter | Bias | RMSE |
---|---|---|
WS | −0.05 m/s | 1.13 m/s |
Ts | 0.01 °C | 1.02 °C |
Ta | −0.01 °C | 1.20 °C |
Td | −0.01 °C | 1.57 °C |
RH | −0.23% | 5.99% |
Region | Parameter | RMSE |
---|---|---|
10°S–10°N | WS | 0.75 m/s |
Ts | 0.44 °C | |
Ta | 0.54 °C | |
Td | 1.07 °C | |
10°N–30°N | WS | 1.05 m/s |
Ts | 0.80 °C | |
Ta | 1.14 °C | |
Td | 1.77 °C | |
30°N–50°N | WS | 1.37 m/s |
Ts | 1.32 °C | |
Ta | 1.61 °C | |
Td | 2.17 °C |
Frequency (GHz) | Parameter | Bias | RMSE |
---|---|---|---|
6.9, 7.3, 10.7, 18.3, 36.5 (V- and H-pol) | WS | −0.05 m/s | 1.13 m/s |
Ts | 0.01 °C | 1.02 °C | |
Ta | −0.01 °C | 1.20 °C | |
Td | −0.01 °C | 1.57 °C | |
6.9, 7.3, 10.7, 18.3 (V- and H-pol) | WS | −0.04 m/s | 1.20 m/s |
Ts | 0.01 °C | 1.08 °C | |
Ta | −0.01 °C | 1.31 °C | |
Td | −0.01 °C | 1.66 °C | |
6.9, 7.3, 10.7 (V- and H-pol) | WS | −0.05 m/s | 1.24 m/s |
Ts | −0.01 °C | 1.20 °C | |
Ta | −0.01 °C | 1.48 °C | |
Td | −0.02 °C | 1.91 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Yu, X.; Perrie, W.; Zhou, F. Air–Sea Interface Parameters and Heat Flux from Neural Network and Advanced Microwave Scanning Radiometer Observations. Remote Sens. 2022, 14, 2364. https://doi.org/10.3390/rs14102364
Zhang B, Yu X, Perrie W, Zhou F. Air–Sea Interface Parameters and Heat Flux from Neural Network and Advanced Microwave Scanning Radiometer Observations. Remote Sensing. 2022; 14(10):2364. https://doi.org/10.3390/rs14102364
Chicago/Turabian StyleZhang, Biao, Xiaotong Yu, William Perrie, and Fenghua Zhou. 2022. "Air–Sea Interface Parameters and Heat Flux from Neural Network and Advanced Microwave Scanning Radiometer Observations" Remote Sensing 14, no. 10: 2364. https://doi.org/10.3390/rs14102364
APA StyleZhang, B., Yu, X., Perrie, W., & Zhou, F. (2022). Air–Sea Interface Parameters and Heat Flux from Neural Network and Advanced Microwave Scanning Radiometer Observations. Remote Sensing, 14(10), 2364. https://doi.org/10.3390/rs14102364