The Analysis of Cones within the Tianwen-1 Landing Area
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Morphometric Analysis
3.2. Cone Characteristics
3.3. Spatial Analysis
3.4. Possible Origin of the Cones
3.5. Implications for Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, C.C. Volcano–Ice Interactions on Mars. J. Geophys. Res. Solid Earth 1979, 84, 8048–8059. [Google Scholar] [CrossRef]
- Frey, H.; Lowry, B.L.; Chase, S.A. Pseudocraters on Mars. J. Geophys. Res. Solid Earth 1979, 84, 8075–8086. [Google Scholar] [CrossRef]
- Hemmi, R.; Miyamoto, H. Distribution, Morphology, and Morphometry of Circular Mounds in the Elongated Basin of Northern Terra Sirenum, Mars. Prog. Earth Planet. Sci. 2017, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, G.; Okubo, C.H.; Wray, J.J.; Ojha, L.; Cardinale, M.; Murana, A.; Orosei, R.; Chan, M.A.; Ormö, J.; Gallagher, R. Small Edifice Features in Chryse Planitia, Mars: Assessment of a Mud Volcano Hypothesis. Icarus 2016, 268, 56–75. [Google Scholar] [CrossRef]
- Brož, P.; Hauber, E.; van de Burgt, I.; Špillar, V.; Michael, G. Subsurface Sediment Mobilization in the Southern Chryse Planitia on Mars. J. Geophys. Res. Planets 2019, 124, 703–720. [Google Scholar] [CrossRef]
- Ivanov, M.A.; Hiesinger, H.; Erkeling, G.; Reiss, D. Mud Volcanism and Morphology of Impact Craters in Utopia Planitia on Mars: Evidence for the Ancient Ocean. Icarus 2014, 228, 121–140. [Google Scholar] [CrossRef]
- Brož, P.; Hauber, E. Hydrovolcanic Tuff Rings and Cones as Indicators for Phreatomagmatic Explosive Eruptions on Mars. J. Geophys. Res. Planets 2013, 118, 1656–1675. [Google Scholar] [CrossRef] [Green Version]
- De Pablo, M.Á.; Komatsu, G. Possible Pingo Fields in the Utopia Basin, Mars: Geological and Climatical Implications. Icarus 2009, 199, 49–74. [Google Scholar] [CrossRef]
- Dundas, C.M.; McEwen, A.S. An Assessment of Evidence for Pingos on Mars Using HiRISE. Icarus 2010, 205, 244–258. [Google Scholar] [CrossRef]
- Brož, P.; Čadek, O.; Hauber, E.; Rossi, A.P. Scoria Cones on Mars: Detailed Investigation of Morphometry Based on High-Resolution Digital Elevation Models. J. Geophys. Res. Planets 2015, 120, 1512–1527. [Google Scholar] [CrossRef] [Green Version]
- Meresse, S.; Costard, F.; Mangold, N.; Masson, P.; Neukum, G. Formation and Evolution of the Chaotic Terrains by Subsidence and Magmatism: Hydraotes Chaos, Mars. Icarus 2008, 194, 487–500. [Google Scholar] [CrossRef]
- Noguchi, R.; Kurita, K. Unique Characteristics of Cones in Central Elysium Planitia, Mars. Planet. Space Sci. 2015, 111, 44–54. [Google Scholar] [CrossRef]
- Hamilton, C.W.; Fagents, S.A.; Thordarson, T. Lava–Ground Ice Interactions in Elysium Planitia, Mars: Geomorphological and Geospatial Analysis of the Tartarus Colles Cone Groups. J. Geophys. Res. Planets 2011, 116, 3004. [Google Scholar] [CrossRef] [Green Version]
- Hargitai, H.; Kereszturi, Á. (Eds.) Encyclopedia of Planetary Landforms; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Bayton, M.; Herraiz, M.; Martin, P.; Sánchez-Cano, B.; Tréguier, E.; Kereszturi, A. Morphological Analyses of Small and Medium Size Landforms in Scandia Cavi and Olympia Undae, Northern Circumpolar Region of Mars. Planet. Space Sci. 2022, 210, 105389. [Google Scholar] [CrossRef]
- Komatsu, G. Rivers in the Solar System: Water Is Not the Only Fluid Flow on Planetary Bodies. Geogr. Compass 2007, 1, 480–502. [Google Scholar] [CrossRef]
- Plescia, J.B. Cinder cones of Isidis and Elysium. NASA Tech. Memo 1980, 82385, 263–265. [Google Scholar]
- Frey, H.; Jarosewich, M. Subkilometer Martian Volcanoes: Properties and Possible Terrestrial Analogs. J. Geophys. Res. Solid Earth 1982, 87, 9867–9879. [Google Scholar] [CrossRef]
- Keszthelyi, L.P.; Jaeger, W.L.; Dundas, C.M.; Martínez-Alonso, S.; McEwen, A.S.; Milazzo, M.P. Hydrovolcanic Features on Mars: Preliminary Observations from the First Mars Year of HiRISE Imaging. Icarus 2010, 205, 211–229. [Google Scholar] [CrossRef]
- McGill, G.E. Buried Topography of Utopia, Mars: Persistence of a Giant Impact Depression. J. Geophys. Res. Solid Earth 1989, 94, 2753–2759. [Google Scholar] [CrossRef]
- Thomson, B.J.; Head, J.W. Utopia Basin, Mars: Characterization of Topography and Morphology and Assessment of the Origin and Evolution of Basin Internal Structure. J. Geophys. Res. Planets 2001, 106, 23209–23230. [Google Scholar] [CrossRef] [Green Version]
- Hiesinger, H.; Head, J.W. Characteristics and Origin of Polygonal Terrain in Southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera Data. J. Geophys. Res. Planets 2000, 105, 11999–12022. [Google Scholar] [CrossRef]
- Buczkowski, D.L.; Seelos, K.D.; Cooke, M.L. Giant Polygons and Circular Graben in Western Utopia Basin, Mars: Exploring Possible Formation Mechanisms. J. Geophys. Res. Planets 2012, 117, 8010. [Google Scholar] [CrossRef]
- Séjourné, A.; Costard, F.; Swirad, Z.M.; Łosiak, A.; Bouley, S.; Smith, I.; Balme, M.R.; Orgel, C.; Ramsdale, J.D.; Hauber, E.; et al. Grid Mapping the Northern Plains of Mars: Using Morphotype and Distribution of Ice-Related Landforms to Understand Multiple Ice-Rich Deposits in Utopia Planitia. J. Geophys. Res. Planets 2019, 124, 483–503. [Google Scholar] [CrossRef] [Green Version]
- Orgel, C.; Hauber, E.; van Gasselt, S.; Reiss, D.; Johnsson, A.; Ramsdale, J.D.; Smith, I.; Swirad, Z.M.; Séjourné, A.; Wilson, J.T.; et al. Grid Mapping the Northern Plains of Mars: A New Overview of Recent Water- and Ice-Related Landforms in Acidalia Planitia. J. Geophys. Res. Planets 2019, 124, 454–482. [Google Scholar] [CrossRef] [Green Version]
- Skinner, J.A.; Tanaka, K.L. Evidence for and Implications of Sedimentary Diapirism and Mud Volcanism in the Southern Utopia Highland–Lowland Boundary Plain, Mars. Icarus 2007, 186, 41–59. [Google Scholar] [CrossRef]
- Lanz, J.K.; Wagner, R.; Wolf, U.; Kröchert, J.; Neukum, G. Rift Zone Volcanism and Associated Cinder Cone Field in Utopia Planitia, Mars. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Soare, R.J.; Costard, F.; Pearce, G.D.; Séjourné, A. A Re-Interpretation of the Recent Stratigraphical History of Utopia Planitia, Mars: Implications for Late-Amazonian Periglacial and Ice-Rich Terrain. Planet. Space Sci. 2012, 60, 131–139. [Google Scholar] [CrossRef]
- Costard, F.; Sejourne, A.; Kargel, J.; Godin, E. Modeling and Observational Occurrences of Near-Surface Drainage in Utopia Planitia, Mars. Geomorphology 2016, 275, 80–89. [Google Scholar] [CrossRef]
- Head, J.W.; Kreslavsky, M.A.; Pratt, S. Northern Lowlands of Mars: Evidence for Widespread Volcanic Flooding and Tectonic Deformation in the Hesperian Period. J. Geophys. Res. Planets 2002, 107, 3–1–3–29. [Google Scholar] [CrossRef]
- Parker, T.J.; Gorsline, D.S.; Saunders, R.S.; Pieri, D.C.; Schneeberger, D.M. Coastal Geomorphology of the Martian Northern Plains. J. Geophys. Res. Planets 1993, 98, 11061–11078. [Google Scholar] [CrossRef]
- Parker, T.J.; Stephen Saunders, R.; Schneeberger, D.M. Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary. Icarus 1989, 82, 111–145. [Google Scholar] [CrossRef]
- Head, J.W.; Hiesinger, H.; Ivanov, M.A.; Kreslavsky, M.A.; Pratt, S.; Thomson, B.J. Possible Ancient Oceans on Mars: Evidence from Mars Orbiter Laser Altimeter Data. Science 1999, 286, 2134–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, L.; Ehlmann, B.L.; Carter, J.; Ernst, C.M. The Stratigraphy and History of Mars’ Northern Lowlands through Mineralogy of Impact Craters: A Comprehensive Survey. J. Geophys. Res. Planets 2017, 122, 1824–1854. [Google Scholar] [CrossRef]
- Tanaka, K.L.; Banerdt, W.B.; Kargel, J.S.; Hoffman, N. Huge, CO2-charged debris-flow deposit and tectonic sagging in the northern plains of Mars. Geology 2001, 29, 427–430. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Zhang, R.; Rao, W.; Cui, X.; Geng, Y.; Jia, Y.; Huang, H.; Ren, X.; Yan, W.; et al. Geomorphic Contexts and Science Focus of the Zhurong Landing Site on Mars. Nat. Astron. 2021, 6, 65–71. [Google Scholar] [CrossRef]
- Gilichinsky, M.; Demidov, N.; Rivkina, E.; Gilichinsky, M.; Demidov, N.; Rivkina, E. Morphometry of Volcanic Cones on Mars in Perspective of Astrobiological Research. IJAsB 2015, 14, 537–545. [Google Scholar] [CrossRef]
- Domagal-Goldman, S.D.; Wright, K.E.; Adamala, K.; Arina de la Rubia, L.; Bond, J.; Dartnell, L.R.; Goldman, A.D.; Lynch, K.; Naud, M.-E.; Paulino-Lima, I.G.; et al. The Astrobiology Primer v2.0. AsBio 2016, 16, 561–653. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Liu, J.; Ren, X.; Li, C.; Fu, Q.; Wang, D.; Dong, J.; Zhang, X.; Chen, W.; Tan, X.; et al. Detection Capability Verification and Performance Test for the High Resolution Imaging Camera of China’s Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 71. [Google Scholar] [CrossRef]
- Dapremont, A.M.; Wray, J.J. Igneous or Mud Volcanism on Mars? The Case Study of Hephaestus Fossae. J. Geophys. Res. Planets 2021, 126, e2020JE006390. [Google Scholar] [CrossRef]
- Bruno, B.C.; Fagents, S.A.; Hamilton, C.W.; Burr, D.M.; Baloga, S.M. Identification of Volcanic Rootless Cones, Ice Mounds, and Impact Craters on Earth and Mars: Using Spatial Distribution as a Remote Sensing Tool. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- Bruno, B.C.; Fagents, S.A.; Thordarson, T.; Baloga, S.M.; Pilger, E. Clustering within Rootless Cone Groups on Iceland and Mars: Effect of Nonrandom Processes. J. Geophys. Res. Planets 2004, 109, 7009. [Google Scholar] [CrossRef]
- Baloga, S.M.; Glaze, L.S.; Bruno, B.C. Nearest-Neighbor Analysis of Small Features on Mars: Applications to Tumuli and Rootless Cones. J. Geophys. Res. Planets 2007, 112, 3002. [Google Scholar] [CrossRef]
- Clark, P.J.; Evans, F.C. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Brož, P.; Hauber, E. A Unique Volcanic Field in Tharsis, Mars: Pyroclastic Cones as Evidence for Explosive Eruptions. Icarus 2012, 218, 88–99. [Google Scholar] [CrossRef]
- Favalli, M.; Karátson, D.; Mazzarini, F.; Pareschi, M.T.; Boschi, E. Morphometry of Scoria Cones Located on a Volcano Flank: A Case Study from Mt. Etna (Italy), Based on High-Resolution LiDAR Data. J. Volcanol. Geotherm. Res. 2009, 186, 320–330. [Google Scholar] [CrossRef]
- Wood, C.A. Morphometric Analysis of Cinder Cone Degradation. J. Volcanol. Geotherm. Res. 1980, 8, 137–160. [Google Scholar] [CrossRef]
- Mustard, J.F.; Cooper, C.D.; Rifkin, M.K. Evidence for Recent Climate Change on Mars from the Identification of Youthful Near-Surface Ground Ice. Nature 2001, 412, 411–414. [Google Scholar] [CrossRef]
- Head, J.W.; Mustard, J.F.; Kreslavsky, M.A.; Milliken, R.E.; Marchant, D.R. Recent Ice Ages on Mars. Nature 2003, 426, 797–802. [Google Scholar] [CrossRef]
- Dundas, C.M.; Mellon, M.T.; McEwen, A.S.; Lefort, A.; Keszthelyi, L.P.; Thomas, N. HiRISE Observations of Fractured Mounds: Possible Martian Pingos. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Burr, D.M.; Tanaka, K.L.; Yoshikawa, K. Pingos on Earth and Mars. Planet. Space Sci. 2009, 57, 541–555. [Google Scholar] [CrossRef]
- Cabrol, N.A.; Grin, E.A.; Pollard, W.H. Possible Frost Mounds in an Ancient Martian Lake Bed. Icarus 2000, 145, 91–107. [Google Scholar] [CrossRef]
- Hasenaka, T.; Carmichael, I.S.E. The Cinder Cones of Michoacán—Guanajuato, Central Mexico: Their Age, Volume and Distribution, and Magma Discharge Rate. J. Volcanol. Geotherm. Res. 1985, 25, 105–124. [Google Scholar] [CrossRef]
- Pike, R.J. Volcanoes on the inner planets—Some preliminary comparisons of gross topography. In Proceedings of the Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 13–17 March 1978; pp. 3239–3273. [Google Scholar]
- Rodríguez, S.R.; Morales-Barrera, W.; Layer, P.; González-Mercado, E. A Quaternary Monogenetic Volcanic Field in the Xalapa Region, Eastern Trans-Mexican Volcanic Belt: Geology, Distribution and Morphology of the Volcanic Vents. J. Volcanol. Geotherm. Res. 2010, 197, 149–166. [Google Scholar] [CrossRef]
- Kioka, A.; Ashi, J. Episodic Massive Mud Eruptions from Submarine Mud Volcanoes Examined through Topographical Signatures. Geophys. Res. Lett. 2015, 42, 8406–8414. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, C.; Cartwright, J.; Hermanrud, C.; Jebsen, C. The Spatial, Temporal and Volumetric Analysis of a Large Mud Volcano Province within the Eastern Mediterranean. Mar. Pet. Geol. 2017, 81, 1–16. [Google Scholar] [CrossRef]
- Chigira, M.; Tanaka, K. Structural features and the history of mud volcanoes in southern Hokkaido, northern Japan. J. Geol. Soc. Jpn. 1997, 103, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Oehler, D.Z.; Allen, C.C. Evidence for Pervasive Mud Volcanism in Acidalia Planitia, Mars. Icarus 2010, 208, 636–657. [Google Scholar] [CrossRef]
- Ghent, R.R.; Anderson, S.W.; Pithawala, T.M. The Formation of Small Cones in Isidis Planitia, Mars through Mobilization of Pyroclastic Surge Deposits. Icarus 2012, 217, 169–183. [Google Scholar] [CrossRef]
- Fergason, R.L.; Christensen, P.R.; Kieffer, H.H. High-Resolution Thermal Inertia Derived from the Thermal Emission Imaging System (THEMIS): Thermal Model and Applications. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- Christensen, P.R.; Fergason, R.L.; Edwards, C.S.; Hill, J. THEMIS-derived thermal inertia mosaic of Mars: Product description and science results. In Proceedings of the 44th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2013; p. 2822. [Google Scholar]
- Fergason, R.L.; Christensen, P.R.; Bell, J.F.; Golombek, M.P.; Herkenhoff, K.E.; Kieffer, H.H. Physical Properties of the Mars Exploration Rover Landing Sites as Inferred from Mini-TES–Derived Thermal Inertia. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Senthil Kumar, P.; Krishna, N.; Prasanna Lakshmi, K.J.; Raghukanth, S.T.G.; Dhabu, A.; Platz, T. Recent Seismicity in Valles Marineris, Mars: Insights from Young Faults, Landslides, Boulder Falls and Possible Mud Volcanoes. Earth Planet. Sci. Lett. 2019, 505, 51–64. [Google Scholar] [CrossRef]
- Farrand, W.H.; Gaddis, L.R.; Keszthelyi, L. Pitted Cones and Domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae Using MOC, THEMIS, and TES Data. J. Geophys. Res. Planets 2005, 110, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, M.R.; Christensen, P.R. On the Origin of the Vastitas Borealis Formation in Chryse and Acidalia Planitiae, Mars. J. Geophys. Res. Planets 2014, 119, 2437–2456. [Google Scholar] [CrossRef]
- Brož, P. Pyroclastic Cone. Encycl. Planet. Landf. 2015, 1660–1664. [Google Scholar] [CrossRef]
- Pozzobon, R.; Mazzarini, F.; Massironi, M.; Rossi, A.P.; Pondrelli, M.; Cremonese, G.; Marinangeli, L. Fluids Mobilization in Arabia Terra, Mars: Depth of Pressurized Reservoir from Mounds Self-Similar Clustering. Icarus 2019, 321, 938–959. [Google Scholar] [CrossRef] [Green Version]
- Mills, M.M.; McEwen, A.S.; Okubo, C.H. A Preliminary Regional Geomorphologic Map in Utopia Planitia of the Tianwen-1 Zhurong Landing Region. Geophys. Res. Lett. 2021, 48, e2021GL094629. [Google Scholar] [CrossRef]
- Brož, P.; Hauber, E.; Platz, T.; Balme, M. Evidence for Amazonian Highly Viscous Lavas in the Southern Highlands on Mars. Earth Planet. Sci. Lett. 2015, 415, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Rampey, M.L.; Milam, K.A.; McSween, H.Y.; Moersch, J.E.; Christensen, P.R. Identity and Emplacement of Domical Structures in the Western Arcadia Planitia, Mars. J. Geophys. Res. Planets 2007, 112, 6011. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.L.; Skinner, J.A.; Hare, T.M.; Joyal, T.; Wenker, A. Resurfacing History of the Northern Plains of Mars Based on Geologic Mapping of Mars Global Surveyor Data. J. Geophys. Res. Planets 2003, 108, E4. [Google Scholar] [CrossRef]
- Zuber, M.T. Internal Structure and Early Thermal Evolution of Mars from Mars Global Surveyor Topography and Gravity. Science 2000, 287, 1788–1793. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.L.; Skinner, J.A.; Dohm, J.M.; Irwin, R.P., III; Kolb, E.J.; Fortezzo, C.M.; Platz, T.; Michael, G.G.; Hare, T.M. Geologic Map of Mars: Pamphlet to Accompany Scientific Investigations Map 3292; U.S. Geological Survey: Reston, VA, USA, 2014. [CrossRef]
- Ye, B.; Qian, Y.; Xiao, L.; Michalski, J.R.; Li, Y.; Wu, B.; Qiao, L. Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars. Earth Planet. Sci. Lett. 2021, 576, 117199. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Zhang, C.; Wu, Y.; Zhang, F.; Du, J.; Liu, Z.; Xing, Y.; Xu, R.; He, Z.; et al. Geological Characteristics of China’s Tianwen-1 Landing Site at Utopia Planitia, Mars. Icarus 2021, 370, 114657. [Google Scholar] [CrossRef]
- Kopf, A.J. Significance of mud volcanism. Rev. Geophys. 2002, 40, 2–1–2–52. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, R.; Yu, D.; Dong, G.; Liu, J.; Geng, Y.; Sun, Z.; Yan, W.; Ren, X.; Su, Y.; et al. China’s Mars Exploration Mission and Science Investigation. Space Sci. Rev. 2021, 217, 57. [Google Scholar] [CrossRef]
Feature Type | N | Hco Range (Average) (m) | Wco Range (Average) (m) | Hco/Wco Range (Average) |
---|---|---|---|---|
Mars | ||||
Landing area cones | 272 | 10.5–90.8 (34.2) | 178.9–1206.6 (468.3) | 0.0276–0.1696 (0.0765) |
Cinder/scoria cones | 28 | 75–573 (217.75) | 928–7500 (2347) | 0.0318–0.1432 (0.097) |
Igneous cones | 24 | 12–39 (23.92) | 237–791 (458.67) | 0.0307–0.0765 (0.05366) |
Mud volcanoes | 43 | 6–300 (33.52) | 147–3000 (542.65) | 0.0034–0.1429 (0.06571) |
Pingos | 8 | 300–1000 (550) | 35–140 (63.125) | 0.07–0.1667 (0.1231) |
Rootless cones | - | 0.3–10.52 | 6.7–105.6 | - |
Tuff rings/cones | 38 | 35–372 (123.08) | 3179–17,535 (7762.58) | 0.0049–0.0371 (0.0168) |
Earth | ||||
Cinder/scoria cones | 39 | 30–300 (128.0769) | 137–2000 (877.0256) | 0.0248–0.5333 (0.1593) |
Lava domes | 16 | 15–200 (82.75) | 45–800 (424.3125) | 0.104–0.5137 (0.2129) |
Maars | 77 | 4–167 (34.36) | 91–8750 (1899.69) | 0.003–0.0984 (0.0237) |
Subaqueous mud volcanoes | 619 | 1.8–2364.86 (188.47) | 142–42,000 (3025.94) | 0.00625–0.3346 (0.0668) |
Pingos | 4 | 12–24 (19) | 100–260 (165) | 0.0923–0.16 (0.1231) |
Rootless cones | 10 | 4–29 (17) | 42–355 (317.0909) | 0.0629–0.2 (0.111) |
Subaerial mud volcanoes | 21 | 10–380 (154.2381) | 150–6200 (2872.9524) | 0.0257–0.1316 (0.06142) |
Tuff rings/cones | 43 | 10–345 (103.67) | 541–3900 (1915.42) | 0.0056–0.1504 (0.0595) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Liu, J.; Wang, X.; Chen, Y.; Zhang, Q.; Liu, D.; Yan, W.; Ren, X. The Analysis of Cones within the Tianwen-1 Landing Area. Remote Sens. 2022, 14, 2590. https://doi.org/10.3390/rs14112590
Huang H, Liu J, Wang X, Chen Y, Zhang Q, Liu D, Yan W, Ren X. The Analysis of Cones within the Tianwen-1 Landing Area. Remote Sensing. 2022; 14(11):2590. https://doi.org/10.3390/rs14112590
Chicago/Turabian StyleHuang, Hai, Jianjun Liu, Xing Wang, Yuan Chen, Qing Zhang, Dawei Liu, Wei Yan, and Xin Ren. 2022. "The Analysis of Cones within the Tianwen-1 Landing Area" Remote Sensing 14, no. 11: 2590. https://doi.org/10.3390/rs14112590
APA StyleHuang, H., Liu, J., Wang, X., Chen, Y., Zhang, Q., Liu, D., Yan, W., & Ren, X. (2022). The Analysis of Cones within the Tianwen-1 Landing Area. Remote Sensing, 14(11), 2590. https://doi.org/10.3390/rs14112590