A Novel Machine Learning Algorithm for Cloud Detection Using AERI Measurement Data
Abstract
:1. Introduction
2. Data Set
2.1. Instrument
2.2. Data Quality Control
2.3. Cloudy and Cloud-Free Data Set
- After eliminating the outliers, we perform time-matching between the Vaisala CL31 ceilometer and AERI to obtain the sample set Q1. The observation period of AERI is 8 min, and the spectrum obtained by AERI can reflect the average state of the atmosphere or cloud in the previous 8 min. Therefore, we find the data of ceilometer within the time range of 8 min before the corresponding time of AERI.
- We use the data obtained from ceilometer to define the measurement of AERI if cloudy or cloud-free. If more than 95% of the ceilometer data shows cloudy or cloud-free, the AERI data at the corresponding time is also judged cloudy or cloud-free to establish the sample set Q2.
- The Q2 sample sets of 2014 at SGP site, 2014 at NSA site, and one-third of cloudy data (about 6000 groups) and cloud-free data (about 6000 groups) randomly selected from AWARE site in 2016 are taken as the training set, which are recorded as Q2_Train_SGP, Q2_Train_NSA, and Q2_Train_AWARE, respectively. To maintain the sample balance of the training set, we randomly selected 6000 groups of cloudy data and 6000 groups of cloud-free data from SGP site and NSA site and put them into the training set. Data from 2015 to 2017 at the SGP and NSA sites, and the rest of the data from the AWARE site, are used as the testing set. The data information is shown in Table 2.
3. Method
3.1. Features of Cloudy and Free-Free Conditions
3.2. Validation Methods
3.3. Cloud Detection Algorithm
- According to the ranking of feature weights in Figure 3, we select a specific number of features in order from 1 to 12. The reselected features are used as the input of SVM algorithm, while the cloud detection results of ceilometer are used as reference values.
- For each of Q2_Train_AWARE, Q2_Train_SGP, and Q2_Train_NSA 1000 groups of cloudy data and 1000 groups of cloud-free data are randomly selected to form the training set (P1); the remaining data are used as the validation set (See Appendix A).
- Substitute P1 into the SVM algorithm to build cloud detection model. The kernel parameter g and penalty factor C are obtained by using grid search method [53]. Furthermore, the radial basis function (RBF) kernel is applied. The range of C and g is 2−8–28, and the search step is 20.8. The cloud detection model is built according to each pair of g and C searched. Then, obtain the classification results of the validation set based on the cloud detection model.
- Determine the best g and C to obtain the best cloud detection model. We calculate the accuracy of the validation set corresponding to every model. The mode with the maximum accuracy is considered as the best cloud detection model.
- Judge whether the number of features in step 1 is greater than 12. If not, repeat steps 1, 2, 3, and 4.
- We compare the detection models corresponding to different input features to further determine the final cloud detection model. The corresponding input features are used as the best training features. Table 5 displays the accuracy of the validation set (PC) and the ability in detecting cloudy data (TPR) and cloud-free data (TNR) of the cloud detection model corresponding to the number of features from 1 to 12, respectively. The PC of the model increases with the increase in the number of features. However, when the number of features is greater than 9, the accuracy of the model decreases slightly, which may be caused by the redundancy between features. At the same time, TPR and TNR are close to the maximum when the number of features is 9. This shows that the model has the best detection performance when the number of inputs is 9. Therefore, we finally selected the best training features of features 1, 2, 3, 4, 6, 7, 8, 9, and 10 in Table 3. The corresponding penalty factor C and kernel function g are 5.278 and 1.741, respectively.
- Use the final cloud detection model to obtain the cloud detection results from testing set.
4. Results and Discussion
4.1. Performance Evaluation in Different PWVs
4.2. Performance Evaluation in Different Cloud-Base Height Ranges
4.3. Performance Evaluation in Different CODs
4.4. Case Studies
4.4.1. Mist: 14 December
4.4.2. Thick Fog: 9 October
4.4.3. Blowing Snow in Clear Sky: 8 April
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Number of Samples Selected for Training
Site | Data Set | PC (%) 1200 | PC (%) 3000 | PC (%) 6000 | PC (%) 12,000 | PC (%) 18,000 | PC (%) 24,000 | PC (%) 30,000 |
---|---|---|---|---|---|---|---|---|
SGP | Q2_Test2015_SGP | 87.16 | 91.30 | 94.50 | 94.83 | 94.99 | 95.13 | 95.15 |
Q2_Test2016_SGP | 85.99 | 89.75 | 93.23 | 93.36 | 93.50 | 93.61 | 93.62 | |
Q2_Test2017_SGP | 86.81 | 90.66 | 94.04 | 94.25 | 94.38 | 94.46 | 94.49 | |
NSA | Q2_Test2015_NSA | 87.11 | 90.36 | 93.70 | 94.33 | 94.45 | 94.47 | 94.49 |
Q2_Test2016_NSA | 86.27 | 89.42 | 92.81 | 93.38 | 93.74 | 93.77 | 93.77 | |
Q2_Test2017_NSA | 85.86 | 89.08 | 92.49 | 92.97 | 93.17 | 93.21 | 93.25 | |
AWARE | Q2_Test_AWARE | 86.30 | 91.27 | 93.95 | 94.35 | 94.62 | 94.72 | 94.74 |
References
- Goetz, A.F.H. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Macdonald, J.S.; Ustin, S.L.; Schaepman, M.E. The contributions of Dr. Alexander F.H. Goetz to imaging spectrometry. Remote Sens. Environ. 2009, 113, S2–S4. [Google Scholar] [CrossRef]
- Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water S A 2007, 33, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Vorovencii, I. The hyperspectral sensors used in satellite and aerial remote sensing. Bull. Transilv. Univ. Bras. Ser. II 2009, 2, 51–56. [Google Scholar]
- Wang, L.; Han, Y.; Han; Jin, X.; Chen, Y.; Tremblay, D.A. Radiometric consistency assessment of hyperspectral infrared sounders. Atmos. Meas. Tech. 2015, 8, 4831–4844. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, H.; Ogawa, T. Interferometric monitor for greenhouse gases (IMG). Adv. Space Res. 1994, 25, 937–946. [Google Scholar] [CrossRef]
- Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Granger, S. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. Bull. Am. Meteorol. Soc. 2006, 87, 911–926. [Google Scholar] [CrossRef] [Green Version]
- Tobin, D.C.; Revercomb, H.E.; Knuteson, R.O.; Lesht, B.M.; Strow, L.L.; Hannon, S.E.; Feltz, W.F.; Moy, L.A.; Fetzer, E.J.; Cress, T.S. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Hilton, F.; Armante, R.; August, T.; Barnet, C.; Zhou, D. Hyperspectral earth observation from IASI. Bull. Am. Meteorol. Soc. 2012, 93, 347–370. [Google Scholar] [CrossRef]
- Menzel, W.P.; Schmit, T.J.; Zhang, P.; Li, J. Satellite-Based Atmospheric Infrared Sounder Development and Applications. Bull. Am. Meteorol. Soc. 2018, 99, 583–603. [Google Scholar] [CrossRef]
- Han, Y.; Revercomb, H.; Cromp, M.; Gu, D.; Johnson, D.; Mooney, D.; Scott, D.; Strow, L.; Bingham, G.; Borg, L.; et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos. 2013, 118, 12734–12748. [Google Scholar] [CrossRef]
- Guo, Q.; Lu, F.; Wei, C.; Zhang, Z.; Yang, J. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Smith, W.L.; Frey, R. On cloud altitude determinations from High Resolution Interferometer Sounder (HIS) observations. J. Appl. Meteorol. 1990, 29, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Diak, G.R.; Scheuer, C.J.; Whipple, M.S.; Smith, W.L. Remote sensing of land-surface energy balance using data from the high-resolution interferometer sounder (HIS): A simulation study. Remote Sens. Environ. 1994, 48, 106–118. [Google Scholar] [CrossRef]
- Knuteson, R.O.; Revercomb, H.E.; Best, F.A.; Ciganovich, N.C.; Dedecker, R.G.; Dirkx, T.P.; Ellington, S.C.; Feltz, W.F.; Garcia, R.K.; Howell, H.B.; et al. Atmospheric emitted radiance interferometer. part I: Instrument design. J. Atmos. Ocean. Technol. 2004, 21, 1763–1776. [Google Scholar] [CrossRef]
- Tobin, D.C.; Best, F.A.; Brown, P.D.; Clough, S.A.; Dedecker, R.G.; Ellingson, R.G.; Garcia, R.K.; Howell, H.B.; Knuteson, R.O.; Mlawer, E.J.; et al. Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26 μm. J. Geophys. Res. Atmos. 1999, 104, 2081–2092. [Google Scholar] [CrossRef]
- Turner, D.D.; Tobin, D.C.; Clough, S.A.; Brown, P.D.; Ellingson, R.G.; Mlawer, E.J.; Knuteson, R.O.; Revercomb, H.E.; Shippert, T.R.; Smith, W.L. The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance. J. Atmos. Sci. 2004, 61, 2657–2675. [Google Scholar] [CrossRef]
- Ye, J.; Liu, L.; Wang, Q.; Hu, S.; Li, S. A Novel Machine Learning Algorithm for Planetary Boundary Layer Height Estimation Using AERI Measurement Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1002305. [Google Scholar] [CrossRef]
- Hansell, R.A.; Liou, K.N.; Ou, S.C.; Tsay, S.C.; Ji, Q.; Reid, J.S. Remote sensing of mineral dust aerosol using AERI during the UAE(2): A modeling and sensitivity study. J. Geophys. Res. Atmos. 2008, 113, D18202. [Google Scholar] [CrossRef]
- Yurganov, L.; Mcmillan, W.; Wilson, C.; Fischer, M.; Biraud, S.; Sweeney, C. Carbon monoxide mixing ratios over Oklahoma between 2002 and 2009 retrieved from Atmospheric Emitted Radiance Interferometer spectra. Atmos. Meas. Tech. 2010, 3, 1319–1331. [Google Scholar] [CrossRef] [Green Version]
- Spnkuch, D.; Dhler, W.; Güldner, J.; Schulz, E. Estimation of the amount of tropospheric ozone in a cloudy sky by ground-based Fourier-transform infrared emission spectroscopy. Appl. Opt. 1998, 37, 3133–3142. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.D.; Ackerman, S.A.; Baum, B.A.; Revercomb, H.E.; Yang, P. Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA. J. Appl. Meteorol. 2003, 42, 701–715. [Google Scholar] [CrossRef] [Green Version]
- Rowe, P.M.; Cox, C.J.; Walden, V.P. Toward autonomous surface-based infrared remote sensing of polar clouds: Cloud-height retrievals. Atmos. Meas. Tech. 2016, 9, 3641–3659. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.J.; Lu, D.R. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer. Atmos. Ocean. Sci. Lett. 2012, 5, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.D. Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Garrett, T.J.; Zhao, C. Ground-based remote sensing of thin clouds in the Arctic. Atmos. Meas. Tech. 2013, 6, 1227–1243. [Google Scholar] [CrossRef] [Green Version]
- Feltz, W.F.; Smith, W.L.; Howell, H.B.; Knuteson, R.O.; Revercomb, H.E. Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteorol. 2003, 42, 584–597. [Google Scholar] [CrossRef]
- Kang, S.H.; Goo, T.Y.; Ou, M.L. Improvement of AERIT/qRetrievals and Their Validation at Anmyeon-Do, South Korea. J. Atmos. Ocean. Technol. 2013, 30, 1433–1446. [Google Scholar] [CrossRef]
- Feltz, W.F.; Knuteson, R.O.; Smith, W.L. Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteorol. 1998, 37, 857–875. [Google Scholar] [CrossRef]
- Feltz, W.F.; Turner, D.D.; Howell, H.B.; Smith, W.L.; Knuteson, R.O.; Woolf, H.M.; Comstock, J.; Sivaraman, C.; Mahon, R.; Halter, T. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations: AERIPROF Value-Added Product Technical Description. DOE/SC-ARM/TR-066.1. Available online: https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-066.1.pdf (accessed on 19 January 2022).
- Münkel, C.; Eresmaa, N.; Rasanen, J.; Karppinen, A. Retrieval of mixing height and dust concentration with lidar ceilometer. Bound. -Layer Meteorol. 2007, 124, 117–128. [Google Scholar] [CrossRef]
- Sassen, K. Advances in polarization diversity lidar for cloud remote sensing. Proc. IEEE 1994, 82, 1907–1914. [Google Scholar] [CrossRef]
- Li, J. Accounting for overlap of fractional cloud in infrared radiation. Q. J. R. Meteorol. Soc. 2000, 126, 3325–3342. [Google Scholar] [CrossRef]
- Cho, J.S.; Goo, T.Y.; Shin, J. Improvement of the Site-Specific Cloud Filtering Method Using AERI Spectrum at Anmyeon island, South Korea. In Proceedings of the 2015 NDACC-IRWG & TCCON Meeting, Toronto, ON, Canada, 8–12 June 2015. [Google Scholar]
- Rizzi, R.; Arosio, C.; Maestri, T.; Palchetti, L.; Bianchini, G.; Guasta, M.D. One year of downwelling spectral radiance measurements from 100 to 1400 cm−1 at Dome Concordia: Results in clear conditions. J. Geophys. Res. Atmos. 2016, 121, 10937–10953. [Google Scholar] [CrossRef] [Green Version]
- Knuteson, R.O.; Revercomb, H.E.; Best, F.A.; Ciganovich, N.C.; Dedecker, R.G.; Dirkx, T.P.; Ellington, S.C.; Feltz, W.F.; Garcia, R.K.; Howell, H.B.; et al. Atmospheric emitted radiance interferometer. part II: Instrument performance. J. Atmos. Ocean. Technol. 2004, 21, 1777–1789. [Google Scholar] [CrossRef]
- Demirgian, J.; Dedecker, R. Atmospheric Emitted Radiance Interferometer (AERI) Handbook; ARM TR-054; U.S. Dept. Energy: Washington, DC, USA, 2005. Available online: https://www.arm.gov/publications/tech_reports/handbooks/aeri_handbook.pdf (accessed on 19 January 2022).
- Stokes, G.M.; Schwartz, S.E. The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed. Bull. Am. Meteorol. Soc. 1994, 75, 1201–1221. [Google Scholar] [CrossRef]
- Turner, D.D.; Blumberg, W.G. Improvements to the AERIoe Thermodynamic Profile Retrieval Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 1339–1354. [Google Scholar] [CrossRef]
- Lubin, D.; Zhang, D.; Silber, I.; Scott, R.C.; Kalogeras, P.; Battaglia, A.; Bromwich, D.H.; Cadeddu, M.; Eloranta, E.; Fridlind, A.; et al. AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment. Bull. Am. Meteorol. Soc. 2020, 101, E1069–E1091. [Google Scholar] [CrossRef] [Green Version]
- Young, J.S.; Whiteman, C.D. Laser Ceilometer Investigation of Persistent Wintertime Cold-Air Pools in Utah’s Salt Lake Valley. J. Appl. Meteorol. Climatol. 2015, 54, 752–765. [Google Scholar] [CrossRef]
- Morris, V.R. Ceilometer Instrument Handbook; DOE/SC-ARM-TR-020; U.S. Dept. Energy: Washington, DC, USA, 2016. Available online: https://www.arm.gov/publications/tech_reports/handbooks/ceil_handbook.pdf (accessed on 19 January 2022).
- Martucci, G.; Milroy, C.; O’Dowd, C.D. Detection of Cloud-Base Height Using Jenoptik CHM15K and Vaisala CL31 Ceilometers. J. Atmos. Ocean. Technol. 2010, 27, 305–318. [Google Scholar] [CrossRef]
- Morris, V.R. Total Sky Imager (TSI) Handbook; ARM TR-017; U.S. Dept. Energy: Washington, DC, USA, 2005. Available online: https://www.arm.gov/publications/tech_reports/handbooks/tsi_handbook.pdf (accessed on 19 January 2022).
- Bartholomew, M.J. Laser Disdrometer Instrument Handbook; DOE/SC-ARM-TR-137; U.S. Dept. Energy: Washington, DC, USA, 2020. Available online: https://www.arm.gov/publications/tech_reports/handbooks/ldis_handbook.pdf (accessed on 19 January 2022).
- Gaustad, K.L.; Turner, D.D.; McFarlane, S.A. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets; DOE/SC-ARM/TR-081.2; U.S. Dept. Energy: Washington, DC, USA, 2011. Available online: https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-081.2.pdf (accessed on 19 January 2022).
- Riihimaki, L.D.; Gaustad, K.L.; Long, C.N. Radiative Flux Analysis (RADFLUXANAL) Value-Added Product: Retrieval of Clear-Sky Broadband Radiative Fluxes and Other Derived Values; DOE/SC-ARM-TR-228; U.S. Dept. Energy: Washington, DC, USA, 2019. Available online: https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-228.pdf (accessed on 19 January 2022).
- Mariani, Z.; Strong, K.; Palm, M.; Lindenmaier, R.; Adams, C.; Zhao, X.; Savastiouk, V.; McElroy, C.T.; Goutail, F.; Drummond, J.R. Year-round retrievals of trace gases in the Arctic using the Extended-range Atmospheric Emitted Radiance Interferometer. Atmos. Meas. Tech. 2013, 6, 1549–1565. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.X.; Yang, Y.M.; Fan, Z.Q.; Tang, H.M.; Zou, M.; Hu, X.L.; Xiong, C.R.; Ma, J.W. Suitability of data preprocessing methods for landslide displacement forecasting. Stoch. Environ. Res. Risk Assess. 2020, 34, 1105–1119. [Google Scholar] [CrossRef]
- Menze, B.H.; Kelm, M.B.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joro, S.; Hyvarinen, O.; Kotro, J. Comparison of Satellite Cloud Masks with Ceilometer Sky Conditions in Southern Finland. J. Appl. Meteorol. Climatol. 2010, 49, 2508–2526. [Google Scholar] [CrossRef]
- Li, Y.Z.; Xie, P.C.; Tang, Z.S.; Jiang, T.; Qi, P.H. SVM-Based Sea-Surface Small Target Detection: A False-Alarm-Rate-Controllable Approach. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1225–1229. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, F.; Kung, H.T.; Johnson, V.C.; Latif, A. Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model. Int. J. Remote Sens. 2019, 41, 953–973. [Google Scholar] [CrossRef]
- Loehnert, U.; Turner, D.D.; Crewell, S. Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-Sky Conditions. J. Appl. Meteorol. Climatol. 2008, 48, 1017–1032. [Google Scholar] [CrossRef]
- Ou, S.C.; Chen, Y.; Liou, K.N.; Cosh, M.; Brutsaert, W. Satellite remote sensing of land surface temperatures: Application of the atmospheric correction method and split-window technique to data of ARM-SGP site. Int. J. Remote Sens. 2002, 23, 5177–5192. [Google Scholar] [CrossRef]
- Chang, F.L.; Coakley, J.A. Relationships between Marine Stratus Cloud Optical Depth and Temperature: Inferences from AVHRR Observations. J. Clim. 2007, 20, 2022–2036. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.A.; Kennedy, A. Blowing Snow at McMurdo Station, Antarctica During the AWARE Field Campaign: Surface and Ceilometer Observations. J. Geophys. Res. Atmos. 2021, 126, e2020JD033935. [Google Scholar] [CrossRef]
Number | Features |
---|---|
1 | The slope of 1000–1040 cm−1 band radiation is less than −0.2 |
2 | The intercept of 1000–1040 cm−1 band radiation is greater than 300 RU |
3 | The standard deviation of 857–862 cm−1 band radiation is greater than 10 RU |
4 | The standard deviation of 894–902 cm−1 band radiation is greater than 5 RU |
5 | The number of the points with radiation less than 0 RU in 520–1800 cm−1 is more than 5 |
Site | Data Set | Total Samples | Cloud-Free Samples | Cloudy Samples |
---|---|---|---|---|
SGP | Q2_Train_SGP | 51,074 (12,000) | 35,497 (6000) | 15,577 (6000) |
Q2_Test2015_SGP | 50,921 | 35,346 | 15,575 | |
Q2_Test2016_SGP | 53,478 | 38,288 | 15,190 | |
Q2_Test2017_SGP | 51,291 | 35,925 | 15,366 | |
NSA | Q2_Train_NSA | 34,829 (12,000) | 14,304 (6000) | 20,525 (6000) |
Q2_Test2015_NSA | 37,117 | 14,232 | 22,885 | |
Q2_Test2016_NSA | 31,840 | 12,160 | 19,680 | |
Q2_Test2017_NSA | 32,172 | 11,568 | 20,604 | |
AWARE | Q2_Train_AWARE | 12,000 | 6000 | 6000 |
Q2_Test_AWARE | 32,573 | 17,732 | 14,841 |
Number | Features |
---|---|
1 | The slope of 740–760 cm−1 band radiation |
2 | The intercept of 740–760 cm−1 band radiation |
3 | The slope of 780–920 cm−1 band radiation |
4 | The intercept of 780–920 cm−1 band radiation |
5 | The slope of 1000–1040 cm−1 band radiation |
6 | The intercept of 1000–1040 cm−1 band radiation |
7 | The slope of 1050–1070 cm−1 band radiation |
8 | The ratio between 784.5 cm−1 band radiation and the average radiation in 781.5–782.5 cm−1 band |
9 | The ratio between 791.5 cm−1 band radiation and the average radiation in 789.2–790.2 cm−1 band |
10 | The ratio between 1174 cm−1 and 1170 cm−1 band radiation |
11 | The ratio between 1187 cm−1 and 1185 cm−1 band radiation |
12 | The ratio between 1198 cm−1 and 1195 cm−1 band radiation |
Our Method (AERI) | Ceilometer Detection | |
---|---|---|
Cloudy | Cloud-Free | |
Cloudy | TP (True Positive) | FP (False Positive) |
Cloud-free | FN (False Negative) | TN (True Negative) |
Number of Features | PC (%) | TPR (%) | TNR (%) |
---|---|---|---|
1 | 84.78 | 83.15 | 86.41 |
2 | 87.02 | 87.64 | 86.40 |
3 | 88.39 | 89.15 | 87.63 |
4 | 89.41 | 89.97 | 88.85 |
5 | 90.54 | 91.99 | 89.08 |
6 | 91.36 | 92.69 | 90.02 |
7 | 91.62 | 93.05 | 90.18 |
8 | 92.26 | 93.51 | 91.01 |
9 | 92.79 | 93.51 | 92.07 |
10 | 92.74 | 93.55 | 91.92 |
11 | 92.72 | 93.46 | 91.99 |
12 | 92.72 | 93.37 | 92.06 |
Site | Data Set | Total Samples | PC (%) | TPR (%) | TNR (%) | Category (1) | Category (2) |
---|---|---|---|---|---|---|---|
SGP | Q2_Test2015_SGP | 50,921 | 94.50 | 92.73 | 95.28 | 1133 | 1667 |
Q2_Test2016_SGP | 53,478 | 93.23 | 91.91 | 93.75 | 1228 | 2392 | |
Q2_Test2017_SGP | 51,291 | 94.04 | 92.61 | 94.65 | 1136 | 1922 | |
NSA | Q2_Test2015_NSA | 37,117 | 93.70 | 94.22 | 92.86 | 1322 | 1016 |
Q2_Test2016_NSA | 31,840 | 92.81 | 93.38 | 91.88 | 1301 | 987 | |
Q2_Test2017_NSA | 32,172 | 92.49 | 92.95 | 91.67 | 1452 | 964 | |
AWARE | Q2_Test_AWARE | 32,573 | 93.95 | 94.76 | 93.27 | 778 | 1193 |
Site | Different PWV (cm) | 2015 PC (Proportion %) | 2016 PC (Proportion %) | 2017 PC (Proportion %) |
---|---|---|---|---|
SGP | <1 | 96.22 (20.63%) | 93.22 (24.58%) | 95.78 (20.74 %) |
1–2.5 | 93.51 (37.37%) | 94.07 (37.97%) | 94.48 (43.23%) | |
>2.5 | 94.43 (42.00%) | 92.11 (37.45%) | 92.80 (36.03%) | |
NSA | <1 | 93.73 (66.83%) | 95.27 (70.22%) | 94.06 (62.46%) |
1–2.5 | 97.76 (32.43%) | 95.01 (27.86%) | 97.99 (33.85%) | |
>2.5 | 97.66 (0.74%) | 95.09 (1.92%) | 97.91 (3.68%) | |
AWARE | <1 | 95.09 (100%) | ||
1–2.5 | NaN | |||
>2.5 | NaN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Ye, J.; Li, S.; Hu, S.; Wang, Q. A Novel Machine Learning Algorithm for Cloud Detection Using AERI Measurement Data. Remote Sens. 2022, 14, 2589. https://doi.org/10.3390/rs14112589
Liu L, Ye J, Li S, Hu S, Wang Q. A Novel Machine Learning Algorithm for Cloud Detection Using AERI Measurement Data. Remote Sensing. 2022; 14(11):2589. https://doi.org/10.3390/rs14112589
Chicago/Turabian StyleLiu, Lei, Jin Ye, Shulei Li, Shuai Hu, and Qi Wang. 2022. "A Novel Machine Learning Algorithm for Cloud Detection Using AERI Measurement Data" Remote Sensing 14, no. 11: 2589. https://doi.org/10.3390/rs14112589
APA StyleLiu, L., Ye, J., Li, S., Hu, S., & Wang, Q. (2022). A Novel Machine Learning Algorithm for Cloud Detection Using AERI Measurement Data. Remote Sensing, 14(11), 2589. https://doi.org/10.3390/rs14112589