Assessing the Volume of Defensive Structures for Architectural Energetics Analysis Using 3D Electrical Resistivity Tomography
Abstract
:1. Introduction
2. Study Sites
2.1. Hillfort Hradišťany
2.2. Hillfort Královice
3. Materials and Methods
3.1. Field Setup
3.2. Data Processing and Modelling
4. Results
4.1. Hillfort Hradišťany
4.2. Hillfort Královice
5. Discussion
5.1. Hillfort Hradišťany
5.1.1. Geophysical Interpretation
5.1.2. Determination of Resistivity Boundary
5.1.3. Determination of Rampart Volume
5.2. Hillfort Královice
5.2.1. Geophysical Interpretation
5.2.2. Determination of Resistivity Boundary
5.2.3. Determination of Rampart/Ditch Volume
5.3. Applicability of the Presented Approach
5.4. Architectural Energetics Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abrams, M.E.; McCurdy, L. Massive assumptions and Moundbuilders—The history, method, and relevance of architectural energetics. In Architectural Energetics in Archaeology—Analytical Expansions and Global Explorations; McCurdy, L., Abrams, E.M., Eds.; Routledge: London, UK, 2019. [Google Scholar]
- Abrams, E.M. The Organization of Labor in Late Classic Copan, Honduras: The Energetics of Construction. Ph.D. Thesis, Pennsylvania State University, University Park, PA, USA, 1984. [Google Scholar]
- Abrams, E.M. Economic specialization and construction personnel in Classic Period Copan, Honduras. Am. Antiq. 1987, 52, 485–499. [Google Scholar] [CrossRef]
- Abrams, E.M. Architecture and energy: An evolutionary perspective. Archaeol. Method Theory 1989, 1, 47–88. [Google Scholar]
- Adams, R.E.W.; Adams, J.J. Volumetric and stylistic reassessment of classic Maya sites in the Peten, Rio Bec, Chenes, and Puuc Hills. Anc. Mesoam. 2003, 14, 139–150. [Google Scholar] [CrossRef]
- Davis, J.L.; Burks, J.; Abrams, E.M. Labor recruitment among tribal societies—An architectural energetic analysis of Serpent Mound, Ohio. In Architectural Energetics in Archaeology—Analytical Expansions and Global Explorations; McCurdy, L., Abrams, E.M., Eds.; Routledge: London, UK, 2019. [Google Scholar]
- Akca, I.; Balkaya, C.; Pülz, A.; Alanyali, H.S.; Kaya, M.A. Integrated geophysical investigations to reconstruct the archaeological features in the episcopal district of Side (Antalya, Southern Turkey). J. Appl. Geophys. 2019, 163, 22–30. [Google Scholar] [CrossRef]
- Hegyi, A.; Urdea, P.; Floca, C.; Ardelean, A.; Onaca, A. Mapping the subsurface structures of a lost medieval village in South-Western Romania by combining conventional geophysical methods. Archaeol. Prospect. 2018, 26, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Abedi, M.; Fournier, D.; Devriese, S.G.R.; Oldenburg, D.W. Integrated inversion of airborne geophysics over a structural geological unit: A case study for delineation of a porphyry copper zone in Iran. J. Appl. Geophys. 2018, 152, 188–202. [Google Scholar] [CrossRef]
- Nowaczinski, E.; Schukraft, G.; Rassmann, K.; Hecht, S.; Texier, F.; Eitel, B.; Bubenzer, O. Geophysical–Geochemical Reconstruction of Ancient Population Size—The Early Bronze Age Settlement of Fidvár (Slovakia). Archaeol. Prospect. 2013, 20, 267–283. [Google Scholar] [CrossRef]
- Tabbagh, A. Electrical Resistivity and Electromagnetism. In Encyclopedia of Geoarchaeology; Gilbert, A.S., Ed.; Springer Science & Business Media: Dordrecht, Germany, 2017. [Google Scholar]
- Conyers, L.B. Ground Penetrating Radar. In Encyclopedia of Geoarchaeology; Gilbert, A.S., Ed.; Springer Science & Business Media: Dordrecht, Germany, 2017. [Google Scholar]
- Leontarakis, K.; Apostolopoulos, G.V. Model Stacking (MOST) technique applied in cross-hole ERT field data for the detection of Thessaloniki ancient walls’ depth. J. Appl. Geophys. 2013, 93, 101–113. [Google Scholar] [CrossRef]
- Nowaczinski, E.; Schukraft, G.; Hecht, S.; Rassmann, K.; Bubenzer, O.; Eitel, B. A Multimethodological Approach for the Investigation of Archaeological Ditches—Exemplified by the Early Bronze Age Settlement of Fidvár Near Vráble (Slovakia). Archaeol. Prospect. 2012, 19, 281–295. [Google Scholar] [CrossRef]
- Klanica, R.; Křivánek, R.; Grison, H.; Tábořík, P.; Šteffl, J. Capabilities and limitations of electrical resistivity tomography for mapping and surveying hillfort fortifications. Archaeol. Prospect. 2022, 1–16. [Google Scholar] [CrossRef]
- Hegyi, A.; Diaconescu, D.; Urdea, P.; Sarris, A.; Pisz, M.; Onaca, A. Using Geophysics to Characterize a Prehistoric Burial Mound in Romania. Remote Sens. 2021, 13, 842. [Google Scholar] [CrossRef]
- Al-Saadi, O.S.; Schmidt, V.; Becken, M.; Fritsch, T. Very-high-resolution electrical resistivity imaging of buried foundations of a Roman villa near Nonnweiler, Germany. Archaeol. Prospect. 2017, 25, 1–10. [Google Scholar] [CrossRef]
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion methods in 2-D electrical imaging surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef]
- Cajz, V. Proposal of lithostratigraphy for the České středohoří Mts. Volcanics. Věštník Českého Geol. Ust. Bull. Czech Geol. Surv. 2000, 75, 7–16. [Google Scholar]
- Cajz, V.; Rapprich, V.; Erban, V.; Pécskay, Z.; Radoň, M. Late Miocene volcanic activity in the České středohoří Mountains (Ohře/Eger Graben, northern Bohemia). Geol. Carpathica 2009, 60, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Čtverák, V.; Lutovský, M.; Slabina, M.; Smejtek, L. Encyklopedie Hradišť v Čechách; Libri: Praha, Czech Republic, 2003. [Google Scholar]
- Smrž, Z. Knovízské hradiště Hradišťany (K.Ú. Mukov) v severozápadních Čechách. Archeol. Ve Středních Cech. 2011, 15, 267–277. [Google Scholar]
- Šolle, M.; Váňa, Z. Nálezová Zpráva Uložená v Regionálním Muzeu v Teplicích, Fond Teplice, k. ú. Mukov—Hradišťany, Evid. pod č. 1951-0395. 1951. [Google Scholar]
- Šolle, M. Knovízské hradiště Hradišťany u Bíliny. Archeol. Rozhl. 1952, 4, 483–485, 498–499. [Google Scholar]
- Smrž, Z. Höhenlokalitäten der Knovízer Kultur in NW-Böhmen. Památky Archeol. 1995, 86, 38–80. [Google Scholar]
- Štefan, I.; Hasil, J. The early medieval stronghold in Prague-Královice Results of the excavation of the outer fortification. Archeol. Rozhl. 2014, 67, 453–492. [Google Scholar]
- Loke, M.H. Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method. RES2DINV User’s Manual, Geotomo Software. 2020. Available online: www.geotomosoft.com (accessed on 2 September 2021).
- CUZK (State Administration of Land Surveying and Cadastre). Digital Terrain Model of the Czech Republic of the 5th generation (DMR 5G). 2017. Available online: https://ags.cuzk.cz/av/ (accessed on 5 August 2021).
- Günther, T.; Rücker, C. Boundless Electrical Resistivity Tomography BERT2—The User Tutorial. 2019. Available online: http://www.resistivity.net/download/bert-tutorial.pdf (accessed on 15 March 2022).
- Günther, T.; Rücker, C.; Spitzer, K. Three-dimensional modelling and inversion of dc resistivity data incorporating topography—II. Inversion. Geophys. J. Int. 2006, 166, 506–517. [Google Scholar] [CrossRef] [Green Version]
- Rücker, C.; Günther, T.; Spitzer, K. Three-dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling. Geophys. J. Int. 2006, 166, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Lysdahl, A.K.; Bazin, S.; Christensen, C.; Ahrens, S.; Günther, T.; Pfaffhuber, A.A. Comparison between 2D and 3D ERT inversion for engineering site investigations—A case study from Oslo Harbour. Near Surf. Geophys. 2017, 15, 201–209. [Google Scholar] [CrossRef]
- Ayachit, U. The ParaView Guide: A Parallel Visualization Application; Kitware: Chapel Hill, NC, USA, 2015; ISBN 978-1930934306. [Google Scholar]
- Klanica, R.; Grison, H. Geofyzikální průzkum locality Hradišťany. In Hradiště Hradišťany—Výsledky Archeologického Nedestruktivního Výzkumu (2017–2020); Šteffl, J., Hentschová, R., Eds.; Regionální Muzeum v Teplicích: Teplice, Czechia, 2021. [Google Scholar]
- Šteffl, J. Výsledky nedestruktivního výzkumu. In Hradiště Hradišťany—Výsledky Archeologického Nedestruktivního Výzkumu (2017–2020); Šteffl, J., Hentschová, R., Eds.; Regionální muzeum v Teplicích: Teplice, Czechia, 2021. [Google Scholar]
- Murakami, T. Replicative construction experiments at Teotihuacan, Mexico: Assessing the duration and timing of monumental construction. J. Field Archaeol. 2015, 40, 263–282. [Google Scholar] [CrossRef]
- Smailes, R. Building Chan Chan: A project management perspective. Lat. Am. Antiq. 2011, 22, 37–63. [Google Scholar] [CrossRef]
- Lindner, H.; Lehmkuhl, F.; Zeeden, C. Spatial loess distribution in the eastern Carpathian Basin: A novel approach based on geoscientific maps and data. J. Maps 2017, 13, 173–181. [Google Scholar] [CrossRef]
- Gillette, H. Earthwork and Its Cost: A Handbook of Earth Excavation; McGraw-Hill: New York, NY, USA, 1903. [Google Scholar]
- Hammerstedt, S. Mississippian Construction, Labor, and Social Organization in Western Kentucky. Ph.D. Thesis, Pennsylvania State University, University Park, PA, USA, 2005. [Google Scholar]
Run | Inversion: | Max Surface Cell (m2) | Max Cell Size (m3) | Regularization Strength (Lambda) | Regularization Decrease (Each Iteration) | RMS Error (%) | Volume (m3) 2511 Ωm | Volume (m3) 3162 Ωm |
---|---|---|---|---|---|---|---|---|
1 | L2 | 0.5 | 30 | 200 | 40% | 5.12 | 9.504 | 9.046 |
2 | L2 | 0.25 | 30 | 200 | 20% | 5.24 | 8.126 | 7.092 |
3 | L2 | 0.2 | 20 | 100 | 20% | 4.46 | 8.102 | 6.76 |
4 | L2 | 0.2 | 30 | 20 | off | 8.01 | 8.224 | 6.76 |
5 | L1 + blocky | 0.5 | 30 | 200 | 40% | 15.08 | 6.844 | 5.006 |
6 | L1 + blocky | 0.2 | 30 | 20 | off | 19.08 | 7.932 | 6.4 |
7 | L2 + blocky | 0.2 | 30 | 20 | off | 6.09 | 7.98 | 6.91 |
8 | L1 | 0.2 | 30 | 20 | off | 34.2 | - | - |
Run | Inversion: | Max Surface Cell (m2) | Max Cell Size (m3) | Regularization Strength (Lambda) | Regularization Decrease (Each Iteration) | RMS Error (%) | Rampart Volume (m3) | Ditch Volume (m3) |
---|---|---|---|---|---|---|---|---|
1 | L2 | 1 | 50 | 100 | 20% | 2.83 | 38.015 | 14.74 |
2 | L2 | 0.5 | 30 | 100 | 20% | 2.97 | 37.63 | 15.43 |
3 | L2 | 0.25 | 50 | 200 | 20% | 2.82 | 37.73 | 16.3 |
4 | L2 + blocky | 0.5 | 50 | 200 | 20% | 3.03 | 37.46 | 14.88 |
5 | L1 + blocky | 0.5 | 50 | 200 | 20% | 5.97 | 37.84 | 14.68 |
6 | L1 | 0.5 | 50 | 200 | 20% | 3.03 | 37.61 | 12.2 |
7 | L2 | 0.5 | 50 | 20 | off | 2.99 | 37.57 | 15.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klanica, R.; Grison, H.; Šteffl, J.; Beránek, R. Assessing the Volume of Defensive Structures for Architectural Energetics Analysis Using 3D Electrical Resistivity Tomography. Remote Sens. 2022, 14, 2652. https://doi.org/10.3390/rs14112652
Klanica R, Grison H, Šteffl J, Beránek R. Assessing the Volume of Defensive Structures for Architectural Energetics Analysis Using 3D Electrical Resistivity Tomography. Remote Sensing. 2022; 14(11):2652. https://doi.org/10.3390/rs14112652
Chicago/Turabian StyleKlanica, Radek, Hana Grison, Jindřich Šteffl, and Roman Beránek. 2022. "Assessing the Volume of Defensive Structures for Architectural Energetics Analysis Using 3D Electrical Resistivity Tomography" Remote Sensing 14, no. 11: 2652. https://doi.org/10.3390/rs14112652
APA StyleKlanica, R., Grison, H., Šteffl, J., & Beránek, R. (2022). Assessing the Volume of Defensive Structures for Architectural Energetics Analysis Using 3D Electrical Resistivity Tomography. Remote Sensing, 14(11), 2652. https://doi.org/10.3390/rs14112652