Deep-Sea Seabed Sediment Classification Using Finely Processed Multibeam Backscatter Intensity Data in the Southwest Indian Ridge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Fine Processing of Deep-Sea Multibeam Backscatter Intensity Data
2.2.1. Compensation for Propagation Loss of Deep-Sea Acoustic Signal
2.2.2. Correction of the Influence of Deep-Sea Seabed Terrain Slope
2.3. Fuzzy ISODATA Unsupervised Sediment Classification
2.3.1. Principle of Algorithm
2.3.2. Algorithm Flow
- Input the initial parameters and randomly select the initial cluster center (0).
- Calculate the initial membership matrix U(0) according to Formula (8).
- Through the initial membership matrix U(0), calculate all kinds of new cluster centers (0).
- Choose whether to perform the split operation.
- Judge the merge operation. If the distance between the categories is less than the set threshold or the number of samples in a category is less than the specified number, then the merge operation will be performed.
- According to the new clustering results, calculate the distance d between each sample and each clustering center.
- Calculate a new membership matrix.
- Return to step 3 and repeat the iteration until it completes.
2.4. Improved SVM Supervised Sediment Classification
2.4.1. Classification Method
2.4.2. GA-SVM Classification Model
2.4.3. Feature Extraction
3. Results
3.1. Processed Results of Deep-Sea Multibeam Backscatter Intensity Data
3.1.1. Results of Compensation for Propagation Loss of Deep-Sea Acoustic Signal
3.1.2. Results of Correction of the Influence of Deep-Sea Seabed Terrain Slope
3.2. Deep-Sea Sediment Classification Results Using Fuzzy ISODATA Unsupervised
3.3. Deep-Sea Sediment Classificaiton Results Using Improved SVM Supervised Sediment Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urick, R.J. Principles of Underwater Sounder, 3rd ed.; McGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Anderson, J.T.; Holliday, D.V.; Kloser, R.; Reid, D.G.; Simard, Y. Acoustic seabed classification: Current practice and future directions. ICES J. Mar. Sci. 2008, 65, 1004–1011. [Google Scholar] [CrossRef]
- Reut, Z.; Pace, N.G.; Heaton, M.J.P. Computer classification of sea beds by sonar. Nature 1985, 314, 426–428. [Google Scholar] [CrossRef]
- Pace, N.G.; Gao, H. Swathe seabed classification. IEEE J. Ocean. Eng. 1988, 13, 83–90. [Google Scholar] [CrossRef]
- Subramaniam, S.; Barad, H.; Martinez, A.B.; Bourgeois, B. Seafloor characterization using texture. In Proceedings of the IEEE Southeastcon’93, Charlotte, NC, USA, 4–7 April 1993; Volume 93, pp. 299–317. [Google Scholar]
- Mitchell, N.C.; Hughes Clarke, J.E. Classification of seafloor geology using multibeam sonar data from the Scotian Shelf. Mar. Geol. 1994, 121, 143–160. [Google Scholar] [CrossRef]
- Pican, N.; Trucco, E.; Ross, M.; Lane, D.M.; Petillot, Y.; Tena Ruiz, I. Texture analysis for seabed classification: Co-occurrence matrices vs. self-organizing maps. In Proceedings of the IEEE OCEANS’98, Nice, France, 28 September–1 October 1998; Volume 1, pp. 424–428. [Google Scholar]
- Blondel, P.; Gómez Sichi, O. Textural analyses of multibeam sonar imagery from Stanton Banks, Northern Ireland continental shelf. Appl. Acoust. 2009, 70, 1288–1297. [Google Scholar] [CrossRef]
- Huseby, R.B.; Milvang, O.; Solberg, A.S.; Bjerde, K.W. Seabed classification from multibeam echosounder data using statistical methods. In Proceedings of the IEEE OCEANS’93, Victoria, BC, Canada, 18–21 October 1993; Volume 3, pp. 229–233. [Google Scholar]
- Alevizos, E.; Snellen, M.; Simons, D.G.; Siemes, K.; Greinert, J. Acoustic discrimination of relatively homogeneous fine sediments using Bayesian classification on MBES data. Mar. Geol. 2015, 370, 31–42. [Google Scholar] [CrossRef]
- Simons, D.G.; Snellen, M. A Bayesian approach to seafloor classification using multi-beam echo-sounder backscatter data. Appl. Acoust. 2009, 70, 1258–1268. [Google Scholar] [CrossRef]
- Lucieer, V.; Lucieer, A. Fuzzy clustering for seafloor classification. Mar. Geol. 2009, 264, 230–241. [Google Scholar] [CrossRef]
- Menandro, P.S.; Bastos, A.C.; Boni, G.; Ferreira, L.C.; Vieira, F.V.; Lavagnino, A.C.; Moura, R.L.; Diesing, M. Reef Mapping Using Different Seabed Automatic Classification Tools. Geosciences 2020, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Janowski, L.; Kubacka, M.; Pydyn, A.; Popek, M.; Gajewski, L. From acoustics to underwater archaeology: Deep investigation of a shallow lake using high-resolution hydroacoustics-The case of Lake Lednica, Poland. Archaeometry 2021, 63, 1059–1080. [Google Scholar] [CrossRef]
- Misiuk, B.; Lecours, V.; Dolan, M.F.; Robert, K. Evaluating the Suitability of Multi-Scale Terrain Attribute Calculation Approaches for Seabed Mapping Applications. Mar. Geod. 2021, 44, 327–385. [Google Scholar] [CrossRef]
- Alexandrou, D.; Pantzartzis, D. Seafloor classification with neural networks. In Proceedings of the Engineering in the Ocean Environment, Washington, DC, USA, 24–26 September 1990; pp. 18–23. [Google Scholar]
- Kavli, T.; Carlin, M.; Madsen, R. Seabed classification using artificial neural networks and other nonparametric methods. In Proceedings of the International Conference on Acoustic Classification and Mapping of the Seabed, Bath, UK, 15–17 December 1993; pp. 141–148. [Google Scholar]
- Michalopoulou, Z.H.; Alexandrou, D.; de Moustier, C. Application of neural and statistical classifiers to the problem of seafloor characterization. IEEE J. Ocean. Eng. 1995, 20, 190–197. [Google Scholar] [CrossRef]
- Chakraborty, B.; Kaustubha, R.; Hegde, A.; Pereira, A. Acoustic seafloor sediment classification using self-organizing feature maps. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2722–2725. [Google Scholar] [CrossRef]
- Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R.F.; Schwab, W.C. Spatially quantitative seafloor habitat mapping: Example from the northern South Carolina inner continental shelf. Estuarine. Coast. Shelf Sci. 2004, 59, 399–416. [Google Scholar] [CrossRef]
- Tang, Q.H.; Lei, N.; Li, J.; Wu, Y.T.; Zhou, X.H. Seabed mixed sediment classification with multibeam echo sounder backscatter data in Jiaozhou Bay. Mar. Georesour. Geotechnol. 2015, 33, 1–11. [Google Scholar] [CrossRef]
- Ji, X.; Yang, B.S.; Tang, Q.H. Seabed sediment classification using multibeam backscatter data based on the selecting optimal random forest model. Appl. Acoust. 2020, 167, 107387. [Google Scholar] [CrossRef]
- Tang, Q.H.; Liu, X.Y.; Ji, X.; Li, J.; Chen, Y.L.; Lu, B. Using seabed acoustic imagery to characterize and classify seabed sediment types in the pockmark area of the North Yellow Sea, China. Appl. Acoust. 2021, 174, 107748. [Google Scholar] [CrossRef]
- Ji, X.; Yang, B.S.; Tang, Q.H. Acoustic seabed classification based on multibeam echosounder backscatter data using the PSO-BP-AdaBoost algorithm: A case study from Jiaozhou Bay, China. IEEE J. Ocean. Eng. 2021, 46, 509–519. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Q.; Zhu, H.; Yang, F.; Wu, Z. Acoustic Deep-Sea Seafloor Characterization Accounting for Heterogeneity Effect. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3034–3042. [Google Scholar] [CrossRef]
- Cui, X.D.; Yang, F.L.; Wang, X.; Ai, B.; Luo, Y.; Ma, D. Deep learning model for seabed sediment classification based on fuzzy ranking feature optimization. Mar. Geol. 2021, 432, 106390. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.M.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madricardo, F.; Foglini, F.; Campiani, E.; Grande, V.; Catenacci, E.; Petrizzo, A.; Kruss, A.; Toso, C.; Trincardi, F. Assessing the human footprint on the sea-floor of coastal systems: The case of the Venice Lagoon, Italy. Sci. Rep. 2019, 9, 6615. [Google Scholar] [CrossRef] [PubMed]
- Van Dover, C.L.; Humphris, S.E.; Fornari, D.; Cavanaugh, C.M.; Collier, R.; Goffredi, S.K.; Hashimoto, J.; Lilley, M.D.; Reysenbach, A.L.; Shank, T.M.; et al. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 2001, 294, 818–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, C.H.; Lin, J.; Guo, S.Q.; John Chen, Y.S.; Wu, G.H.; Han, X.Q.; German, C.R.; Yoerger, D.R.; Zhou, N.; Li, H.M.; et al. The DY115–19 (Legs 1–2) and DY115–20 (Legs 4–7) Science Parties, First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology 2012, 40, 47–50. [Google Scholar] [CrossRef]
- Tao, C.H.; Li, H.M.; Jin, X.B.; Zhou, J.P.; Wu, T.; He, Y.H.; Deng, X.M.; Gu, C.H.; Zhang, G.Y.; Liu, W.Y. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chin. Sci. Bull. 2014, 59, 2266–2276. [Google Scholar] [CrossRef]
- Tao, C.; Wu, T.; Liu, C.; Li, H.; Zhang, J. Fault inference and boundary recognition based on near-bottom magnetic data in the Longqi hydrothermal field. Mar. Geophys. Res. 2017, 38, 17–25. [Google Scholar] [CrossRef]
- Tao, C.H.; Seyfried, W.E.; Lowell, R.P.; Liu, Y.L.; Liang, J.; Guo, Z.K.; Ding, K.; Zhang, H.T.; Liu, J.; Qiu, L.; et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat. Commun. 2020, 11, 1300. [Google Scholar] [CrossRef] [Green Version]
- GEBCO Compilation Group (2021) GEBCO 2021 Grid (doi:10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f). Available online: https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f/ (accessed on 28 March 2022).
- Lurton, X.; Dugelay, S.; Augustin, J.M. Analysis of multibeam echo-sounder signals from the deep seafloor. In Proceedings of the IEEE OCEANS’94, Brest, France, 13–16 September 1994; Volume 3, pp. 213–218. [Google Scholar]
- Zietz, S.; Satriano, J.H.; Geneva, A. Development of physically-based ocean bottom classification analysis system using multibeam sonar backscatter. In Proceedings of the IEEE OCEANS’96, Fort Lauderdale, FL, USA, 23–26 September 1996; Volume 3, pp. 1058–1063. [Google Scholar]
- Gonidec, Y.L.; Lamarche, G.; Wright, I.C. Inhomogeneous substrate analysis using EM300 backscatter imagery. Mar. Geophys. Res. 2003, 24, 311–327. [Google Scholar] [CrossRef]
- Bezdek, J.C. A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 1–8. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; Berkeley, University of California Press: Oakland, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burges, C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.H. Adaptation in Natural and Artificial System; The University of Michigan Press: Ann Arbor, MI, USA, 1975; pp. 12–27. [Google Scholar]
- Yu, E.; Cho, S. GA-SVM wrapper approach for feature subset selection in keystroke dynamics identity verification. In Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 3, pp. 2253–2257. [Google Scholar]
- Moya, E.; Neto, A.A. Side scan sonar images attributes characterization for seabed mapping. In Proceedings of the 2015 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), Rio de Janeiro, Brazil, 29–31 July 2015; pp. 1–4. [Google Scholar]
- Mougiakakou, S.G.R.; Golemati, S.; Gousias, I.; Nicolaides, A.N.; Nikita, K.S. Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, laws’ texture and neural networks. Ultrasound Med. Biol. 2007, 33, 26–36. [Google Scholar] [CrossRef]
- Manjunath, B.S.; Ma, W.Y. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Howarth, P.; Rüger, S. Evaluation of texture features for content-based image retrieval. In International Conference on Image and Video Retrieval; Springer: Berlin/Heidelberg, Germany, 2004; pp. 326–334. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Dutkiewicz, A.; Müller, R.D.; O’Callaghan, S.; Jónasson, H. Census of seafloor sediments in the world’s ocean. Geology 2015, 43, 795–798. [Google Scholar] [CrossRef]
- Diesing, M.; Mitchell, P.J.; O’Keeffe, E.; Gavazzi, G.; Bas, T.L. Limitations of predicting substrate classes on a sedimentary complex but morphologically simple seabed. Remote Sens. 2020, 12, 3398. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Millones, M. Death to kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
Number | Characteristics | Description | Number | Characteristics | Description |
---|---|---|---|---|---|
1 | Gray | Intensity value | 13 | GLCM [47] | Correlation |
2 | Depth | Depth | 14 | Contrast | |
3 | Terrain factor | Slope | 15 | Variance | |
4 | Curvature | 16 | Inverse different moment | ||
5 | Laws [48] | Laws microscopic filter operator-L5R5 | 17 | Mean | |
6 | Laws microscopic filter operator- | 18 | Dissimilarity | ||
7 | Laws microscopic filter operator- | 19 | Gabor [49] | 0° | |
8 | Laws microscopic filter operator- | 20 | 45° | ||
9 | Laws microscopic filter operator- | 21 | 90° | ||
10 | Laws microscopic filter operator- | 22 | Tamura [50] | Contrast | |
11 | GLCM [47] | Energy | 23 | Roughness | |
12 | Entropy | 24 | LBP [51] | Local binary pattern feature |
Method | Classification Accuracy (%) | Overall (%) | Kappa |
---|---|---|---|
ISODATA | Sulfide/83.47 Calcareous ooze/85.43 | 85.45 | 0.689 |
Method | Classification Accuracy (%) | Overall (%) | Kappa |
---|---|---|---|
SVM | Sulfide/84.81 Calcareous ooze/86.10 | 85.46 | 0.7091 |
GA-SVM | Sulfide/89.10 Calcareous ooze/89.66 | 89.66 | 0.7932 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Li, J.; Ding, D.; Ji, X.; Li, N.; Yang, L.; Sun, W. Deep-Sea Seabed Sediment Classification Using Finely Processed Multibeam Backscatter Intensity Data in the Southwest Indian Ridge. Remote Sens. 2022, 14, 2675. https://doi.org/10.3390/rs14112675
Tang Q, Li J, Ding D, Ji X, Li N, Yang L, Sun W. Deep-Sea Seabed Sediment Classification Using Finely Processed Multibeam Backscatter Intensity Data in the Southwest Indian Ridge. Remote Sensing. 2022; 14(11):2675. https://doi.org/10.3390/rs14112675
Chicago/Turabian StyleTang, Qiuhua, Jie Li, Deqiu Ding, Xue Ji, Ningning Li, Lei Yang, and Weikang Sun. 2022. "Deep-Sea Seabed Sediment Classification Using Finely Processed Multibeam Backscatter Intensity Data in the Southwest Indian Ridge" Remote Sensing 14, no. 11: 2675. https://doi.org/10.3390/rs14112675
APA StyleTang, Q., Li, J., Ding, D., Ji, X., Li, N., Yang, L., & Sun, W. (2022). Deep-Sea Seabed Sediment Classification Using Finely Processed Multibeam Backscatter Intensity Data in the Southwest Indian Ridge. Remote Sensing, 14(11), 2675. https://doi.org/10.3390/rs14112675