Measuring Floating Thick Seep Oil from the Coal Oil Point Marine Hydrocarbon Seep Field by Quantitative Thermal Oil Slick Remote Sensing
Abstract
:1. Introduction
1.1. Floating Marine Oil
1.2. Study Motivation
1.3. Marine Hydrocarbon Seepage
1.4. Marine Oil Slick Evolution
1.5. Oil Slick Thermal Infrared and Visible Remote Sensing
2. Methods
2.1. Overview
2.2. Oil Collection
2.3. Remote Sensing Analysis
2.3.1. Overview
2.3.2. Microbolometer and Visible Remote Sensing Acquisition
2.3.3. Imagery Geo-Registration
2.3.4. Brightness Temperature Contrast: Collects
2.3.5. Brightness Temperature Contrast: Surveys
2.3.6. Empirical Thickness Model
2.3.7. Hyperspectral Thermal Infrared Acquisition and Analysis
3. Results
3.1. Setting
3.2. Environmental Conditions
3.3. In-Scene Calibration
3.4. Sea Surface and Slick Thermal Structure
3.5. Floating Slick Oil Mass
Emissions Estimate
4. Discussion
4.1. Approach
4.2. Sea Surface Thermal Structure
4.3. Oil Slick Thermal Structure
4.4. Slick Time History and Unsteadiness Implications
4.5. Future Directions and Lessons Learned
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NRC. Oil in the Sea III: Inputs, Fates, and Effects; National Academy of Sciences: Washington, DC, USA, 2003; p. 265. [Google Scholar]
- ITOPF. Oil Tanker Spill Statistics 2016; International Tank Owners Pollution Federation Limited: London, UK, 2017; p. 12. [Google Scholar]
- Jensen, J.R.; Ramsey, E.W.; Holmes, J.M.; Michel, J.E.; Savitsky, B.; Davis, B.A. Environmental sensitivity index (ESI) mapping for oil spills using remote sensing and geographic information system technology. Int. J. Geogr. Inf. Syst. 1990, 4, 181–201. [Google Scholar] [CrossRef]
- Monteiro, C.B.; Oleinik, P.H.; Leal, T.F.; Marques, W.C.; Nicolodi, J.L.; Lopes, B.d.C.; Lima, F. Integrated environmental vulnerability to oil spills in sensitive areas. Environ. Pollut. 2020, 267, 115238. [Google Scholar] [CrossRef]
- Carson, R.T.; Mitchell, R.C.; Hanemann, M.; Kopp, R.J.; Presser, S.; Ruud, P.A. Contingent valuation and lost passive use: Damages from the Exxon Valdez oil spill. Environ. Resour. Econ. 2003, 25, 257–286. [Google Scholar] [CrossRef]
- Bishop, R.C.; Boyle, K.J.; Carson, R.T.; Chapman, D.; Hanemann, W.M.; Kanninen, B.; Kopp, R.J.; Krosnick, J.A.; List, J.; Meade, N.; et al. Putting a value on injuries to natural assets: The BP oil spill. Science 2017, 356, 253–254. [Google Scholar] [CrossRef]
- Ferguson, A.; Solo-Gabriele, H.; Mena, K. Assessment for oil spill chemicals: Current knowledge, data gaps, and uncertainties addressing human physical health risk. Mar. Pollut. Bull. 2020, 150, 110746. [Google Scholar] [CrossRef]
- Fingas, M. The challenges of remotely measuring oil slick thickness. Remote Sens. 2018, 10, 319. [Google Scholar] [CrossRef]
- Fingas, M. Chapter 23—An Overview of In-Situ Burning. In Oil Spill Science and Technology; Fingas, M., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2011; pp. 737–903. [Google Scholar] [CrossRef]
- Leifer, I.; Murray, J.; Street, D.; Stough, T.; Gallegos, S.C. The Federal Oil Science Team for Emergency Response Remote Sensing, FOSTERRS: Enabling remote sensing technology for marine disaster response. In Time-Sensitive Remote Sensing; Lippitt, C., Stow, D., Coulter, L., Eds.; Springer: New York, NY, USA, 2015; pp. 91–111. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Leifer, I.; Livo, K.E.; Kokaly, R.; Hoefen, T.; Lundeen, S.; Eastwood, M.; Green, R.O.; Pearson, N.; et al. A Method for Quantitative Mapping of Thick Oil Spills Using Imaging Spectroscopy; US Geological Survey Open-File Report 2010-1167; USGS: Denver, CO, USA, 2010; pp. 1–51.
- Clark, R.N.; Swayze, G.A.; Leifer, I.; Livo, K.E.; Lundeen, S.; Eastwood, M.; Green, R.O.; Kokaly, R.; Hoefen, T.; Sarture, C.; et al. A Method for Qualitative Mapping of Thick oil Spills Using Imaging Spectroscopy; U.S. Geological Survey Open-File Report 2010-1101; US Geological Survey: Denver, CO, USA, 2010; pp. 1–6.
- Svejkovsky, J. Development of a Portable Multispectral Aerial Sensor for Real-Time Oil Spill Thickness Mapping in Coastal and Offshore Waters; U.S. Minerals Management Service: Herndon, VA, USA, 2009; p. 32.
- Leifer, I. A synthesis review of emissions and fates for the Coal Oil Point marine hydrocarbon seep field and California marine seepage. Geofluids 2019, 2019, 4724587. [Google Scholar] [CrossRef]
- MacDonald, I.R.; Garcia-Pineda, O.; Beet, A.; Daneshgar-Asl, S.; Feng, L.; French-McCay, D.; Graettinger, G.; Holmes, J.D.; Hu, C.; Leifer, I.; et al. Natural and unnatural oil slicks in the Gulf of Mexico. J. Geophys. Res. Ocean. 2015, 120, 8364–8380. [Google Scholar] [CrossRef]
- Kennicutt, M.C. Oil and Gas Seeps in the Gulf of Mexico. In Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill: Volume 1: Water Quality, Sediments, Sediment Contaminants, Oil and Gas Seeps, Coastal Habitats, Offshore Plankton and Benthos, and Shellfish; Ward, C.H., Ed.; Springer: New York, NY, USA, 2017; pp. 275–358. [Google Scholar] [CrossRef]
- Bradley, E.S.; Leifer, I.; Roberts, D.A.; Dennison, P.E.; Washburn, L. Detection of marine methane emission with AVIRIS band ratios. Geophys. Res. Lett. 2011, 38, L10702. [Google Scholar] [CrossRef]
- Judd, A.; Hovland, M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment; Cambridge University Press: Cambridge, UK, 2007; p. 492. [Google Scholar] [CrossRef]
- Leifer, I.; Luyendyk, B.; Broderick, K. Tracking an oil slick from multiple natural sources, Coal Oil Point, California. Mar. Pet. Geol. 2006, 23, 621–630. [Google Scholar] [CrossRef]
- Leifer, I.; Kamerling, M.; Luyendyk, B.P.; Wilson, D. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California. Geo-Mar. Lett. 2010, 30, 331–338. [Google Scholar] [CrossRef]
- Leifer, I. Characteristics and scaling of bubble plumes from marine hydrocarbon seepage in the Coal Oil Point seep field. J. Geophys. Res. 2010, 115, C11014. [Google Scholar] [CrossRef]
- Hornafius, S.J.; Quigley, D.C.; Luyendyk, B.P. The world’s most spectacular marine hydrocarbons seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions. J. Geophys. Res.-Ocean. 1999, 104, 20703–20711. [Google Scholar] [CrossRef]
- Allen, A.A.; Schleuter, R.S.; Mikolaj, P.G. Natural oil seepage at Coal Oil Point, Santa Barbara, California. Science 1970, 170, 974–977. [Google Scholar] [CrossRef]
- Bradley, E.S.; Leifer, I.; Roberts, D.A. Long-term monitoring of a marine geologic hydrocarbon source by a coastal air pollution station in Southern California. Atmos. Environ. 2010, 44, 4973–4981. [Google Scholar] [CrossRef]
- Leifer, I.; Melton, C.; Blake, D. Long-term atmospheric emissions for the Coal Oil Point natural marine hydrocarbon seep field, Offshore California. Atmos. Chem. Phys. 2021, 23, 17607–17629. [Google Scholar] [CrossRef]
- Leifer, I.; Boles, J. Turbine tent measurements of marine hydrocarbon seeps on subhourly timescales. J. Geophys. Res.-Ocean. 2005, 110, C01006. [Google Scholar] [CrossRef]
- Leifer, I.; Wilson, K. The tidal influence on oil and gas emissions from an abandoned oil well: Nearshore Summerland, California. Mar. Pollut. Bull. 2007, 54, 1495–1506. [Google Scholar] [CrossRef]
- ASCE. State of the art review of modeling transport and fate of oil spill (Task Committee on Modeling Oil Spills of the Water Resources Engineering Division). J. Hydraul. Eng. 1996, 122, 594–609. [Google Scholar] [CrossRef]
- Lehr, W.J.; Simecek-Beatty, D. The relation of Langmuir circulation processes to the standard oil spill spreading, dispersion, and transport algorithms. Spill Sci. Technol. Bull. 2000, 6, 247–253. [Google Scholar] [CrossRef]
- Leifer, I.; Del Sontro, T.; Luyendyk, B.; Broderick, K. Time evolution of beach tar, oil slicks, and seeps in the Coal Oil Point seep field, Santa Barbara Channel, California. In Proceedings of the International Oil Spill Conference, Miami, FL, USA, 15–19 May 2005; EIS Digital Publishing: Miami, FL, USA, 2005; p. 14718A. [Google Scholar]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef]
- Fingas, M. Water-in-oil emulsions: Formation and prediction. J. Pet. Sci. Eng. 2014, 3, 38–49. [Google Scholar] [CrossRef]
- Sicot, G.; Lennon, M.; Miegebielle, V.; Dubucq, D. Estimation of the thickness and emulsion rate of oil spilled at sea using hyperspectral remote sensing in the SWIR domain. In Proceedings of the International Symposium on Spatial Data Quality 2015, La Grande-Motte, France, 20 January 2015; pp. 445–450. [Google Scholar]
- Scanlon, B.; Wick, G.A.; Ward, B. Near-surface diurnal warming simulations: Validation with high resolution profile measurements. Ocean Sci. 2013, 9, 977–986. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M.; Sabins, F.F., Jr. Thermal infrared remote sensing of crude oil slicks. Remote Sens. Environ. 1993, 45, 225–231. [Google Scholar] [CrossRef]
- Grimaldi, C.S.L.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V. A new RST-based approach for continuous oil spill detection in TIR range: The case of the deepwater horizon platform in the Gulf of Mexico. In Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise; Liu, Y., MacFadyen, A., Ji, H.-D., Weisberg, R.H., Eds.; Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 19–31. [Google Scholar]
- Asanuma, I.; Muneyama, K.; Sasaki, Y.; Iisaka, J.; Yasuda, Y.; Emori, Y. Satellite thermal observation of oil slicks on the Persian Gulf. Remote Sens. Environ. 1986, 19, 171–186. [Google Scholar] [CrossRef]
- Cai, G.; Huang, X.; Du, M.; Liu, Y. Detection of natural oil seeps signature from SST and ATI in South Yellow Sea combining ASTER and MODIS data. Int. J. Remote Sens. 2011, 31, 4869–4885. [Google Scholar] [CrossRef]
- Lu, Y.; Zhan, W.; Hu, C. Detecting and quantifying oil slick thickness by thermal remote sensing: A ground-based experiment. Remote Sens. Environ. 2016, 181, 207–217. [Google Scholar] [CrossRef]
- Shih, W.-C.; Andrews, A.B. Infrared contrast of crude-oil-covered water surfaces. Opt. Lett. 2008, 33, 3019–3021. [Google Scholar] [CrossRef]
- Tseng, W.Y.; Chiu, L.S. AVHRR observations of Persian Gulf oil spills. In Proceedings of the Geoscience and Remote Sensing Symposium, 1994 IGARSS ‘94 Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Pasadena, CA, USA, 8–12 August 1994; pp. 779–782. [Google Scholar] [CrossRef]
- Byfield, V. Optical Remote Sensing of Oil in the Marine Environment. Ph.D. Thesis, University of Southampton, Southampton, UK, 1998. [Google Scholar]
- Campbell, G.S.; Diak, G.R. Net and Thermal Radiation Estimation and Measurement. In Micrometeorology in Agricultural Systems; Hatfield, J., Baker, J., Eds.; Wiley: Hoboken, NJ, USA, 2005; pp. 59–92. [Google Scholar] [CrossRef]
- Lammoglia, T.; Filho, C.R.d.S. Spectroscopic characterization of oils yielded from Brazilian offshore basins: Potential applications of remote sensing. Remote Sens. Environ. 2011, 115, 2525–2535. [Google Scholar] [CrossRef]
- Niclòs, R.; Doña, C.; Valor, E.; Bisquert, m. Thermal-infrared spectral and angular characterization of crude oil and seawater emissivities for oil slick identification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5387–5395. [Google Scholar] [CrossRef]
- Masuda, K.; Takashima, T.; Takayama, Y. Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 1988, 24, 313–329. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef]
- Grierson, I.T. Use of airborne thermal imagery to detect and monitor inshore oil spill residues during darkness hours. Environ. Manag. 1998, 2, 905–912. [Google Scholar] [CrossRef]
- Smith, S.; Toumi, R. Measuring cloud cover and brightness temperature with a ground-based thermal infrared camera. J. Appl. Meteorol. Climatol. 2008, 47, 683–693. [Google Scholar] [CrossRef]
- Leifer, I.; Melton, C.; Daniel, W.; Kim, J.D.; Marston, C. An inverse planned oil release validation method for estimating oil slick thickness from thermal contrast remote sensing by in-scene calibration. MethodsX 2022. [Google Scholar] [CrossRef]
- Hall, J.L.; Boucher, R.H.; Buckland, K.N.; Gutierrez, D.J.; Keim, E.R.; Tratt, D.M.; Warren, D.W. Mako airborne thermal infrared imaging spectrometer—Performance update. In Proceedings of the Imaging Spectrometry XXI, San Diego, CA, USA, 28 August 2016; p. 997604. [Google Scholar]
- Buckland, K.N.; Young, S.J.; Keim, E.R.; Johnson, B.R.; Johnson, P.D.; Tratt, D.M. Tracking and quantification of gaseous chemical plumes from anthropogenic emission sources within the Los Angeles Basin. Remote Sens. Environ. 2017, 201, 275–296. [Google Scholar] [CrossRef]
- Leifer, I.; Boles, J.R.; Luyendyk, B.P.; Clark, J.F. Transient discharges from marine hydrocarbon seeps: Spatial and temporal variability. Environ. Geol. 2004, 46, 1038–1052. [Google Scholar] [CrossRef]
- Del Sontro, T.S.; Leifer, I.; Luyendyk, B.P.; Broitman, B.R. Beach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point, California. Mar. Pollut. Bull. 2007, 54, 1461–1471. [Google Scholar] [CrossRef]
- Ohlmann, C. Santa Barbara Channel Inner-Shelf Study; University of California: Santa Barbara, CA, USA, 2007. [Google Scholar]
- Board, T.R.; Council, N.R. Responding to Oil Spills in the U.S. Arctic Marine Environment; The National Academies Press: Washington, DC, USA, 2014; p. 210. [Google Scholar] [CrossRef]
- Johansen, C.; Macelloni, L.; Natter, M.; Silva, M.; Woosley, M.; Woolsey, A.; Diercks, A.R.; Hill, J.; Viso, R.; Marty, E.; et al. Hydrocarbon migration pathway and methane budget for a Gulf of Mexico natural seep site: Green Canyon 600. Earth Planet. Sci. Lett. 2020, 545, 116411. [Google Scholar] [CrossRef]
- Haller, G. Lagrangian Coherent Structures. Annu. Rev. Fluid Mech. 2015, 47, 137–162. [Google Scholar] [CrossRef]
- Allshouse, M.R.; Ivey, G.N.; Lowe, R.J.; Jones, N.L.; Beegle-Krause, C.J.; Xu, J.; Peacock, T. Impact of windage on ocean surface Lagrangian coherent structures. Environ. Fluid Mech. 2017, 17, 473–483. [Google Scholar] [CrossRef]
- Thorpe, S.A. Instability and transition to turbulence in stratified shear flows. In The Turbulent Ocean; Thorpe, S.A., Ed.; Cambridge University Press: Cambridge, UK, 2005; pp. 80–114. [Google Scholar] [CrossRef]
- Beckenbach, E.H. Surface Circulation in the Santa Barbara Channel: An Application of High Frequency Radar for Descriptive Physical Oceanography in the Coastal Zone; University of California: Sana Barbara, CA, USA, 2004. [Google Scholar]
- Leifer, I.; Boles, J. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment. Mar. Pet. Geol. 2005, 22, 551–568. [Google Scholar] [CrossRef]
- Leifer, I.; Luyendyk, B.P.; Boles, J.; Clark, J.F. Natural marine seepage blowout: Contribution to atmospheric methane. Glob. Biogeochem. Cycles 2006, 20, GB3008. [Google Scholar] [CrossRef]
- Wiggins, S.M.; Leifer, I.; Linke, P.; Hildebrand, J.A. Long-term acoustic monitoring at North Sea well site 22/4b. J. Mar. Pet. Geol. 2015, 68, 776–788. [Google Scholar] [CrossRef]
- Leifer, I.; Jeuthe, H.; Gjøsund, S.H.; Johansen, V. Engineered and natural marine seep, bubble-driven buoyancy flows. J. Phys. Oceanogr. 2009, 39, 3071–3090. [Google Scholar] [CrossRef]
Collect | Day, Time | M | Mean TB |
---|---|---|---|
(#) | (-) | (kg) | (°C) |
9 | 23 May 08:54 | 51.67 | 1.05 |
10 | 23 May 10:37 | 51.84 | 1.87 |
16 | 25 May 09:58 | 10.57 | 0.12 |
17 | 25 May 10:30 | 7.92 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leifer, I.; Melton, C.; Daniel, W.J.; Tratt, D.M.; Johnson, P.D.; Buckland, K.N.; Kim, J.D.; Marston, C. Measuring Floating Thick Seep Oil from the Coal Oil Point Marine Hydrocarbon Seep Field by Quantitative Thermal Oil Slick Remote Sensing. Remote Sens. 2022, 14, 2813. https://doi.org/10.3390/rs14122813
Leifer I, Melton C, Daniel WJ, Tratt DM, Johnson PD, Buckland KN, Kim JD, Marston C. Measuring Floating Thick Seep Oil from the Coal Oil Point Marine Hydrocarbon Seep Field by Quantitative Thermal Oil Slick Remote Sensing. Remote Sensing. 2022; 14(12):2813. https://doi.org/10.3390/rs14122813
Chicago/Turabian StyleLeifer, Ira, Christopher Melton, William J. Daniel, David M. Tratt, Patrick D. Johnson, Kerry N. Buckland, Jae Deok Kim, and Charlotte Marston. 2022. "Measuring Floating Thick Seep Oil from the Coal Oil Point Marine Hydrocarbon Seep Field by Quantitative Thermal Oil Slick Remote Sensing" Remote Sensing 14, no. 12: 2813. https://doi.org/10.3390/rs14122813
APA StyleLeifer, I., Melton, C., Daniel, W. J., Tratt, D. M., Johnson, P. D., Buckland, K. N., Kim, J. D., & Marston, C. (2022). Measuring Floating Thick Seep Oil from the Coal Oil Point Marine Hydrocarbon Seep Field by Quantitative Thermal Oil Slick Remote Sensing. Remote Sensing, 14(12), 2813. https://doi.org/10.3390/rs14122813