Early Detection of Bacterial Wilt in Tomato with Portable Hyperspectral Spectrometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Data Acquisition
2.2.1. Disease Severity Assessment
2.2.2. Reflectance Measurements
2.3. Data Processing
2.3.1. Data Pre-Processing
2.3.2. Extraction of Spectral Data
2.3.3. Band Selection
2.3.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asgarian, A.; Soffianian, A.; Pourmanafi, S. Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Comput. Electron. Agric. 2016, 127, 531–540. [Google Scholar] [CrossRef]
- Moola, W.S.; Bijker, W.; Belgiu, M.; Li, M. Vegetable mapping using fuzzy classification of Dynamic Time Warping distances from time series of Sentinel-1A images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102405. [Google Scholar] [CrossRef]
- Analysis Report on Production and Marketing Situation and Future Prospect of China’s Tomato Industry from 2022 to 2028; R898946. Available online: https://www.chyxx.com/research/202010/898946.html (accessed on 18 January 2022).
- Chiwaki, K.; Nagamori, S.; Inoue, Y. Predicting Bacterial Wilt Disease of Tomato Plants using Remotely Sensed Thermal Imagery. J. Agric. Meteorol. 2005, 61, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.T.; Yang, W.G.; Zhang, H.J.; Zhu, B.Y.; Zeng, R.E.; Wang, X.Y.; Wang, S.B.; Wang, L.D.; Qi, H.X.; Lan, Y.B.; et al. Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data. Comput. Electron. Agric. 2020, 177, 105708. [Google Scholar] [CrossRef]
- Gaofei, J.; Zhong, W.; Jin, X.; Huilan, C.; Yong, Z.; Xiaoman, S.; Macho, A.P.; Wei, D.; Boshou, L. Bacterial Wilt in China: History, Current Status, and Future Perspectives. Front. Plant Sci. 2017, 8, 1549. [Google Scholar] [CrossRef]
- Tian, J.H.; Rao, S.; Gao, Y.; Lu, Y.; Cai, K.Z. Wheat straw biochar amendment suppresses tomato bacterial wilt caused by Ralstonia solanacearum: Potential effects of rhizosphere organic acids and amino acids. J. Integr. Agric. 2021, 20, 2450–2462. [Google Scholar] [CrossRef]
- Shen, G.H.; Zhang, S.T.; Liu, X.J.; Jiang, Q.P.; Ding, W. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Appl. Microbiol. Biotechnol. 2018, 102, 9781–9791. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.T.; Kim, H.; Tran, V.K.; Vu, H.D.; Hoang, T.X.; Hang, J.W.; Choi, Y.H.; Jang, K.S.; Choi, G.J.; Kim, J.C. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS ONE 2017, 12, e0181499. [Google Scholar] [CrossRef]
- Wang, J.; Long, S.F.; Wang, Z.W.; Chen, J.W.; Jiang, F.Y.; Xing, L.I. Research Progress in Controlling Tomato Bacterial Wilt. China Veg. 2020, 1, 22–30. [Google Scholar]
- Chavez, P.; Yarleque, C.; Loayza, H.; Mares, V.; Hancco, P.; Priou, S.; Marquez, M.D.; Posadas, A.; Zorogastua, P.; Flexas, J.; et al. Detection of bacterial wilt infection caused by Ralstonia solanacearum in potato (Solanum tuberosum L.) through multifractal analysis applied to remotely sensed data. Precis. Agric. 2012, 13, 236–255. [Google Scholar] [CrossRef]
- Xie, C.Q.; Shao, Y.N.; Li, X.L.; He, Y. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Sci. Rep. 2015, 5, 16564. [Google Scholar] [CrossRef] [PubMed]
- Mahlein, A.K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral Sensors and Imaging Technologies in Phytopathology: State of the Art. Annu. Rev. Phytopathol. 2018, 56, 535–558. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Tong, Q.; Zhang, L. Progress in Hyperspectral Remote Sensing Science and Technology in China Over the Past Three Decades. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 70–91. [Google Scholar]
- Goetz, A.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectrometry for Earth remote sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Cotrozzi, L.; Townsend, P.A.; Pellegrini, E.; Nali, C.; Couture, J.J. Reflectance spectroscopy: A novel approach to better understand and monitor the impact of air pollution on Mediterranean plants. Environ. Sci. Pollut. Res. Int. 2018, 25, 8249–8267. [Google Scholar] [CrossRef]
- Rumpf, T.; Mahlein, A.K.; Steiner, U.; Oerke, E.C.; De Hne, H.W.; Plümer, L. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sens. Environ. 2020, 250, 112012. [Google Scholar] [CrossRef]
- Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, G.; Pan, Y.; Yang, X.; Chen, L.; Zhao, C. A Review of Advanced Technologies and Development for Hyperspectral-Based Plant Disease Detection in the Past Three Decades. Remote Sens. 2020, 12, 3188. [Google Scholar] [CrossRef]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.-K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Prot. 2017, 125, 5–20. [Google Scholar] [CrossRef]
- Terentev, A.; Dolzhenko, V.; Fedotov, A.; Eremenko, D. Current State of Hyperspectral Remote Sensing for Early Plant Disease Detection: A Review. Sensors 2022, 22, 757. [Google Scholar] [CrossRef] [PubMed]
- Li, F.D.; Liu, Z.Y.; Shen, W.X.; Wang, Y.; Wang, Y.L.; Ge, C.K.; Sun, F.G.; Lan, P. A Remote Sensing and Airborne Edge-Computing Based Detection System for Pine Wilt Disease. IEEE Access 2021, 9, 66346–66360. [Google Scholar] [CrossRef]
- Chen, T.T.; Zhang, J.L.; Chen, Y.; Wan, S.B.; Zhang, L. Detection of peanut leaf spots disease using canopy hyperspectral reflectance. Comput. Electron. Agric. 2019, 156, 677–683. [Google Scholar] [CrossRef]
- Gold, K.M.; Townsend, P.A.; Chlus, A.; Herrmann, I.; Couture, J.J.; Larson, E.R.; Gevens, A.J. Hyperspectral Measurements Enable Pre-Symptomatic Detection and Differentiation of Contrasting Physiological Effects of Late Blight and Early Blight in Potato. Remote Sens. 2020, 12, 286. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Roy, S.; Kimothi, M.M.; Kumar, P.; Sehgal, S.; Mamatha, S.; Ray, S.S. Detection of bacterial wilt disease (Pseudomonas solancearum) in Brinjal using hyperspectral remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII–3/W6, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotrozzi, L. Spectroscopic detection of forest diseases: A review (1970–2020). J. For. Res. 2021, 33, 21–38. [Google Scholar] [CrossRef]
- Maghsoudi, Y.; Valadan Zoej, M.J.; Collins, M. Using class-based feature selection for the classification of hyperspectral data. Int. J. Remote Sens. 2011, 32, 4311–4326. [Google Scholar] [CrossRef]
- Koedsin, W.; Vaiphasa, C. Discrimination of Tropical Mangroves at the Species Level with EO-1 Hyperion Data. Remote Sens. 2013, 5, 3562–3582. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Wu, H.; Wan, D.S.; Zhu, J.L. An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowl. -Based Syst. 2011, 24, 40–48. [Google Scholar] [CrossRef]
- Elhadi, A.; Houtao, D.; John, O.; Abdel-Rahman, E.M.; Onisimo, M. Detecting the Early Stage of Phaeosphaeria Leaf Spot Infestations in Maize Crop Using In Situ Hyperspectral Data and Guided Regularized Random Forest Algorithm. J. Spectrosc. 2017, 2017, 691387. [Google Scholar] [CrossRef]
- Nagasubramanian, K.; Jones, S.; Sarkar, S.; Singh, A.K.; Singh, A.; Ganapathysubramanian, B. Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems. Plant Methods 2018, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Imani, M.; Ghassemian, H. Fast feature selection methods for classification of hyperspectral images. In Proceedings of the International Symposium on Telecommunications, Sydney, Australia, 27–29 April 2015. [Google Scholar]
- Serpico, S.B.; Bruzzone, L. A new search algorithm for feature selection in hyperspectral remote sensing images. Geosci. Remote Sens. IEEE Trans. 2001, 39, 1360–1367. [Google Scholar] [CrossRef]
- Li, Q.; Wong, F.; Fung, T. Comparison Feature Selection Methods for Subtropical Vegetation Classification with Hyperspectral Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Huang, X.; Wu, L.; Ye, Y. A Review on Dimensionality Reduction Techniques. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 1950017. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Malone, B.P.; Sarathjith, M.C.; Das, B.S. Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling. Comput. Electron. Agric. 2019, 158, 201–210. [Google Scholar] [CrossRef]
- Be Lousov, A.I.; Verzakov, S.A.; Frese, J.V. A flexible classification approach with optimal generalisation performance: Support vector machines. Chemom. Intell. Lab. Syst. 2002, 64, 15–25. [Google Scholar] [CrossRef]
- Mercier, G.; Lennon, M. Support vector machines for hyperspectral image classification with spectral-based kernels. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Li, X.; Du, Y. Description Standard and Data Standard of Tomato Germplasm; China Agricultural Press: Beijing, China, 2006. [Google Scholar]
- Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem. 1972, 44, 1906–1909. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Comput. Electron. Agric. 2019, 163, 104680. [Google Scholar] [CrossRef]
- Ding, S. Spectral and Wavelet-based Feature Selection with Particle Swarm Optimization for Hyperspectral Classification. J. Softw. 2011, 6, 1248–1256. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, F.; He, Y.; Gong, X. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst. Eng. 2013, 115, 56–65. [Google Scholar] [CrossRef]
- Marcano-Cedeo, A.; Quintanilla-Domínguez, J.; Cortina-Januchs, M.G.; Andina, D. Feature selection using Sequential Forward Selection and classification applying Artificial Metaplasticity Neural Network. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010. [Google Scholar]
- Gao, Z.; Shao, Y.; Xuan, G.; Wang, Y.; Liu, Y.; Han, X. Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artif. Intell. Agric. 2020, 4, 31–38. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, A. Optimization by Simulated Annealing. Science 1983, 13, 4598. [Google Scholar] [CrossRef] [PubMed]
- Gheyas, I.A.; Smith, L.S. Feature subset selection in large dimensionality domains. Pattern Recognit. 2010, 43, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Pahlavani, P.; Hasanlou, M.; Nahr, S.T. Band Selection and Dimension Estimation for Hyperspectral Imagery—A New Approach Based on Invasive Weed Optimization. J. Indian Soc. Remote Sens. 2016, 45, 11–23. [Google Scholar] [CrossRef]
- Maghsoudi, Y.; Alimohammadi, A.; Zoej, M.J.V.; Mojaradi, B. Application of Feature Selection and Classifier Ensembles for the Classification of Hyperspectral Data. In Proceedings of the 26th Asian Conference on Remote Sensing and 2nd Asian Space Conference, Hanoi, Vietnam, 7–11 November 2005; Volume 2. [Google Scholar]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Kuo, B.C.; Ho, H.H.; Li, C.H.; Hung, C.C. A Kernel-Based Feature Selection Method for SVM With RBF Kernel for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 317–326. [Google Scholar] [CrossRef]
- Yang, J.; Sun, L.; Xing, W.; Feng, G.; Wang, J. Hyperspectral prediction of sugarbeet seed germination based on gauss kernel SVM. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 253, 119585. [Google Scholar] [CrossRef]
- Pal, M.; Foody, G.M. Feature Selection for Classification of Hyperspectral Data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, P.; Zhang, Y.; Zhang, L.; Wei, W. A multi-label Hyperspectral image classification method with deep learning features. In Proceedings of the International Conference on Internet Multimedia Computing and Service, Xi’an, China, 19–21 August 2016; pp. 127–131. [Google Scholar]
- Vicente García, R.A.M.; Sánchez, J.S. Index of Balanced Accuracy: A Performance Measure for Skewed Class Distributions. In Proceedings of the 4th Iberian Conference on Pattern Recognition and Image Analysis, Povoa de Varzim, Portugal, 10–12 June 2009. [Google Scholar]
- Gerlin, L.; Escourrou, A.; Cassan, C.; Maviane Macia, F.; Peeters, N.; Genin, S.; Baroukh, C. Unravelling physiological signatures of tomato bacterial wilt and xylem metabolites exploited by Ralstonia solanacearum. Environ. Microbiol. 2021, 23, 5962–5978. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Bégué, A.; Labbé, S.; Houlès, M.; Martiné, J. A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring. Precis. Agric. 2012, 13, 525–541. [Google Scholar] [CrossRef]
- Feifei, Y.; Shengping, L.; Yeping, Z.; Shijuan, L. Identification and level discrimination of waterlogging stress in winter wheat using hyperspectral remote sensing. Smart Agric. 2021, 3, 35. [Google Scholar] [CrossRef]
- Kuncheva, L.I.; Faithfull, W.J. PCA feature extraction for change detection in multidimensional unlabeled data. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Dong, Y.; Huang, W.; Liu, L.; Ma, H. Wheat Fusarium Head Blight Detection Using UAV-Based Spectral and Texture Features in Optimal Window Size. Remote Sens. 2021, 13, 2437. [Google Scholar] [CrossRef]
- Khan, I.H.; Liu, H.; Li, W.; Cao, A.; Wang, X.; Liu, H.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat. Remote Sens. 2021, 13, 3612. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Dong, Y.; Ye, H.; Ma, H.; Liu, B.; Wu, W.; Ren, Y.; Ruan, C.; Geng, Y. Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology. Remote Sens. 2021, 13, 123. [Google Scholar] [CrossRef]
Wavelength | 400 nm–1000 nm | Spectral | 3 nm |
---|---|---|---|
Size | <20 × 10 × 4 cm | Weight | <0.58 kg |
Bands | 300 | Light | Built-in halogen lights |
Power supply | 1 standard 18,650 battery | Data interface | Bluetooth |
Vegetation Index | Equations | Reference |
---|---|---|
Water Index, WI | [43] | |
Normalized Water Index, NWI | [43] | |
Normalized Water Index, WI:NDVI | [43] | |
Normalized Difference Vegetation Index, NDVI | [43] | |
Renormalized Difference Vegetation Index, RDVI | [43] | |
Optimized Soil Adjusted Vegetation Index, OSAVI | [43] | |
Normalized Photochemical Reflectance Index, PRInorm | [43] | |
Photochemical Reflectance Index, PRI570 | [43] | |
Photochemical Reflectance Index, PRI550 | [43] | |
Photochemical Reflectance Index 1, PRI1 | [26] | |
Photochemical Reflectance Index 2 | [26] | |
Greenness index, G | [26] | |
Modified Chlorophyll absorption in Reflectance Index, MCARI | [26] | |
Transformed CARI, TCARI | [26] | |
Triangular Vegetation Index, TVI | [26] | |
Zarco-Tejada & Miller, ZM | [26] | |
Simple Ratio Pigment Index, SRPI | [26] | |
Normalized Phaeophytinization Index, NPQI | [26] | |
Normalized Pigment Chlorophyll Index, NPCI | [26] | |
Carter Index 1, Ctr1 | [26] | |
Carter Index 2, Ctr2 | [26] | |
Lichtenthaler Index 1, LIC1 | [26] | |
Lichtenthaler Index 2, LIC2 | [26] | |
Structure Intensive Pigment Index, SIPI | [26] | |
Vogelmann Index 1, Vog1 | [26] | |
Vogelmann Index 2, Vog2 | [26] | |
Vogelmann Index 3, Vog3 | [26] | |
Gitelson and Merzlyak 1, GM1 | [26] | |
Gitelson and Merzlyak 2, GM2 | [26] | |
Bacterial wilt index1, BWI1 | [5] | |
Bacterial wilt index2, BWI2 | [5] | |
Bacterial wilt index3, BWI3 | [5] | |
Bacterial wilt index4, BWI4 | [5] | |
Bacterial wilt index5, BWI5 | [5] | |
Bacterial wilt index6, BWI6 | [5] |
Methods | Leaf/Stem | Features | Mean | Standard Deviations | Significance of t-Test | ||
---|---|---|---|---|---|---|---|
Healthy | Diseased | Healthy | Diseased | ||||
SFS | Leaf | PRI550 | 0.045 | 0.040 | 0.010 | 0.010 | ** |
Vog1 | 1.472 | 1.479 | 0.079 | 0.081 | ** | ||
Vog2 | −0.082 | −0.084 | 0.016 | 0.018 | ** | ||
Ctr2 | 0.212 | 0.218 | 0.026 | 0.027 | ** | ||
SRPI | 1.039 | 0.955 | 0.123 | 0.103 | ** | ||
Stem | PRI550 | 0.040 | 0.046 | 0.006 | 0.008 | ** | |
WI | 1.174 | 1.169 | 0.020 | 0.022 | ** | ||
WI:NDVI | 1.726 | 1.757 | 0.104 | 0.103 | ** | ||
PRI570 | −0.011 | 0.001 | 0.011 | 0.016 | ** | ||
BWI2 | 0.904 | 0.915 | 0.020 | 0.016 | ** | ||
G | 1.859 | 1.920 | 0.188 | 0.199 | ** | ||
PRI1 | −0.017 | −0.027 | 0.008 | 0.014 | ** | ||
LIC1 | 0.660 | 0.644 | 0.036 | 0.040 | ** | ||
GM1 | 2.803 | 2.578 | 0.436 | 0.310 | ** | ||
SA | Leaf | PRI550 | 0.045 | 0.040 | 0.010 | 0.010 | ** |
OSAVI | 0.719 | 0.702 | 0.033 | 0.034 | ** | ||
NPCI | −0.016 | 0.026 | 0.049 | 0.052 | ** | ||
SIPI | 0.771 | 0.754 | 0.031 | 0.033 | ** | ||
PRI570 | −0.059 | −0.054 | 0.025 | 0.021 | ** | ||
ZM | 2.174 | 2.193 | 0.175 | 0.192 | ** | ||
SRPI | 1.039 | 0.955 | 0.123 | 0.103 | ** | ||
NPQI | 0.017 | 0.003 | 0.016 | 0.022 | ** | ||
PRI1 | 0.013 | 0.014 | 0.022 | 0.018 | ** | ||
Ctr2 | 0.212 | 0.218 | 0.026 | 0.027 | ** | ||
Vog2 | −0.082 | −0.084 | 0.016 | 0.018 | ** | ||
Vog3 | −0.090 | −0.092 | 0.019 | 0.020 | ** | ||
GM2 | 3.579 | 3.531 | 0.415 | 0.409 | ** | ||
Stem | PRI550 | 0.040 | 0.046 | 0.006 | 0.008 | ** | |
RDVI | 0.550 | 0.544 | 0.040 | 0.04 | ** | ||
WI | 1.174 | 1.169 | 0.020 | 0.022 | ** | ||
LIC1 | 0.660 | 0.644 | 0.036 | 0.040 | ** | ||
Vog2 | −0.031 | −0.027 | 0.006 | 0.006 | ** | ||
Vog3 | −0.032 | −0.028 | 0.006 | 0.006 | ** | ||
GM2 | 2.085 | 1.950 | 0.188 | 0.199 | ** | ||
GA | Leaf | SRPI | 1.039 | 0.955 | 0.123 | 0.103 | ** |
Vog1 | 1.472 | 1.479 | 0.079 | 0.081 | ** | ||
Ctr2 | 0.212 | 0.218 | 0.026 | 0.027 | ** | ||
Stem | NWI | −0.080 | −0.078 | 0.009 | 0.009 | ** | |
WI:NDVI | 1.726 | 1.757 | 0.104 | 0.103 | ** | ||
PRI2 | 0.011 | −0.001 | 0.011 | 0.016 | ** | ||
NPCI | 0.154 | 0.172 | 0.045 | 0.057 | ** | ||
Ctr1 | 2.472 | 2.659 | 0.279 | 0.354 | ** | ||
GM1 | 2.803 | 2.578 | 0.436 | 0.310 | ** |
Feature Selection Methods | Leaf/Stem | Healthy (%) | Diseased (%) | Overall Accuracy (%) | F1 Score |
---|---|---|---|---|---|
SFS | Leaf | 76.5 | 95.9 | 89.7 | 0.83 |
Stem | 78.6 | 97.5 | 92.6 | 0.85 | |
SA | Leaf | 82.4 | 87.7 | 86.0 | 0.79 |
Stem | 85.7 | 90.0 | 88.9 | 0.80 | |
GA | Leaf | 85.3 | 93.2 | 90.7 | 0.85 |
Stem | 92.9 | 92.5 | 92.6 | 0.87 |
Predicted True | Healthy | Diseased | Healthy (%) | Diseased (%) | Overall Accuracy (%) | F1 Score |
---|---|---|---|---|---|---|
Healthy | 8 | 2 | 80.0 | 92.0 | 88.6 | 0.80 |
Diseased | 2 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, Y.; Huang, Y.; Hu, S.; Zhang, L.; Zhang, J. Early Detection of Bacterial Wilt in Tomato with Portable Hyperspectral Spectrometer. Remote Sens. 2022, 14, 2882. https://doi.org/10.3390/rs14122882
Cen Y, Huang Y, Hu S, Zhang L, Zhang J. Early Detection of Bacterial Wilt in Tomato with Portable Hyperspectral Spectrometer. Remote Sensing. 2022; 14(12):2882. https://doi.org/10.3390/rs14122882
Chicago/Turabian StyleCen, Yi, Ying Huang, Shunshi Hu, Lifu Zhang, and Jian Zhang. 2022. "Early Detection of Bacterial Wilt in Tomato with Portable Hyperspectral Spectrometer" Remote Sensing 14, no. 12: 2882. https://doi.org/10.3390/rs14122882
APA StyleCen, Y., Huang, Y., Hu, S., Zhang, L., & Zhang, J. (2022). Early Detection of Bacterial Wilt in Tomato with Portable Hyperspectral Spectrometer. Remote Sensing, 14(12), 2882. https://doi.org/10.3390/rs14122882