Long-Term and Bimonthly Estimation of Lake Water Extent Using Google Earth Engine and Landsat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Lakes
2.2. Platform and Data
2.2.1. GEE Platform
2.2.2. Landsat Imagery
2.2.3. The Lake Water Max-Extent Mask
2.2.4. Lake Water Level Data
2.3. Methods
2.3.1. Bimonthly Image Sequence Construction (BISC)
2.3.2. Automatic Water Extraction (AWE)
2.3.3. Accuracy Evaluation of Water Extraction
2.3.4. Time Series Anomaly Detection and Reconstruction (TSADR)
- 1.
- Anomaly Detection
- 2.
- Time Series Reconstruction
2.3.5. Lake Area Series Trend Analysis
3. Results
3.1. Accuracy of Water Extraction
3.2. Variation Characteristics of the Case Lake Area Sequence
3.2.1. Characteristics of Interannual Variation
3.2.2. Characteristics of Intra-Annual Variation
4. Discussion
4.1. Comparison with the Results of Other Studies
4.1.1. Comparing Different Results on Single Case Lake
4.1.2. Comparison with GSW MONTHLY Data
4.2. Correlation Analysis between BSWD Lake Area and Water Level Sequence
4.3. Uncertainties and Shortcomings
4.3.1. Influence of Aquatic Vegetation
4.3.2. Influence of Shallow Water with High Brightness
4.3.3. Influence of Lake Icing and Snow Cover
4.3.4. Uncertainty in Bimonthly Image Sequence Construction
4.3.5. Uncertainty in Time Series Anomaly Detection and Reconstruction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human alteration of global surface water storage variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef]
- Tan, C.; Ma, M.; Kuang, H. Spatial-temporal characteristics and climatic responses of water level fluctuations of global major lakes from 2002 to 2010. Remote Sens. 2017, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Satgé, F.; Espinoza, R.; Zolá, R.P.; Roig, H.; Timouk, F.; Molina, J.; Garnier, J.; Calmant, S.; Seyler, F.; Bonnet, M.-P. Role of climate variability and human activity on Poopó Lake droughts between 1990 and 2015 assessed using remote sensing data. Remote Sens. 2017, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Xue, H.P.; Wu, S.J.; Ling, F.; Xiao, F.; Wei, X.H. Lake area changes in the middle Yangtze region of China over the 20th century. J. Environ. Manag. 2011, 92, 1248–1255. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.Q.; Wu, J.P. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Cian, F.; Marconcini, M.; Ceccato, P. Normalized Difference Flood Index for rapid flood mapping: Taking advantage of EO big data. Remote Sens. Environ. 2018, 209, 712–730. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Chen, B.; Wang, J.; Ye, H. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sheng, Y.; Tong, T.S.D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 2014, 152, 251–269. [Google Scholar] [CrossRef]
- De Andrade Costa, D.; Soares de Azevedo, J.P.; Dos Santos, M.A.; dos Santos Facchetti Vinhaes Assumpção, R. Water quality assessment based on multivariate statistics and water quality index of a strategic river in the Brazilian Atlantic Forest. Sci. Rep. 2020, 10, 22038. [Google Scholar] [CrossRef] [PubMed]
- Youssefi, F.; Zoej, M.J.V.; Hanafi-Bojd, A.A.; Dariane, A.B.; Khaki, M.; Safdarinezhad, A. Predicting the location of larval habitats of Anopheles mosquitoes using remote sensing and soil type data. Int. J. Appl. Earth Obs. 2022, 108, 102746. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, G.; Shah, D.; Zhao, M.; Sarkar, S.; Devadiga, S.; Zhao, B.; Zhang, S.; Gao, H. NASA’s MODIS/VIIRS Global Water Reservoir Product Suite from Moderate Resolution Remote Sensing Data. Remote Sens. 2021, 13, 565. [Google Scholar] [CrossRef]
- Dech, S.; Holzwarth, S.; Asam, S.; Andresen, T.; Bachmann, M.; Boettcher, M.; Dietz, A.; Eisfelder, C.; Frey, C.; Gesell, G. Potential and Challenges of Harmonizing 40 Years of AVHRR Data: The TIMELINE Experience. Remote Sens. 2021, 13, 3618. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Cardenas, R.; Urrutia, R. Retrieving Water Turbidity in Araucanian Lakes (South-Central Chile) Based on Multispectral Landsat Imagery. Remote Sens. 2021, 13, 3133. [Google Scholar] [CrossRef]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M. ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Jiang, H.; Feng, M.; Zhu, Y.; Lu, N.; Huang, J.; Xiao, T. An automated method for extracting rivers and lakes from Landsat imagery. Remote Sens. 2014, 6, 5067–5089. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, Y.; Zhou, M.; Zhang, S.; Zhan, W.; Sun, C.; Duan, Y. Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sens. Environ. 2015, 171, 14–32. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, R.S.; Yang, X.C.; Wang, J.X.; Latif, A. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning. Water 2018, 10, 585. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Du, B.; Xiong, S. Quantifying Sub-Pixel Surface Water Coverage in Urban Environments Using Low-Albedo Fraction from Landsat Imagery. Remote Sens. 2017, 9, 428. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Saraf, A.K.; Goswami, A.; Ahmad, T. Flood inundation mapping using NOAA AVHRR data. Water Resour. Manag. 2006, 20, 949–959. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Liu, R.; Zou, Z.; Zhao, G.; Ge, Q. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Li, L.R.; Su, H.J.; Du, Q.; Wu, T.X. A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS J. Photogramm. 2021, 172, 59–78. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Yésou, H.; Ledauphin, T.; Zhu, Z. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sens. Environ. 2020, 244, 111803. [Google Scholar] [CrossRef]
- Dong-Liang, L.; Hui-Jun, J.; He-Qiang, D.; Chao, L.; Qiang, M.; Shui-Qiang, D.; Guo-Shuai, L. Variation of alpine lakes from 1986 to 2019 in the Headwater Area of the Yellow River, Tibetan Plateau using Google Earth Engine. Adv. Clim. Chang. Res. 2020, 11, 11–21. [Google Scholar]
- Aziz, F.; Kusratmoko, E.; Manessa, M. Google earth engine application for estimating changes in water surface area of Lake Toba. In Proceedings of the IOP Conference Series: Earth and Environmental Science, The Fifth International Conferences of Indonesian Society for Remote Sensing, West Java, Indonesia, 17–20 September 2019; IOP Publishing Ltd.: Bristol, UK, 2019; p. 012028. [Google Scholar]
- Lu, P.; Han, J.; Li, Z.; Xu, R.; Li, R.; Hao, T.; Qiao, G. Lake outburst accelerated permafrost degradation on Qinghai-Tibet Plateau. Remote Sens. Environ. 2020, 249, 112011. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.A.; Waqas, M.; Ali, A.; Muzzamil, M.M.; Abid, U.; Zia, T. Enhanced index for water body delineation and area calculation using Google Earth Engine: A case study of the Manchar Lake. J. Water Clim. Chang. 2022, 13, 557–573. [Google Scholar] [CrossRef]
- Ballesteros, M.L.; Miglioranza, K.S.B.; Gonzalez, M.; Fillmann, G.; Wunderlin, D.A.; Bistoni, M. Multimatrix measurement of persistent organic pollutants in Mar Chiquita, a continental saline shallow lake. Sci. Total Environ. 2014, 490, 73–80. [Google Scholar] [CrossRef]
- Troin, M.; Vallet-Coulomb, C.; Piovano, E.; Sylvestre, F. Rainfall–runoff modeling of recent hydroclimatic change in a subtropical lake catchment: Laguna Mar Chiquita, Argentina. J. Hydrol. 2012, 475, 379–391. [Google Scholar] [CrossRef]
- Troin, M.; Vallet-Coulomb, C.; Sylvestre, F.; Piovano, E. Hydrological modelling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th century climatic changes. J. Hydrol. 2010, 393, 233–244. [Google Scholar] [CrossRef]
- Sheibani, S.; Ataie-Ashtiani, B.; Safaie, A.; Simmons, C.T. Influence of lakebed sediment deposit on the interaction of hypersaline lake and groundwater: A simplified case of lake Urmia, Iran. J. Hydrol. 2020, 588, 125110. [Google Scholar] [CrossRef]
- Bayati, M.; Danesh-Yazdi, M. Mapping the spatiotemporal variability of salinity in the hypersaline Lake Urmia using Sentinel-2 and Landsat-8 imagery. J. Hydrol. 2021, 595, 126032. [Google Scholar] [CrossRef]
- Rezaei, A.; Gurdak, J.J. Large-scale climate variability controls on climate, vegetation coverage, lake and groundwater storage in the Lake Urmia watershed using SSA and wavelet analysis. Sci. Total Environ. 2020, 724, 138273. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Jiang, T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, W.; Chen, Y.; Wang, J. Microplastics in surface waters of dongting lake and hong lake, China. Sci. Total Environ. 2018, 633, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Zhang, Q.; Liu, J.; Li, X.; Xu, C.-y. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Ding, X.; Li, X. Monitoring of the water-area variations of Lake Dongting in China with ENVISAT ASAR images. Int. J. Appl. Earth Obs. 2011, 13, 894–901. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Yuan, Y.; Zeng, G.; Liang, J.; Huang, L.; Hua, S.; Li, F.; Zhu, Y.; Wu, H.; Liu, J.; He, X. Variation of water level in Dongting Lake over a 50-year period: Implications for the impacts of anthropogenic and climatic factors. J. Hydrol. 2015, 525, 450–456. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Song, C.; Li, W.; Liu, K.; Cheng, J.; Fu, C.; Chen, T.; Ke, L.; Wang, J. What drives the rapid water-level recovery of the largest lake (Qinghai Lake) of China over the past half century? J. Hydrol. 2021, 593, 125921. [Google Scholar] [CrossRef]
- Qi, M.; Liu, S.; Yao, X.; Xie, F.; Gao, Y. Monitoring the ice phenology of Qinghai lake from 1980 to 2018 using multisource remote sensing data and Google Earth Engine. Remote Sens. 2020, 12, 2217. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.-Q.; Duan, Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ. 2017, 607, 120–131. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Schiller, C.; Kattenborn, T.; Zhao, X.; Qu, J. A Landsat-based vegetation trend product of the Tibetan Plateau for the time-period 1990–2018. Sci. Data 2019, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Ji, H.; Li, X.; Wei, X.; Liu, W.; Zhang, L.; Wang, L. Mapping 10-m resolution rural settlements using multi-source remote sensing datasets with the Google Earth Engine platform. Remote Sens. 2020, 12, 2832. [Google Scholar] [CrossRef]
- USGS. Landsat Surface Reflectance Data; 2015–3034; USGS: Reston, VA, USA, 2015; p. 1.
- China Water & Power Press. Hydrological Yearbook of People’s Republic of China: Hydrological Data of Inland Rivers and Lakes Basin; China Water & Power Press: Beijing, China, 2019. [Google Scholar]
- China Water & Power Press. Hydrological Yearbook of People’s Republic of China: Hydrological Data of Yangtze River Basin; China Water & Power Press: Beijing, China, 2019. [Google Scholar]
- Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2017, 11, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, U.N.; Pham, L.T.; Dang, T.D. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environ. Monit. Assess. 2019, 191, 235. [Google Scholar] [CrossRef]
- Yan, D.; Huang, C.; Ma, N.; Zhang, Y. Improved landsat-based water and snow indices for extracting lake and snow cover/glacier in the tibetan plateau. Water 2020, 12, 1339. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; Hambright, K.D. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- Lewis, H.; Brown, M. A generalized confusion matrix for assessing area estimates from remotely sensed data. Int. J. Remote Sens. 2001, 22, 3223–3235. [Google Scholar] [CrossRef]
- Hawkins, D.M.; Qiu, P.; Kang, C.W. The changepoint model for statistical process control. J. Qual. Technol. 2003, 35, 355–366. [Google Scholar] [CrossRef]
- Ng, W.; Panu, U.; Lennox, W. Chaos based analytical techniques for daily extreme hydrological observations. J. Hydrol. 2007, 342, 17–41. [Google Scholar] [CrossRef]
- Kulanuwat, L.; Chantrapornchai, C.; Maleewong, M.; Wongchaisuwat, P.; Wimala, S.; Sarinnapakorn, K.; Boonya-aroonnet, S. Anomaly detection using a sliding window technique and data imputation with machine learning for hydrological time series. Water 2021, 13, 1862. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, s.; Chen, H. Performance and Application of Hydrological Observation Missing Data Interpolation Methods. Yellow River 2020, 42, 14–18. [Google Scholar]
- Demirhan, H.; Renwick, Z. Missing value imputation for short to mid-term horizontal solar irradiance data. Appl. Energy 2018, 225, 998–1012. [Google Scholar] [CrossRef]
- Kabiri, K.; Pradhan, B.; Sharifi, A.; Ghobadi, Y.; Pirasteh, S. Manifestation of remotely sensed data coupled with field measured meteorological data for an assessment of degradation of Urmia Lake, Iran. In Proceedings of the Asia Pacific Conference on Environmental Science and Technology, Shanghai, China, 6–9 November 2012; pp. 395–401. [Google Scholar]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Li, W.; Wu, M.; Huang, N.; Li, G.; Li, X.; Niu, Z. Dynamic monitoring of the largest freshwater lake in China using a new water index derived from high spatiotemporal resolution Sentinel-1A data. Remote Sens. 2017, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xia, H.; Li, Z.; Zhang, Z. Temporal-spatial evolution analysis of lake size-distribution in the middle and lower Yangtze River Basin using Landsat imagery data. Remote Sens. 2015, 7, 10364–10384. [Google Scholar] [CrossRef] [Green Version]
- Huth, J.; Gessner, U.; Klein, I.; Yesou, H.; Lai, X.; Oppelt, N.; Kuenzer, C. Analyzing Water Dynamics Based on Sentinel-1 Time Series—A Study for Dongting Lake Wetlands in China. Remote Sens. 2020, 12, 1761. [Google Scholar] [CrossRef]
- Tang, L.; Duan, X.; Kong, F.; Zhang, F.; Zheng, Y.; Li, Z.; Mei, Y.; Zhao, Y.; Hu, S. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Sci. Rep. 2018, 8, 7331. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Jia, S.; Lv, A. Monitoring the fluctuation of Lake Qinghai using multi-source remote sensing data. Remote Sens. 2014, 6, 10457–10482. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
Case Lakes | Geo-Locations | Area (km2) * | Type | Characteristics | Climates (Köppen Key) [47] |
---|---|---|---|---|---|
Chiquita Lake | 30°~30°55′S, 62°~63°W | 4610 | Saline lake | Salt lake in South America; vegetation abundant in the north; precipitation in December to next March. | Humid subtropical climate (Cfa) |
Urmia Lake | 37°46′′N, 45°20′E | 3273 | Saline lake | High salinity; low water depth; salt crust around lake shore. | Cold semi-arid climate (Bsk) |
Dongting Lake | 28°30′~30°20′N, 111°40′~113°10′E | 1542 | Freshwater lake, river lagoon | The second largest freshwater lake in China; a lot of vegetation around; precipitation concentrated in July to September. | Humid subtropical climate (Cfa) |
Poyang Lake | 28°22′~29°45′N, 115°47′~116°45′E | 2879 | Freshwater lake, river lagoon | The largest freshwater lake in China; a lot of vegetation around; precipitation concentrated in July to September. | Humid subtropical climate (Cfa) |
Qinghai Lake | 36°32′~37°15′N, 99°36′~100°16′E | 4504 | Saline lake, plateau lake | The largest saline lake in China; precipitation concentrated in June to September; freezes from December to March | Monsoon-influenced subarctic climate (Dwc) |
Features | Equations | Thresholding | Objectives |
---|---|---|---|
AWEI_sh | blue + 2.5 × green − 1.5 × (nir + swir1) − 0.25 × swir2 | Empirical: >−0.005 | Water mapping |
Brightness | (nir + red + swir1)/3 | Empirical: varied | Ice and snow noise |
mNDWI | (green − swir1)/(green + swir1) | mNDWI > NDVI or mNDWI > EVI | Vegetation noise |
NDVI | (nir − red)/(nir + red) | ||
EVI | 2.5 × (nir − red)/(nir + 6 × red − 7.5 × blue + 1) | ||
Max_extent | GSW Max_extent | Max_extent = 1 | Suppress terrestrial noise in complex environments |
Month | 2010 | 2020 | Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chiquita | Urmia | Dongting | Poyang | Qinghai | Chiquita | Urmia | Dongting | Poyang | Qinghai | ||
1 | 0.89 | 0.89 | 0.88 | 0.78 | 1.00 | 0.97 | 0.80 | 0.79 | 0.76 | 0.75 | 0.85 |
3 | 0.96 | 0.96 | 0.76 | 0.89 | 1.00 | 0.97 | 0.77 | 0.76 | 0.81 | - * | 0.87 |
5 | 0.93 | 0.93 | 0.81 | 0.92 | 0.96 | 1.00 | 0.93 | 0.82 | 0.92 | 0.93 | 0.92 |
7 | 0.97 | 0.97 | 0.96 | 0.97 | 0.97 | 0.93 | 0.93 | 0.88 | 0.84 | 1.00 | 0.94 |
9 | 0.93 | 0.93 | 0.96 | 0.86 | 0.93 | 0.90 | 1.00 | 0.92 | 0.83 | 1.00 | 0.93 |
11 | 1.00 | 1.00 | 0.69 | 0.88 | 0.89 | 0.97 | 0.86 | 0.65 | 1.00 | 1.00 | 0.89 |
Average | 0.95 | 0.95 | 0.84 | 0.88 | 0.96 | 0.96 | 0.88 | 0.80 | 0.86 | 0.94 | 0.90 |
Month | 2010 (%) | 2020 (%) | Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chiquita | Urmia | Dongting | Poyang | Qinghai | Chiquita | Urmia | Dongting | Poyang | Qinghai | ||
1 | 95.0 | 95.0 | 99.0 | 91.7 | 100.0 | 98.3 | 90.0 | 98.0 | 90.9 | 88.3 | 94.6 |
3 | 98.3 | 98.3 | 96.0 | 95.0 | 100.0 | 98.3 | 88.3 | 96.0 | 91.7 | - * | 95.8 |
5 | 96.7 | 96.7 | 96.0 | 96.5 | 98.3 | 100.0 | 96.7 | 98.0 | 96.7 | 96.7 | 97.2 |
7 | 98.3 | 98.3 | 99.0 | 98.3 | 98.3 | 96.7 | 96.7 | 97.0 | 93.3 | 100.0 | 97.6 |
9 | 96.7 | 96.7 | 99.0 | 93.3 | 96.7 | 95.0 | 100.0 | 98.0 | 91.7 | 100.0 | 96.7 |
11 | 100.0 | 100.0 | 96.0 | 96.7 | 95.0 | 98.3 | 93.3 | 96.0 | 100.0 | 100.0 | 97.5 |
Average | 97.5 | 97.5 | 97.5 | 95.3 | 98.1 | 97.8 | 94.2 | 97.2 | 94.0 | 97.0 | 96.6 |
Lakes | Image Sources | Methods | Time Span | Temporal Resolution | Correlations | References |
---|---|---|---|---|---|---|
Urmia | Landsat | Unsupervised classification | 1984–2011 | year | 0.99 | Kabiri et al. [69] |
Landsat | NDWI | 2000–2013 | year | 0.95 | Rokni et al. [70] | |
Dongting | Landsat | AWEI | 2002–2013 | season | 0.93 | Li et al. [72] |
Sentinel-1A | thresholding segmentation | 2016 | month | 0.97 | Huth et al. [73] | |
Poyang | Landsat | AWEI | 2002–2013 | season | 0.99 | Li et al. [72] |
Sentinel-1A | SWI thresholding | 2015–2016 | month | 0.99 | Tian et al. [71] | |
Qinghai | Landsat | mNDWI and Classification | 1987–2016 | year | 0.94 | Tang et al. [74] |
Landsat | mNDWI | 1999–2009 | year | 0.93 | Zhu et al. [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wang, H.; Hu, S.; You, S.; Yang, X. Long-Term and Bimonthly Estimation of Lake Water Extent Using Google Earth Engine and Landsat Data. Remote Sens. 2022, 14, 2893. https://doi.org/10.3390/rs14122893
Zhang T, Wang H, Hu S, You S, Yang X. Long-Term and Bimonthly Estimation of Lake Water Extent Using Google Earth Engine and Landsat Data. Remote Sensing. 2022; 14(12):2893. https://doi.org/10.3390/rs14122893
Chicago/Turabian StyleZhang, Tao, Hongxing Wang, Shanshan Hu, Shucheng You, and Xiaomei Yang. 2022. "Long-Term and Bimonthly Estimation of Lake Water Extent Using Google Earth Engine and Landsat Data" Remote Sensing 14, no. 12: 2893. https://doi.org/10.3390/rs14122893
APA StyleZhang, T., Wang, H., Hu, S., You, S., & Yang, X. (2022). Long-Term and Bimonthly Estimation of Lake Water Extent Using Google Earth Engine and Landsat Data. Remote Sensing, 14(12), 2893. https://doi.org/10.3390/rs14122893