Remote Sensing of Surface and Subsurface Soil Organic Carbon in Tidal Wetlands: A Review and Ideas for Future Research
Abstract
:1. Introduction
2. Past Studies on SOC Modeling and Mapping
2.1. Surface SOC Prediction Modeling across Biomes
2.2. Status of SOC Modeling in Tidal Wetlands
3. Methods for Wetlands SOC Modeling and Mapping
3.1. Spectral Covariables
3.2. Climatic Covariables
3.3. Topographic Covariables
3.4. Soil Covariables
4. Future Directions for Remote-Sensing-Based Tidal Wetland SOC Studies
4.1. Subsurface SOC Estimation in Wetlands
4.2. Relation between Surface and Subsurface SOC in Wetlands: A Case Study
4.3. Comparison of SSURGO Data with CBCN Database
4.4. Remote-Sensing-Based Subsurface SOC Prediction Model Framework with Standard and Proposed Novel Covariables
5. Conclusions
- What are the spatiotemporal trends in tidal wetland soil carbon dynamics over the past 50 years?
- How does climate change impact the carbon-storing capacity of wetlands?
- What other factors (such as vegetation and soil properties) control the distribution of carbon in wetlands in space and time?
- What are the impacts of the press (sea level rise, increasing atmospheric CO2) vs. pulse (hurricanes, flash droughts, freshwater fluxes associated with extreme precipitation events) disturbances on wetland SOC?
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rundquist, D.C.; Narumalani, S.; Narayanan, R.M. A Review of Wetlands Remote Sensing and Defining New Considerations. Remote Sens. Rev. 2001, 20, 207–226. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, W.J.G. Wetlands; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Dugan, P. (Ed.) Wetlands in Danger: A World Conservation Atlas; Introduction by David Bellamy; Oxford University Press: New York, NY, USA, 1993; ISBN 0195209427. [Google Scholar]
- Luo, M.; Huang, J.F.; Zhu, W.F.; Tong, C. Impacts of Increasing Salinity and Inundation on Rates and Pathways of Organic Carbon Mineralization in Tidal Wetlands: A Review. Hydrobiologia 2019, 827, 31–49. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The Value of Estuarine and Coastal Ecosystem Services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Ding, J.; Yang, A.; Wang, J.; Sagan, V.; Yu, D. Machine-Learning-Based Quantitative Estimation of Soil Organic Carbon Content by VIS/NIR Spectroscopy. PeerJ 2018, 6, e5714. [Google Scholar] [CrossRef] [Green Version]
- Reimold, R.J.; Gallagher, J.L.; Thompson, D.E. Coastal Mapping with Remote Sensors. In Proceedings of the Coastal Mapping Symposium; American Society of Photogrammetry: Washington, DC, USA, 1972; pp. 99–112. [Google Scholar]
- Anderson, R.R.; Carter, V.L.; Mcginness, J.W., Jr. Mapping Southern Atlantic Coastal Marshland, South Carolina-Georgia, Using ERTS-1 Imagery; NASA Technical Reports Server (NTRS). 1973. Available online: https://ntrs.nasa.gov/citations/19730010631 (accessed on 24 January 2021).
- Dahl, T.E. Wetlands Losses in the United States 1780’s to 1980’s; U.S. Department of the Interior, Fish and Wild Life Service: Washington, DC, UDA, 1990; 13p. Available online: https://www.fws.gov/wetlands/documents/Wetlands-Losses-in-the-United-States-1780s-to-1980s.pdf (accessed on 12 October 2021).
- Hardisky, M.A.; Gross, M.F.; Klemas, V. Remote Sensing of Coastal Wetlands. BioScience 1986, 36, 453–460. [Google Scholar] [CrossRef]
- Byrd, K.B.; Ballanti, L.; Thomas, N.; Nguyen, D.; Holmquist, J.R.; Simard, M.; Windham-Myers, L. A Remote Sensing-Based Model of Tidal Marsh Aboveground Carbon Stocks for the Conterminous United States. ISPRS J. Photogramm. Remote Sens. 2018, 139, 255–271. [Google Scholar] [CrossRef]
- Freeman, C.; Ostle, N.; Kang, H. An Enzymic “latch” on a Global Carbon Store. Nature 2001, 409, 149. [Google Scholar] [CrossRef]
- Köchy, M.; Hiederer, R.; Freibauer, A. Global Distribution of Soil Organic Carbon—Part 1: Masses and Frequency Distributions of SOC Stocks for the Tropics, Permafrost Regions, Wetlands, and the World. Soil 2015, 1, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wang, Y.; Li, Y.; Dong, H.; Zhou, D.; Han, G.; Wu, H.; Wang, G.; Mao, P.; Gao, Y. Soil Organic Carbon Storage Changes in Coastal Wetlands of the Modern Yellow River Delta from 2000 to 2009. Biogeosci. Discuss. 2012, 9, 1759–1779. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, G.; Cavallaro, N.; Lorenzoni, L.; Seadler, A.; Zhu, Z.; Gurwick, N.P.; Larson, E.; Birdsey, R.; Mayes, M.A.; Najjar, R.G.; et al. Highlights. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report; Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M.A., Najjar, R.G., Reed, S.C., Romero-Lankao, P., Zhu, Z., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Kolka, R.; Trettin, C.; Tang, W.; Krauss, K.; Bansal, S.; Drexler, J.; Wickland, K.; Chimner, R.; Hogan, D.; Pindilli, E.J.; et al. Chapter 13: Terrestrial wetlands. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report; Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M.A., Najjar, R.G., Reed, S.C., Romero-Lankao, P., Zhu, Z., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 507–567. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbon. Adv. Agron. 2013, 118, 1–47. [Google Scholar] [CrossRef]
- Shen, L.; Gao, M.; Yan, J.; Li, Z.L.; Leng, P.; Yang, Q.; Duan, S.B. Hyperspectral Estimation of Soil Organic Matter Content Using Different Spectral Preprocessing Techniques and PLSR Method. Remote Sens. 2020, 12, 1206. [Google Scholar] [CrossRef] [Green Version]
- Žížala, D.; Minarík, R.; Zádorová, T. Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Nawar, S.; Munnaf, M.A.; Mouazen, A.M. Machine Learning Based On-Line Prediction of Soil Organic Carbon after Removal of Soil Moisture Effect. Remote Sens. 2020, 12, 1308. [Google Scholar] [CrossRef] [Green Version]
- Maleki, S.; Khormali, F.; Mohammadi, J.; Bogaert, P.; Bagheri Bodaghabadi, M. Effect of the Accuracy of Topographic Data on Improving Digital Soil Mapping Predictions with Limited Soil Data: An Application to the Iranian Loess Plateau. Catena 2020, 195, 104810. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Aksoy, E.; Yigini, Y.; Montanarella, L. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe. PLoS ONE 2016, 11, e0152098. [Google Scholar] [CrossRef]
- Yang, R.M.; Zhang, G.L.; Liu, F.; Lu, Y.Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.G.; Li, D.C. Comparison of Boosted Regression Tree and Random Forest Models for Mapping Topsoil Organic Carbon Concentration in an Alpine Ecosystem. Ecol. Indic. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Kerry, R. Digital Mapping of Soil Organic Carbon at Multiple Depths Using Different Data Mining Techniques in Baneh Region, Iran. Geoderma 2016, 266, 98–110. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E.; Minasny, B.; Bou Kheir, R.; Greve, M.B.; Greve, M.H. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark. PLoS ONE 2014, 9, e105519. [Google Scholar] [CrossRef]
- Grinand, C.; Maire, G.L.; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M. Estimating Temporal Changes in Soil Carbon Stocks at Ecoregional Scale in Madagascar Using Remote-Sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 1–14. [Google Scholar] [CrossRef]
- Hamzehpour, N.; Shafizadeh-Moghadam, H.; Valavi, R. Exploring the Driving Forces and Digital Mapping of Soil Organic Carbon Using Remote Sensing and Soil Texture. Catena 2019, 182, 104141. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Liu, D.L. High Resolution Mapping of Soil Organic Carbon Stocks Using Remote Sensing Variables in the Semi-Arid Rangelands of Eastern Australia. Sci. Total Environ. 2018, 630, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Schillaci, C.; Acutis, M.; Lombardo, L.; Lipani, A.; Fantappiè, M.; Märker, M.; Saia, S. Spatio-Temporal Topsoil Organic Carbon Mapping of a Semi-Arid Mediterranean Region: The Role of Land Use, Soil Texture, Topographic Indices and the Influence of Remote Sensing Data to Modelling. Sci. Total Environ. 2017, 601–602, 821–832. [Google Scholar] [CrossRef]
- Zhang, C.; Mishra, D.R.; Pennings, S.C. Mapping Salt Marsh Soil Properties Using Imaging Spectroscopy. ISPRS J. Photogramm. Remote Sens. 2019, 148, 221–234. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, M.; Zhuang, Q.; Guo, L. Prediction Potential of Remote Sensing-Related Variables in the Topsoil Organic Carbon Density of Liaohekou Coastal Wetlands, Northeast China. Remote Sens. 2021, 13, 4106. [Google Scholar] [CrossRef]
- Gomez, C.; Viscarra Rossel, R.A.; McBratney, A.B. Soil Organic Carbon Prediction by Hyperspectral Remote Sensing and Field Vis-NIR Spectroscopy: An Australian Case Study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- PRISMA Data Are Now Available for Access—Surface Biology and Geology. Available online: https://sbg.jpl.nasa.gov/news-events/prisma-data-are-now-available-for-access (accessed on 1 June 2022).
- Somarathna, P.D.S.N.; Malone, B.P.; Minasny, B. Mapping Soil Organic Carbon Content over New South Wales, Australia Using Local Regression Kriging. Geoderma Reg. 2016, 7, 38–48. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef] [Green Version]
- Kempen, B.; Dalsgaard, S.; Kaaya, A.K.; Chamuya, N.; Ruipérez-González, M.; Pekkarinen, A.; Walsh, M.G. Mapping Topsoil Organic Carbon Concentrations and Stocks for Tanzania. Geoderma 2019, 337, 164–180. [Google Scholar] [CrossRef]
- Samdandorj, M.; Ts, P. Geospatial Modeling Approaches for Mapping Topsoil Organic Carbon Stock in Northern Part of Mongolia. Proc. Mong. Acad. Sci. 2019, 59, 4–17. [Google Scholar] [CrossRef]
- Han, L.; Wan, Z.; Guo, Y.; Song, C.; Jin, S.; Zuo, Y. Estimation of Soil Organic Carbon Storage in Palustrine Wetlands, China. Int. J. Environ. Res. Public Health 2020, 17, 4646. [Google Scholar] [CrossRef] [PubMed]
- Yigini, Y.; Panagos, P. Assessment of Soil Organic Carbon Stocks under Future Climate and Land Cover Changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Osland, M.J.; Gabler, C.A.; Grace, J.B.; Day, R.H.; McCoy, M.L.; McLeod, J.L.; From, A.S.; Enwright, N.M.; Feher, L.C.; Stagg, C.L.; et al. Climate and Plant Controls on Soil Organic Matter in Coastal Wetlands. Glob. Chang. Biol. 2018, 24, 5361–5379. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAO Global Soil Organic Carbon Map (GSOCmap); FAO: Rome, Italy, 2018; ISBN 978-92-5-130439-6. Available online: http://www.fao.org/documents/card/en/c/I8891EN (accessed on 12 February 2022).
- Tidal Wetland Soil Carbon Stocks for the Conterminous United States, 2006–2010. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1612 (accessed on 7 November 2021).
- Mitra, S.; Wassmann, R.; Vlek, P.L.G. An Appraisal of Global Wetland Area and Its Organic Carbon Stock. Curr. Sci. 2005, 88, 25–35. [Google Scholar]
- Hinson, A.L.; Feagin, R.A.; Eriksson, M.; Najjar, R.G.; Herrmann, M.; Bianchi, T.S.; Kemp, M.; Hutchings, J.A.; Crooks, S.; Boutton, T. The Spatial Distribution of Soil Organic Carbon in Tidal Wetland Soils of the Continental United States. Glob. Chang. Biol. 2017, 23, 5468–5480. [Google Scholar] [CrossRef]
- Xu, S.; Liu, X.; Li, X.; Tian, C. Soil Organic Carbon Changes Following Wetland Restoration: A Global Meta-Analysis. Geoderma 2019, 353, 89–96. [Google Scholar] [CrossRef]
- Yang, R.M. Interacting Effects of Plant Invasion, Climate, and Soils on Soil Organic Carbon Storage in Coastal Wetlands. J. Geophys. Res. Biogeosci. 2019, 124, 2554–2564. [Google Scholar] [CrossRef]
- Jinbo, Z.; Changchun, S.; Shenmin, W. Dynamics of Soil Organic Carbon and Its Fractions after Abandonment of Cultivated Wetlands in Northeast China. Soil Tillage Res. 2007, 96, 350–360. [Google Scholar] [CrossRef]
- Holmquist, J.R.; Windham-Myers, L.; Bliss, N.; Crooks, S.; Morris, J.T.; Megonigal, J.P.; Troxler, T.; Weller, D.; Callaway, J.; Drexler, J.; et al. Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States. Sci. Rep. 2018, 8, 9478. [Google Scholar] [CrossRef] [Green Version]
- Bernal, B.; Mitsch, W.J. A Comparison of Soil Carbon Pools and Profiles in Wetlands in Costa Rica and Ohio. Ecol. Eng. 2008, 34, 311–323. [Google Scholar] [CrossRef]
- Tangen, B.A.; Bansal, S. Soil Organic Carbon Stocks and Sequestration Rates of Inland, Freshwater Wetlands: Sources of Variability and Uncertainty. Sci. Total Environ. 2020, 749, 141444. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Li, X.; Mao, D.; Wang, Z.; Jia, M.; Chen, L. Investigating Spatial and Vertical Patterns of Wetland Soil Organic Carbon Concentrations in China’s Western Songnen Plain by Comparing Different Algorithms. Sustainability 2020, 12, 932. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Xiong, X.; Adhikari, K.; Knadel, M.; Grunwald, S.; Greve, M.H. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra. PLoS ONE 2015, 10, e0142295. [Google Scholar] [CrossRef] [Green Version]
- Maynard, J.J.; Levi, M.R. Hyper-Temporal Remote Sensing for Digital Soil Mapping: Characterizing Soil-Vegetation Response to Climatic Variability. Geoderma 2017, 285, 94–109. [Google Scholar] [CrossRef] [Green Version]
- Albaladejo, J.; Ortiz, R.; Garcia-Franco, N.; Navarro, A.R.; Almagro, M.; Pintado, J.G.; Martínez-Mena, M. Land Use and Climate Change Impacts on Soil Organic Carbon Stocks in Semi-Arid Spain. J. Soils Sediments 2013, 13, 265–277. [Google Scholar] [CrossRef]
- Jobba´gy, E.G.; Jobba´gy, J.; Jackson, R.B. April 2000 423 Belowground Processes and Global Change 423 the Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2000; Volume 10. [Google Scholar]
- Yang, Y.H.; Fang, J.Y.; Guo, D.L.; Ji, C.J.; Ma, W.H. Vertical Patterns of Soil Carbon, Nitrogen and Carbon: Nitrogen Stoichiometry in Tibetan Grasslands. Biogeosci. Discuss. 2010, 7, 1–24. [Google Scholar] [CrossRef]
- Liu, W.; Chen, S.; Qin, X.; Baumann, F.; Scholten, T.; Zhou, Z.; Sun, W.; Zhang, T.; Ren, J.; Qin, D. Storage, Patterns, and Control of Soil Organic Carbon and Nitrogen in the Northeastern Margin of the Qinghai-Tibetan Plateau. Environ. Res. Lett. 2012, 7, 035401. [Google Scholar] [CrossRef]
- Lleras, C. Path Analysis. In Encyclopedia of Social Measurement; Elsevier: New York, NY, USA, 2005; Volume 3, pp. 25–30. Available online: https://www.researchgate.net/profile/Paul-Louangrath/post/Can_anybody_clearly_define_differences_between_Path_analysis_and_error_in_regression_analysis/attachment/59d63b74c49f478072ea7410/AS%3A273741995544576%401442276585356/download/Path_Analysis.pdf (accessed on 11 November 2021).
- Davidson, E.A.; Trumbore, S.E.; Amundson, R. Soil Warming and Organic Carbon Content. Nature 2000, 408, 789–790. [Google Scholar] [CrossRef]
- Bonneville, M.C.; Strachan, I.B.; Humphreys, E.R.; Roulet, N.T. Net Ecosystem CO2 Exchange in a Temperate Cattail Marsh in Relation to Biophysical Properties. Agric. For. Meteorol. 2008, 148, 69–81. [Google Scholar] [CrossRef]
- Watts, A.C. Organic Soil Combustion in Cypress Swamps: Moisture Effects and Landscape Implications for Carbon Release. For. Ecol. Manag. 2013, 294, 178–187. [Google Scholar] [CrossRef]
- Watts, A.C.; Kobziar, L.N. Smoldering Combustion and Ground Fires: Ecological Effects and Multi-Scale Significance. Fire Ecol. 2013, 9, 124–132. [Google Scholar] [CrossRef]
- Qu, W.; Li, J.; Han, G.; Wu, H.; Song, W.; Zhang, X. Effect of Salinity on the Decomposition of Soil Organic Carbon in a Tidal Wetland. J. Soils Sediments 2019, 19, 609–617. [Google Scholar] [CrossRef]
- Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiluweit, M.; Lawrence, C.R.; Berhe, A.A.; Blankinship, J.C.; Crow, S.E.; Druhan, J.L.; Hicks Pries, C.E.; et al. Beyond Clay: Towards an Improved Set of Variables for Predicting Soil Organic Matter Content. Biogeochemistry 2018, 137, 297–306. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Ollivier, Q.R.; Kelleway, J.J.; Serrano, O.; Carnell, P.E.; Ewers Lewis, C.J.; Atwood, T.B.; Sanderman, J.; Baldock, J.; Connolly, R.M.; et al. Carbon Sequestration by Australian Tidal Marshes. Sci. Rep. 2017, 7, srep44071. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Zhang, G.; Zhao, Q.; Lu, Q.; Jia, J.; Cui, B.; Liu, X. Depth-Distribution Patterns and Control of Soil Organic Carbon in Coastal Salt Marshes with Different Plant Covers. Sci. Rep. 2016, 6, 34835. [Google Scholar] [CrossRef]
- Chakraborty, P.; Das, B.S.; Vasava, H.B.; Panigrahi, N.; Santra, P. Spatial Structure, Parameter Nonlinearity, and Intelligent Algorithms in Constructing Pedotransfer Functions from Large-Scale Soil Legacy Data. Sci. Rep. 2020, 10, 15050. [Google Scholar] [CrossRef]
- Reddy, N.N.; Chakraborty, P.; Roy, S.; Singh, K.; Minasny, B.; McBratney, A.B.; Biswas, A.; Das, B.S. Legacy Data-Based National-Scale Digital Mapping of Key Soil Properties in India. Geoderma 2020, 381, 114684. [Google Scholar] [CrossRef]
- Rasquinha, D.N.; Mishra, D.R. Impact of Wood Harvesting on Mangrove Forest Structure, Composition and Biomass Dynamics in India. Estuar. Coast. Shelf Sci. 2021, 248, 106974. [Google Scholar] [CrossRef]
- Nahlik, A.M.; Fennessy, M.S. Carbon Storage in US Wetlands. Nat. Commun. 2016, 7, 13835. [Google Scholar] [CrossRef] [Green Version]
- Craft, C. Freshwater Input Structures Soil Properties, Vertical Accretion, and Nutrient Accumulation of Georgia and U.S. Tidal Marshes. Limnol. Oceanogr. 2007, 52, 1220–1230. [Google Scholar] [CrossRef]
- Spivak, A.C.; Canuel, E.A.; Duffy, J.E.; Douglass, J.G.; Richardson, J.P. Epifaunal Community Composition and Nutrient Addition Alter Sediment Organic Matter Composition in a Natural Eelgrass Zostera Marina Bed: A Field Experiment. Mar. Ecol. Prog. Ser. 2009, 376, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, S.C.; Anderson, I.C.; Constantine, J.A.; Kuehl, S.A. Sediment Deposition and Accretion in a Mid-Atlantic (U.S.A.) Tidal Freshwater Marsh. Estuar. Coast. Shelf Sci. 2002, 54, 713–727. [Google Scholar] [CrossRef] [Green Version]
- McGlathery, K.J.; Reynolds, L.K.; Cole, L.W.; Orth, R.J.; Marion, S.R.; Schwarzschild, A. Recovery Trajectories during State Change from Bare Sediment to Eelgrass Dominance. Mar. Ecol. Prog. Ser. 2012, 448, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Buzzelli, C.P. Dynamic Simulation of Littoral Zone Habitats in Lower Chesapeake Bay. I. Ecosystem Characterization Related to Model Development. Estuaries 1998, 21, 659–672. [Google Scholar] [CrossRef]
- Noe, G.B.; Hupp, C.R.; Bernhardt, C.E.; Krauss, K.W. Contemporary Deposition and Long-Term Accumulation of Sediment and Nutrients by Tidal Freshwater Forested Wetlands Impacted by Sea Level Rise. Estuaries Coasts 2016, 39, 1006–1019. [Google Scholar] [CrossRef]
- Jones, M.C.; Bernhardt, C.E.; Krauss, K.W.; Noe, G.B. The Impact of Late Holocene Land Use Change, Climate Variability, and Sea Level Rise on Carbon Storage in Tidal Freshwater Wetlands on the Southeastern United States Coastal Plain. J. Geophys. Res. Biogeosci. 2017, 122, 3126–3141. [Google Scholar] [CrossRef] [Green Version]
- Krauss, K.W.; Noe, G.B.; Duberstein, J.A.; Conner, W.H.; Stagg, C.L.; Cormier, N.; Jones, M.C.; Bernhardt, C.E.; Graeme Lockaby, B.; From, A.S.; et al. The Role of the Upper Tidal Estuary in Wetland Blue Carbon Storage and Flux. Glob. Biogeochem. Cycles 2018, 32, 817–839. [Google Scholar] [CrossRef]
- Drexler, J.Z.; Krauss, K.W.; Sasser, M.C.; Fuller, C.C.; Swarzenski, C.M.; Powell, A.; Swanson, K.M.; Orlando, J. A Long-Term Comparison of Carbon Sequestration Rates in Impounded and Naturally Tidal Freshwater Marshes along the Lower Waccamaw River, South Carolina. Wetlands 2013, 33, 965–974. [Google Scholar] [CrossRef]
- Townsend, E.C.; Fonseca, M.S. Bioturbation as a Potential Mechanism Influencing Spatial Heterogeneity of North Carolina Seagrass Beds. Mar. Ecol. Prog. Ser. 1998, 169, 123–132. [Google Scholar] [CrossRef]
- Fourqurean, J.W.; Duarte, C.M.; Kennedy, H.; Marbà, N.; Holmer, M.; Mateo, M.A.; Apostolaki, E.T.; Kendrick, G.A.; Krause-Jensen, D.; McGlathery, K.J.; et al. Seagrass Ecosystems as a Globally Significant Carbon Stock. Nat. Geosci. 2012, 5, 505–509. [Google Scholar] [CrossRef]
- Smith, K.E.L.; Flocks, J.G.; Steyer, G.D.; Piazza, S.C. Wetland Paleoecological Study of Southwest Coastal Louisiana: Sediment Cores and Diatom Calibration Dataset; Data Series 877; U.S. Geological Survey: Reston, VA, USA, 2015. [CrossRef]
- Piazza, S.C.; Steyer, G.D.; Cretini, K.F.; Sasser, C.E.; Visser, J.M.; Holm, G.O.; Sharp, L.A.; Evers, D.E.; Meriwether, J.R. Geomorphic and Ecological Effects of Hurricanes Katrina and Rita on Coastal Louisiana Marsh Communities; Open-File Report 2011-1094; U.S. Geological Survey: Reston, VA, USA, 2011; pp. i–126. [CrossRef]
- Nymanl, J.A.; Delaunel, R.D.; Patrick, W.H., Jr. Relationship between Vegetation and Soil Formation in a Rapidly Submerging Coastal Marsh. Mar. Ecol. Prog. Ser. 1993, 96, 269–279. [Google Scholar] [CrossRef]
- Abbott, K.M.; Elsey-Quirk, T.; DeLaune, R.D. Factors Influencing Blue Carbon Accumulation across a 32-Year Chronosequence of Created Coastal Marshes. Ecosphere 2019, 10, e02828. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, J.K. Interstitial Water and Sediment Chemistry of Two Cores from Florida Bay. J. Sediment. Res. 1979, 49, 989–994. [Google Scholar] [CrossRef]
- Yarbro, L.A.; Carlson, P.R. Community Oxygen and Nutrient Fluxes in Seagrass Beds of Florida Bay, USA. Estuaries Coasts 2008, 31, 877–897. [Google Scholar] [CrossRef]
- Yando, E.S.; Osland, M.J.; Willis, J.M.; Day, R.H.; Krauss, K.W.; Hester, M.W. Salt Marsh-Mangrove Ecotones: Using Structural Gradients to Investigate the Effects of Woody Plant Encroachment on Plant–Soil Interactions and Ecosystem Carbon Pools. J. Ecol. 2016, 104, 1020–1031. [Google Scholar] [CrossRef] [Green Version]
- Smoak, J.M.; Breithaupt, J.L.; Smith, T.J.; Sanders, C.J. Sediment Accretion and Organic Carbon Burial Relative to Sea-Level Rise and Storm Events in Two Mangrove Forests in Everglades National Park. Catena 2013, 104, 58–66. [Google Scholar] [CrossRef]
- Radabaugh, K.R.; Moyer, R.P.; Chappel, A.R.; Powell, C.E.; Bociu, I.; Clark, B.C.; Smoak, J.M. Coastal Blue Carbon Assessment of Mangroves, Salt Marshes, and Salt Barrens in Tampa Bay, Florida, USA. Estuaries Coasts 2018, 41, 1496–1510. [Google Scholar] [CrossRef]
- Osland, M.J.; Grace, J.B.; Stagg, C.L.; Day, R.H.; Hartley, S.B.; Enwright, N.M.; Gabler, C.A. U.S. Gulf of Mexico Coast (TX, MS, AL, and FL) Vegetation, Soil, and Landscape Data (2013–2014); U.S. Geological Survey: Reston, VA, USA, 2016. [CrossRef]
- Osland, M.J.; Spivak, A.C.; Nestlerode, J.A.; Lessmann, J.M.; Almario, A.E.; Heitmuller, P.T.; Russell, M.J.; Krauss, K.W.; Alvarez, F.; Dantin, D.D.; et al. Ecosystem Development after Mangrove Wetland Creation: Plant-Soil Change across a 20-Year Chronosequence. Ecosystems 2012, 15, 848–866. [Google Scholar] [CrossRef]
- Geochemistry of Florida Bay Sediments: Nutrient History at Five Sites in Eastern and Central Florida Bay on JSTOR. Available online: https://www.jstor.org/stable/4299024?seq=1 (accessed on 3 June 2022).
- Marchio, D.A.; Savarese, M.; Bovard, B.; Mitsch, W.J. Carbon Sequestration and Sedimentation in Mangrove Swamps Influenced by Hydrogeomorphic Conditions and Urbanization in Southwest Florida. Forests 2016, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.A.; Dantin, D.D.; Chancy, C.A.; Abel, K.C.; Lewis, C.G. Florida Seagrass Habitat Evaluation: A Comparative Survey for Chemical Quality. Environ. Pollut. 2007, 146, 206–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grady, J.R. Properties of Sea Grass and Sand Flat Sediments from the Intertidal Zone of St. Andrew Bay, Florida. Estuaries 1981, 4, 335–344. [Google Scholar] [CrossRef]
- Gerlach, M.J.; Engelhart, S.E.; Kemp, A.C.; Moyer, R.P.; Smoak, J.M.; Bernhardt, C.E.; Cahill, N. Reconstructing Common Era Relative Sea-Level Change on the Gulf Coast of Florida. Mar. Geol. 2017, 390, 254–269. [Google Scholar] [CrossRef] [Green Version]
- Fourqurean, J.W.; Muth, M.F.; Boyer, J.N. Epiphyte Loads on Seagrasses and Microphytobenthos Abundance Are Not Reliable Indicators of Nutrient Availability in Oligotrophic Coastal Ecosystems. Mar. Pollut. Bull. 2010, 60, 971–983. [Google Scholar] [CrossRef]
- Doughty, C.L.; Langley, J.A.; Walker, W.S.; Feller, I.C.; Schaub, R.; Chapman, S.K. Mangrove Range Expansion Rapidly Increases Coastal Wetland Carbon Storage. Estuaries Coasts 2016, 39, 385–396. [Google Scholar] [CrossRef]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global Carbon Sequestration in Tidal, Saline Wetland Soils. Glob. Biogeochem. Cycles 2003, 17, 1111. [Google Scholar] [CrossRef]
- Chen, R.; Twilley, R.R. A Simulation Model of Organic Matter and Nutrient Accumulation in Mangrove Wetland Soils. Biogeochemistry 1999, 44, 93–118. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A Global Map of Mangrove Forest Soil Carbon at 30 m Spatial Resolution. Environ. Res. Lett. 2018, 13, 055002. [Google Scholar] [CrossRef]
- BURNS, S.J.; SWART, P.K. Diagenetic Processes in Holocene Carbonate Sediments: Florida Bay Mudbanks and Islands. Sedimentology 1992, 39, 285–304. [Google Scholar] [CrossRef]
- Breithaupt, J.L.; Smoak, J.M.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Moyer, R.P.; Simard, M.; Sanders, C.J. Partitioning the Relative Contributions of Organic Matter and Mineral Sediment to Accretion Rates in Carbonate Platform Mangrove Soils. Mar. Geol. 2017, 390, 170–180. [Google Scholar] [CrossRef]
- Arriola, J.M.; Cable, J.E. Variations in Carbon Burial and Sediment Accretion along a Tidal Creek in a Florida Salt Marsh. Limnol. Oceanogr. 2017, 62, S15–S28. [Google Scholar] [CrossRef]
- Noe, G.B.; Krauss, K.W.; Lockaby, B.G.; Conner, W.H.; Hupp, C.R. The Effect of Increasing Salinity and Forest Mortality on Soil Nitrogen and Phosphorus Mineralization in Tidal Freshwater Forested Wetlands. Biogeochemistry 2013, 114, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Hauke, J.; Kossowski, T. Repozytorium Uniwersytetu Im. Adama Mickiewicza (AMUR): Comparison of Values of Pearson’s and Spearman’s Correlation Coefficient on the Same Sets of Data. Available online: https://repozytorium.amu.edu.pl/handle/10593/15580 (accessed on 31 January 2022).
- Banerjee, K.; Bal, G.; Mitra, A. How Soil Texture Affects the Organic Carbon Load in the Mangrove Ecosystem? A Case Study from Bhitarkanika, Odisha. In Environmental Pollution; Springer: Singapore, 2018; pp. 329–341. [Google Scholar] [CrossRef]
- Meng, W.; Feagin, R.A.; Hu, B.; He, M.; Li, H. The Spatial Distribution of Blue Carbon in the Coastal Wetlands of China. Estuarine Coast. Shelf Sci. 2019, 222, 13–20. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon Balance in Salt Marsh and Mangrove Ecosystems: A Global Synthesis. J. Mar. Sci. Eng. 2020, 8, 767. [Google Scholar] [CrossRef]
- Data Clearinghouse | Smithsonian Environmental Research Center. Available online: https://serc.si.edu/coastalcarbon/data (accessed on 18 January 2021).
- Soil Survey Staff, Natural Resources Conservation Service, U.S. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database. Available online: https://Sdmdataaccess.Sc.Egov.Usda.Gov (accessed on 31 January 2021).
- Woolson, R.F. Wilcoxon Signed-Rank Test. In Wiley Encyclopedia of Clinical Trials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 1–3. [Google Scholar] [CrossRef]
- Zhong, B.; Xu, Y.J. Scale Effects of Geographical Soil Datasets on Soil Carbon Estimation in Louisiana, USA: A Comparison of STATSGO and SSURGO. Pedosphere 2011, 21, 491–501. [Google Scholar] [CrossRef]
- Soil Survey Technical Note 12 | NRCS Soils. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcseprd1469015 (accessed on 21 October 2021).
- Pei, L.; Ye, S.; Yuan, H.; Pei, S.; Xie, S.; Wang, J. Glomalin-Related Soil Protein Distributions in the Wetlands of the Liaohe Delta, Northeast China: Implications for Carbon Sequestration and Mineral Weathering of Coastal Wetlands. Limnol. Oceanogr. 2019, 65, 979–991. [Google Scholar] [CrossRef]
- Fisher, J.B.; Sweeney, S.; Brzostek, E.R.; Evans, T.P.; Johnson, D.J.; Myers, J.A.; Bourg, N.A.; Wolf, A.T.; Howe, R.W.; Phillips, R.P. Tree-Mycorrhizal Associations Detected Remotely from Canopy Spectral Properties. Glob. Chang. Biol. 2016, 22, 2596–2607. [Google Scholar] [CrossRef] [Green Version]
- Papenfus, M.; Schaeffer, B.; Pollard, A.I.; Loftin, K. Exploring the Potential Value of Satellite Remote Sensing to Monitor Chlorophyll-a for US Lakes and Reservoirs. Environ. Monit. Assess. 2020, 192, 808. [Google Scholar] [CrossRef]
- Sebastiá-Frasquet, M.T.; Aguilar-Maldonado, J.A.; Herrero-Durá, I.; Santamaría-Del-ángel, E.; Morell-Monzó, S.; Estornell, J. Advances in the Monitoring of Algal Blooms by Remote Sensing: A Bibliometric Analysis. Appl. Sci. 2020, 10, 7877. [Google Scholar] [CrossRef]
- Wang, H.; Piazza, S.C.; Sharp, L.A.; Stagg, C.L.; Couvillion, B.R.; Steyer, G.D.; McGinnis, T.E. Determining the Spatial Variability of Wetland Soil Bulk Density, Organic Matter, and the Conversion Factor between Organic Matter and Organic Carbon across Coastal Louisiana, USA. J. Coast. Res. 2017, 33, 507–517. [Google Scholar] [CrossRef]
- Pittman, R.; Hu, B. Estimation of soil bulk density and carbon using multi-source remotely sensed data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 541–548. [Google Scholar] [CrossRef]
- Aitkenhead, M.; Coull, M. Mapping Soil Profile Depth, Bulk Density and Carbon Stock in Scotland Using Remote Sensing and Spatial Covariates. Eur. J. Soil Sci. 2020, 71, 553–567. [Google Scholar] [CrossRef]
- Hikouei, I.S.; Kim, S.S.; Mishra, D.R. Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments. Sensors 2021, 21, 4408. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.M.; Morris, J.T. The Influence of Salinity on the Kinetics of NHinf4sup+ Uptake in Spartina Alterniflora. Oecologia 1991, 85, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Mueller, P.; Schile-Beers, L.M.; Mozdzer, T.J.; Chmura, G.L.; Dinter, T.; Kuzyakov, Y.; de Groot, A.V.; Esselink, P.; Smit, C.; D’Alpaos, A.; et al. Global-Change Effects on Early-Stage Decomposition Processes in Tidal Wetlands-Implications from a Global Survey Using Standardized Litter. Biogeosciences 2018, 15, 3189–3202. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Kroeger, K.D.; Gonneea, M.E.; Pohlman, J.W.; Tang, J. Water Salinity and Inundation Control Soil Carbon Decomposition during Salt Marsh Restoration: An Incubation Experiment. Ecol. Evol. 2019, 9, 1911–1921. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, J.L.; Mishra, D.R.; Cotten, D.L.; Wang, L.; Alber, M. The Tidal Marsh Inundation Index (TMII): An Inundation Filter to Flag Flooded Pixels and Improve MODIS Tidal Marsh Vegetation Time-Series Analysis. Remote Sens. Environ. 2017, 201, 34–46. [Google Scholar] [CrossRef]
- Narron, C.R.; O’Connell, J.L.; Mishra, D.R.; Cotten, D.L.; Hawman, P.A.; Mao, L. Flooding in Landsat across Tidal Systems (FLATS): An index for intermittent tidal filtering and frequency detection in salt marsh environments. Ecol. Indic. 2022; in press. [Google Scholar]
Covariable Type | Common Covariables | Data Source | Common Scale | Literature | Comments |
---|---|---|---|---|---|
Hyperspectral sensor bands | Visible, Near-infrared, Mid-infrared | Aerial drones, Hyperion on EO-1, PRecursore IperSpettrale della Missione Applicativa (PRISMA), and MightySat II | Usually, field scale, however sensors for regional scales are under development | [18,20,32,34,35] | Greater accuracy than multispectral data, but limited availability for time series and expensive. |
Multispectral sensor bands | Thematic bands, Visible, Near-infrared | Landsat, Sentinel, PlanetScope data, and UAS Parrot Sequoia data | Regional scale and finer | [10,14,19,25,26,28,31,32,36,37,38] | Less accurate than hyperspectral sensors but good for regional scales. Provide continuous data collection for time series analysis. |
Vegetation indices | Normalized difference vegetation index (NDVI), Wide dynamic range vegetation index (WDRVI), Soil-adjusted vegetation index (SAVI), Enhanced vegetation index | Sentinel, Landsat, and National Agriculture Imagery Program (NAIP) | Field or regional scales | [11,26,29,31,38,39] | NDVI is the most commonly used vegetative index, suitable for most study areas. SAVI is a modified vegetation index to adjust for soil pixels. WDRVI and enhanced vegetation index are more site- and need-specific. |
Climatic covariables | Normalized moisture index (NDMI), Temperature (mean annual temperature), Precipitation (mean annual precipitation) | Landsat, PRISM database, Worldclim | Field or regional scales | [24,25,27,28,30,31,36,39,40,41,42] | Temperature and precipitation control other processes such as microbial activity and redox reactions in the soil which further affect SOC. |
Topographic factors | Digital elevation model (DEM), Slope, Aspect, Relative slope position, Landform, Topographic wetness index | Numerous | Field or regional scales, depending upon spatial resolution required | [24,25,26,27,28,29,30,31,36,38,39,40] | DEM-based indices give an idea of uplands and lowlands. Slope dictates the water movement and erosion. The wetness indices represent moisture conditions influenced by topography. |
Soil factors | Soil texture, Soil type, Salinity ratio, Drainage classes, Erosional classes, Soil electrical conductivity, Redox potential, etc. | SSURGO, World reference base soils (WRB), Harmonized world soil database, etc. | Regional-scale data from data sources such as SSURGO or STTATGO Field-scale data from sources such as CBCN, NCSS, etc. | [24,26,27,29,31,38,42,43] | The proportion of sand and clay in the soil texture can influence the retention of SOC. Various soil types have inherent soil features that dictate horizon thickness, parent material, and major soil processes. Soil salinity can be a very useful covariable in wetland SOC mapping. |
SOC Depths | CBCN Data (kg/m2) | SSURGO (kg/m2) | 95% Confidence Interval (kg/m2) | p-Value |
---|---|---|---|---|
0–5 cm | 1.5 | 3.3 | 1.4–2.4 | 4.77 × 10−9 |
5–20 cm | 4.6 | 9.4 | 3.5–6.3 | 7.19 × 10−9 |
20–50 cm | 8 | 14.8 | 3.5–9.6 | 1.36 × 10−5 |
50–100 cm | 11.1 | 20.6 | 3.8–15.4 | 1.81 × 10−3 |
100–150 cm | 16.4 | 17.5 | (−15.1)–22 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, R.; Mishra, D.R.; Levi, M.R.; Sutter, L.A. Remote Sensing of Surface and Subsurface Soil Organic Carbon in Tidal Wetlands: A Review and Ideas for Future Research. Remote Sens. 2022, 14, 2940. https://doi.org/10.3390/rs14122940
Sharma R, Mishra DR, Levi MR, Sutter LA. Remote Sensing of Surface and Subsurface Soil Organic Carbon in Tidal Wetlands: A Review and Ideas for Future Research. Remote Sensing. 2022; 14(12):2940. https://doi.org/10.3390/rs14122940
Chicago/Turabian StyleSharma, Rajneesh, Deepak R. Mishra, Matthew R. Levi, and Lori A. Sutter. 2022. "Remote Sensing of Surface and Subsurface Soil Organic Carbon in Tidal Wetlands: A Review and Ideas for Future Research" Remote Sensing 14, no. 12: 2940. https://doi.org/10.3390/rs14122940
APA StyleSharma, R., Mishra, D. R., Levi, M. R., & Sutter, L. A. (2022). Remote Sensing of Surface and Subsurface Soil Organic Carbon in Tidal Wetlands: A Review and Ideas for Future Research. Remote Sensing, 14(12), 2940. https://doi.org/10.3390/rs14122940