Crustal Electrical Structure of the Ganzi Fault on the Eastern Tibetan Plateau: Implications for the Role of Fluids in Earthquakes
Abstract
:1. Introduction
2. Geological Setting
3. Magnetotelluric Data and Analysis
4. Inversion and Results
5. Discussion
5.1. Conductors in the Crust
5.2. Role of Fluids in the Genesis of Earthquakes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molnar, P.; Tapponnier, P. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zaho, X.; Liu, Z.; Lippert, P.; Graham, S.; Coe, R.; Yi, H.; Zhu, L.; Liu, S.; Li, Y. Constraints on the Early Uplift History of the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2008, 105, 4987–4992. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Burchfiel, B.C.; Royden, L.H.; Liangzhong, C.; Jishen, C.; Wenxin, L.; Zhiliang, C. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China; Geological Society of America: Boulder, CO, USA, 1998; ISBN 9780813723273. [Google Scholar]
- Wang, E.; Burchfiel, B.C. Late Cenozoic to Holocene Deformation in Southwestern Sichuan and Adjacent Yunnan, China, and Its Role in Formation of the Southeastern Part of the Tibetan Plateau. Bull. Geol. Soc. Am. 2000, 112, 413–423. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Molnar, P.; Xu, X. Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault, Northern Margin of the Tibetan Plateau. Tectonics 2007, 26, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.R.; Luo, Z.; Qian, H.; Wen, X.; Zhou, H.; Huang, W.; Zhuoli, L.; Hong, Q.; Xueze, W.; Huawei, Z.; et al. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Bull. Geol. Soc. Am. 1991, 103, 1178–1199. [Google Scholar] [CrossRef]
- Wang, S.; Fan, C.; Wang, G.; Wang, E. Late Cenozoic Deformation along the Northwestern Continuation of the Xianshuihe Fault System, Eastern Tibetan Plateau. Bull. Geol. Soc. Am. 2008, 120, 312–327. [Google Scholar] [CrossRef]
- Chevalier, M.-L.; Leloup, P.H.; Replumaz, A.; Pan, J.; Métois, M.; Li, H. Temporally Constant Slip Rate along the Ganzi Fault, NW Xianshuihe Fault System, Eastern Tibet. Bull. Geol. Soc. Am. 2017, 130, 396–410. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Shen, Z.; Wang, M.; Gan, W.; Bürgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, P.; Shen, Z.K.; Niu, Z.; Wang, M.; Wan, Y.; Zhou, D.; Cheng, J. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. J. Geophys. Res. Solid Earth 2007, 112, B08416. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Gan, W.; Shen, C.; Xiao, G.; Liu, J.; Chen, W.; Ding, X.; Zhou, D. Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements. J. Geophys. Res. Solid Earth 2013, 118, 5722–5732. [Google Scholar] [CrossRef]
- Tapponnier, P.; Peltzer, G.; le Dain, A.Y.; Armijo, R.; Cobbold, P. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology 1982, 10, 611–616. [Google Scholar] [CrossRef]
- Royden, L.H.; Burchfiel, B.C.; King, R.W.; Chen, Z.; Shen, F.; Liu, Y. Surface Deformation and Lower Crust Flow in Eastern Tibet. Science 1997, 276, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.K.; Royden, L.H. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology 2000, 28, 703–706. [Google Scholar] [CrossRef]
- Wen, X.; Xu, X.; Zheng, R.; Xie, Y.; Wan, C. Average Slip-Rate and Recent Large Earthquake Ruptures along the Garzê-Yushu Fault. Sci. China Ser. D Earth Sci. 2003, 46, 276–288. [Google Scholar] [CrossRef]
- Li, A.; Shi, F.; Yang, X.; Xu, X. Recurrence of Paleoearthquakes on the Southeastern Segment of the Ganzi-Yushu Fault, Central Tibetan Plateau. Sci. China Earth Sci. 2013, 56, 165–172. [Google Scholar] [CrossRef]
- Huang, X.; Du, Y.; He, Z.; Ma, B.; Xie, F. Late Quaternary Slip Rate of the Batang Fault and Its Strain Partitioning Role in Yushu Area, Central Tibet. Tectonophysics 2015, 653, 52–67. [Google Scholar] [CrossRef]
- Shi, F.; He, H.; Densmore, A.L.; Li, A.; Yang, X.; Xu, X. Active Tectonics of the Ganzi-Yushu Fault in the Southeastern Tibetan Plateau. Tectonophysics 2016, 676, 112–124. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, H.; Ran, Y.; Sun, X.; Su, G.; Wang, J.; Tan, X.; Li, Z.; Zhang, X. The MS7.1 Yushu Earthquake Surface Rupture and Large Historical Earthquakes on the Garzê-Yushu Fault. Chinese Sci. Bull. 2010, 55, 3504–3509. [Google Scholar] [CrossRef]
- Shan, B.; Xiong, X.; Wang, R.; Zheng, Y.; Yang, S. Coulomb Stress Evolution along Xianshuihe-Xiaojiang Fault System since 1713 and Its Interaction with Wenchuan Earthquake, May 12, 2008. Earth Planet. Sci. Lett. 2013, 377–378, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fang, X.; Zheng, D.; Wang, E. Initiation of Slip along the Xianshuihe Fault Zone, Eastern Tibet, Constrained by K/Ar and Fission-Track Ages. Int. Geol. Rev. 2009, 51, 1121–1131. [Google Scholar] [CrossRef]
- Chave, A.D.; Jones, A.G. The Magnetotelluric Method: Theory and Practice; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781139020138. [Google Scholar]
- Wannamaker, P.E.; Jiracek, G.R.; Stodt, J.A.; Caldwell, T.G.; Gonzalez, V.M.; McKnight, J.D.; Porter, A.D. Fluid Generation and Pathways beneath an Active Compressional Orogen, the New Zealand Southern Alps, Inferred from Magnetotelluric Data. J. Geophys. Res. 2002, 107, ETG 6-1–ETG 6-20. [Google Scholar] [CrossRef] [Green Version]
- Wannamaker, P.E.; Caldwell, T.G.; Jiracek, G.R.; Maris, V.; Hill, G.J.; Ogawa, Y.; Bibby, H.M.; Bennie, S.L.; Heise, W. Fluid and Deformation Regime of an Advancing Subduction System at Marlborough, New Zealand. Nature 2009, 460, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Ichiki, M.; Kanda, W.; Mishina, M.; Asamori, K. Three-Dimensional Magnetotelluric Imaging of Crustal Fluids and Seismicity around Naruko Volcano, NE Japan. Earth Planets Sp. 2014, 66, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Becken, M.; Ritter, O.; Bedrosian, P.A.; Weckmann, U. Correlation between Deep Fluids, Tremor and Creep along the Central San Andreas Fault. Nature 2011, 480, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, M.J.; Jones, A.G.; Wei, W.; Marquis, G.; Gokarn, S.G.; Spratt, J.E.; Bedrosian, P.; Booker, J.; Leshou, C.; Clarke, G.; et al. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data. Nature 2005, 438, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Chen, X.; Xu, X.; Tang, J.; Wang, L.; Guo, C.; Han, B.; Dong, Z. Rupture Mechanism and Seismotectonics of the Ms6.5 Ludian Earthquake Inferred from Three-Dimensional Magnetotelluric Imaging. Geophys. Res. Lett. 2017, 44, 1275–1285. [Google Scholar] [CrossRef]
- Zhao, G.; Unsworth, M.J.; Zhan, Y.; Wang, L.; Chen, X.; Jones, A.G.; Tang, J.; Xiao, Q.; Wang, J.; Cai, J.; et al. Crustal Structure and Rheology of the Longmenshan and Wenchuan Mw 7.9 Earthquake Epicentral Area from Magnetotelluric Data. Geology 2012, 40, 1139–1142. [Google Scholar] [CrossRef]
- Siripunvaraporn, W. Three-Dimensional Magnetotelluric Inversion: An Introductory Guide for Developers and Users. Surv. Geophys. 2012, 33, 5–27. [Google Scholar] [CrossRef]
- Robertson, K.; Thiel, S.; Meqbel, N. Quality over Quantity: On Workflow and Model Space Exploration of 3D Inversion of MT Data. Earth Planets Sp. 2020, 72, 2. [Google Scholar] [CrossRef] [Green Version]
- Meqbel, N.; Weckmann, U.; Muñoz, G.; Ritter, O. Crustal Metamorphic Fluid Flux beneath the Dead Sea Basin: Constraints from 2-D and 3-D Magnetotelluric Modelling. Geophys. J. Int. 2016, 207, 1609–1629. [Google Scholar] [CrossRef]
- Egbert, G.D.; Kelbert, A. Computational Recipes for Electromagnetic Inverse Problems. Geophys. J. Int. 2012, 189, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Siripunvaraporn, W.; Egbert, G.; Uyeshima, M. Interpretation of Two-Dimensional Magnetotelluric Profile Data with Three-Dimensional Inversion: Synthetic Examples. Geophys. J. Int. 2005, 160, 804–814. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, X.; Chen, Y.; Xue, S.; Varentsov, I.M.; Bai, D. A Plume-Modified Lithospheric Barrier to the Southeastward Flow of Partially Molten Tibetan Crust Inferred from Magnetotelluric Data. Earth Planet. Sci. Lett. 2020, 548, 116493. [Google Scholar] [CrossRef]
- Yu, N.; Unsworth, M.; Wang, X.; Li, D.; Wang, E.; Li, R.; Hu, Y.; Cai, X. New Insights Into Crustal and Mantle Flow Beneath the Red River Fault Zone and Adjacent Areas on the Southern Margin of the Tibetan Plateau Revealed by a 3-D Magnetotelluric Study. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019396. [Google Scholar] [CrossRef]
- Yu, N.; Wang, E.; Wang, X.; Kong, W.; Li, D.; Li, R. The Influence of the Ailaoshan-Red River Shear Zone on the Mineralization of the Beiya Deposit on the Southeastern Margin of the Tibetan Plateau Revealed by a 3-D Magnetotelluric Survey. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022923. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, G.; Fang, H.; Luo, W.; Zhang, W.; Zhong, Q.; Cai, X.; Luo, H. Crust and Upper Mantle Resistivity Structure at Middle Section of Longmenshan, Eastern Tibetan Plateau. Tectonophysics 2014, 619–620, 143–148. [Google Scholar] [CrossRef]
- Ye, T.; Huang, Q.; Chen, X.; Zhang, H.; Chen, Y.J.; Zhao, L.; Zhang, Y. Magma Chamber and Crustal Channel Flow Structures in the Tengchong Volcano Area From 3-D MT Inversion at the Intracontinental Block Boundary Southeast of the Tibetan Plateau. J. Geophys. Res. Solid Earth 2018, 123, 11–111. [Google Scholar] [CrossRef]
- Ye, T.; Chen, X.; Huang, Q.; Zhao, L.; Zhang, Y.; Uyeshima, M. Bifurcated Crustal Channel Flow and Seismogenic Structures of Intraplate Earthquakes in Western Yunnan, China as Revealed by Three-Dimensional Magnetotelluric Imaging. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018991. [Google Scholar] [CrossRef]
- Cheng, Y.; Tang, J.; Chen, X.; Dong, Z.; Xiao, Q.; Wang, L. Electrical Structure and Seismogenic Environment along the Border Region of Yunnan, Sichuan and Guizhou in the South of the North-South Seismic Belt. Chin. J. Geophys. 2015, 58, 3965–3981. [Google Scholar] [CrossRef]
- Cheng, Y.; Tang, J.; Cai, J.; Chen, X.; Dong, Z.; Wang, L. Deep Electrical Structure beneath the Sichuan-Yunnan Area in the Eastern Margin of the Tibetan Plateau. Chinese J. Geophys. 2017, 60, 2425–2441. [Google Scholar] [CrossRef]
- Li, X.; Bai, D.; Ma, X.; Chen, Y.; Varentsov, I.M.; Xue, G.; Xue, S.; Lozovsky, I. Electrical Resistivity Structure of the Xiaojiang Strike-Slip Fault System (SW China) and Its Tectonic Implications. J. Asian Earth Sci. 2019, 176, 57–67. [Google Scholar] [CrossRef]
- Bai, D.; Unsworth, M.J.; Meju, M.A.; Ma, X.; Teng, J.; Kong, X.; Sun, Y.; Sun, J.; Wang, L.; Jiang, C.; et al. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nat. Geosci. 2010, 3, 358–362. [Google Scholar] [CrossRef]
- Di, Q.; Xue, G.; Zeng, Q.; Wang, Z.; An, Z.; Lei, D. Magnetotelluric Exploration of Deep-Seated Gold Deposits in the Qingchengzi Orefield, Eastern Liaoning (China), Using a SEP System. Ore Geol. Rev. 2020, 122, 103501. [Google Scholar] [CrossRef]
- Gamble, T.D.; Goubau, W.M.; Clarke, J. Magnetotellurics with a Remote Magnetic Reference. Geophysics 1979, 44, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.G.; Chave, A.D.; Egbert, G.; Auld, D.; Bahr, K. A Comparison of Techniques for Magnetotelluric Response Function Estimation. J. Geophys. Res. Solid Earth 1989, 94, 14201–14213. [Google Scholar] [CrossRef]
- Caldwell, T.G.; Bibby, H.M.; Brown, C. The Magnetotelluric Phase Tensor. Geophys. J. Int. 2004, 158, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Hill, G.J.; Bibby, H.M.; Ogawa, Y.; Wallin, E.L.; Bennie, S.L.; Caldwell, T.G.; Keys, H.; Bertrand, E.A.; Heise, W. Structure of the Tongariro Volcanic System: Insights from Magnetotelluric Imaging. Earth Planet. Sci. Lett. 2015, 432, 115–125. [Google Scholar] [CrossRef]
- Egbert, G.D. Hybrid Conjugate Gradient-Occam Algorithms for Inversion of Multifrequency and Multitransmitter EM Data. Geophys. J. Int. 2012, 190, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Kelbert, A.; Meqbel, N.; Egbert, G.D.; Tandon, K. ModEM: A Modular System for Inversion of Electromagnetic Geophysical Data. Comput. Geosci. 2014, 66, 40–53. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Tian, X.; Liu, S. Magnetotelluric Evidence for Distributed Lithospheric Modification Beneath the Yinchuan-Jilantai Rift System and Its Implications for Late Cenozoic Rifting in Western North China. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022585. [Google Scholar] [CrossRef]
- Tietze, K.; Ritter, O. Three-Dimensional Magnetotelluric Inversion in Practice-the Electrical Conductivity Structure of the San Andreas Fault in Central California. Geophys. J. Int. 2013, 195, 130–147. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; van der Hilst, R.D.; Li, Y.; Yao, H.; Chen, J.; Guo, B.; Qi, S.; Wang, J.; Huang, H.; Li, S. Eastward Expansion of the Tibetan Plateau by Crustal Flow and Strain Partitioning across Faults. Nat. Geosci. 2014, 7, 361–365. [Google Scholar] [CrossRef]
- Jones, A.G. Imaging the Continental Upper Mantle Using Electromagnetic Methods. Lithos 1999, 48, 57–80. [Google Scholar] [CrossRef]
- Selway, K.; Yi, J.; Karato, S.I. Water Content of the Tanzanian Lithosphere from Magnetotelluric Data: Implications for Cratonic Growth and Stability. Earth Planet. Sci. Lett. 2014, 388, 175–186. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, S.; Zhang, H.; Li, H.; Shi, Y. 3D Thermal Structure of the Continental Lithosphere beneath China and Adjacent Regions. J. Asian Earth Sci. 2013, 62, 697–704. [Google Scholar] [CrossRef]
- Puziewicz, J.; Johannes, W. Experimental Study of a Biotite-Bearing Granitic System under Water-Saturated and Water-Undersaturated Conditions. Contrib. Mineral. Petrol. 1990, 104, 397–406. [Google Scholar] [CrossRef]
- Unsworth, M.; Bedrosian, P.A. On the Geoelectric Structure of Major Strike-Slip Faults and Shear Zones. Earth Planets Sp. 2004, 56, 1177–1184. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhan, Y.; Unsworth, M.; Egbert, G.; Zhang, H.; Chen, X.; Zhao, G.; Sun, J.; Zhao, L.; Cui, T.; et al. 3-D Magnetotelluric Imaging of the Easternmost Kunlun Fault: Insights Into Strain Partitioning and the Seismotectonics of the Jiuzhaigou Ms7.0 Earthquake. J. Geophys. Res. Solid Earth 2020, 125, 1–15. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, S.; Shi, Y.; Zhang, C.; Wang, Z.; Hu, D. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics 2019, 753, 36–48. [Google Scholar] [CrossRef]
- Zhao, L.F.; Xie, X.B.; He, J.K.; Tian, X.; Yao, Z.X. Crustal Flow Pattern beneath the Tibetan Plateau Constrained by Regional Lg-Wave Q Tomography. Earth Planet. Sci. Lett. 2013, 383, 113–122. [Google Scholar] [CrossRef]
- Roger, F.; Calassou, S.; Lancelot, J.; Malavieille, J.; Mattauer, M.; Xu, Z.; Hao, Z.; Hou, L. Miocene Emplacement and Deformation of the Konga Shan Granite (Xianshui He Fault Zone, West Sichuan, China): Geodynamic Implications. Earth Planet. Sci. Lett. 1995, 130, 201–216. [Google Scholar] [CrossRef]
- Gaillard, F.; Scaillet, B.; Pichavant, M. Evidence for Present-Day Leucogranite Pluton Growth in Tibet. Geology 2004, 32, 801–804. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Gaillard, F.; Villaros, A.; Yang, X.; Laumonier, M.; Jolivet, L.; Unsworth, M.; Hashim, L.; Scaillet, B.; Richard, G. Melting Conditions in the Modern Tibetan Crust since the Miocene. Nat. Commun. 2018, 9, 3515. [Google Scholar] [CrossRef]
- Glover, P.W.J.; Hole, M.J.; Pous, J. A Modified Archie’s Law for Two Conducting Phases. Earth Planet. Sci. Lett. 2000, 180, 369–383. [Google Scholar] [CrossRef]
- Li, S.; Unsworth, M.J.; Booker, J.R.; Wei, W.; Tan, H.; Jones, A.G. Partial Melt or Aqueous Fluid in the Mid-Crust of Southern Tibet? Constraints from INDEPTH Magnetotelluric Data. Geophys. J. Int. 2003, 153, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Enkelmann, E.; Weislogel, A.; Ratschbacher, L.; Eide, E.; Renno, A.; Wooden, J. How Was the Triassic Songpan-Ganzi Basin Filled? A Provenance Study. Tectonics 2007, 26. [Google Scholar] [CrossRef] [Green Version]
- Vry, J.K.; Storkey, A.C.; Harris, C. Role of Fluids in the Metamorphism of the Alpine Fault Zone, New Zealand. J. Metamorph. Geol. 2001, 19, 21–31. [Google Scholar] [CrossRef]
- Connolly, J.A.D.; Podladchikov, Y.Y. Fluid Flow in Compressive Tectonic Settings: Implications for Midcrustal Seismic Reflectors and Downward Fluid Migration. J. Geophys. Res. Solid Earth 2004, 109, B04201. [Google Scholar] [CrossRef]
- Chen, L.; Berntsson, F.; Zhang, Z.; Wang, P.; Wu, J.; Xu, T. Seismically Constrained Thermo-Rheological Structure of the Eastern Tibetan Margin: Implication for Lithospheric Delamination. Tectonophysics 2014, 627, 122–134. [Google Scholar] [CrossRef]
- Ogawa, Y.; Mishina, M.; Goto, T.; Satoh, H.; Oshiman, N.; Kasaya, T.; Takahashi, Y.; Nishitani, T.; Sakanaka, S.; Uyeshima, M.; et al. Magnetotelluric Imaging of Fluids in Intraplate Earthquake Zones, NE Japan Back Arc. Geophys. Res. Lett. 2001, 28, 3741–3744. [Google Scholar] [CrossRef]
- Pavan Kumar, G.; Mahesh, P.; Nagar, M.; Mahender, E.; Kumar, V.; Mohan, K.; Ravi Kumar, M. Role of Deep Crustal Fluids in the Genesis of Intraplate Earthquakes in the Kachchh Region, Northwestern India. Geophys. Res. Lett. 2017, 44, 4054–4063. [Google Scholar] [CrossRef]
- Tang, Y.; Weng, A.; Yang, Y.; Li, S.; Niu, J.; Zhang, Y.; Li, Y.; Li, J. Connection between Earthquakes and Deep Fluids Revealed by Magnetotelluric Imaging in Songyuan, China. Sci. China Earth Sci. 2021, 64, 161–176. [Google Scholar] [CrossRef]
- Li, D.; Yu, N.; Li, X.; Wang, E.; Li, R.; Wang, X. Magnetotelluric Evidence of Fluid-Related Seismicity beneath the Chuxiong Basin, SE Tibetan Plateau. Tectonophysics 2021, 816, 229039. [Google Scholar] [CrossRef]
- Chapman, T.; Milan, L.; Vry, J. The Role of Metamorphic Fluid in Tectonic Tremor Along the Alpine Fault, New Zealand. Geophys. Res. Lett. 2022, 49, e2021GL096415. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Yang, X. The Role of Fluids in the 2008 Ms8.0 Wenchuan Earthquake, China. J. Geophys. Res. Solid Earth 2021, 126, e2020JB019959. [Google Scholar] [CrossRef]
- Segall, P.; Rice, J.R. Does Shear Heating of Pore Fluid Contribute to Earthquake Nucleation? J. Geophys. Res. Solid Earth 2006, 111, B09316. [Google Scholar] [CrossRef] [Green Version]
- Gratier, J.-P.; Favreau, P.; Renard, F.; Pili, E. Fluid Pressure Evolution during the Earthquake Cycle Controlled by Fluid Flow and Pressure Solution Crack Sealing. Earth Planets Sp. 2002, 54, 1139–1146. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Kong, Y.; Wang, Z.; Huang, Y.; Hu, X. Crustal Electrical Structure of the Ganzi Fault on the Eastern Tibetan Plateau: Implications for the Role of Fluids in Earthquakes. Remote Sens. 2022, 14, 2990. https://doi.org/10.3390/rs14132990
Cheng Y, Kong Y, Wang Z, Huang Y, Hu X. Crustal Electrical Structure of the Ganzi Fault on the Eastern Tibetan Plateau: Implications for the Role of Fluids in Earthquakes. Remote Sensing. 2022; 14(13):2990. https://doi.org/10.3390/rs14132990
Chicago/Turabian StyleCheng, Yuanzhi, Yanlong Kong, Zhongxing Wang, Yonghui Huang, and Xiangyun Hu. 2022. "Crustal Electrical Structure of the Ganzi Fault on the Eastern Tibetan Plateau: Implications for the Role of Fluids in Earthquakes" Remote Sensing 14, no. 13: 2990. https://doi.org/10.3390/rs14132990
APA StyleCheng, Y., Kong, Y., Wang, Z., Huang, Y., & Hu, X. (2022). Crustal Electrical Structure of the Ganzi Fault on the Eastern Tibetan Plateau: Implications for the Role of Fluids in Earthquakes. Remote Sensing, 14(13), 2990. https://doi.org/10.3390/rs14132990