PoSDMS: A Mining System for Oceanic Dynamics with Time Series of Raster-Formatted Datasets
Abstract
:1. Introduction
- Using a scale of dynamic evolution, rather than a scale of data observation, as a unit to integrate popular mining algorithms and models, PoSDMS ensured the integrity of spatial structure, temporal evolution and thematic characteristics when dealing with oceanic dynamics.
- PoSDMS developed an automatic/semi-automatic technical workflow of obtaining oceanic dynamics knowledge from time series of raster-formatted datasets.
- Providing an analyzing platform capable of dealing with marine anomalies at a scale of dynamic evolution, PoSDMS supported data-driven mechanisms in research of marine environmental changes.
2. Process-Oriented Mining System Architecture and Key Technologies
2.1. Basic Concepts
2.2. Spatiotemporal Dynamic Mining System Architecture with Raster-Formatted Datasets
2.3. Key Technologies and Their Implementations
3. Design and Implementation of PoSDMS
3.1. Modules and Their Logics
- It offered a set of tools to deal with large amounts and types of raster-formatted datasets with different spatial resolutions and different temporal resolutions. The data formats included, but were not limited to, the common GeoTiff, NetCDF (network Common Data Form), HDF4 (Hierarchical data format), HDF5 and HFA (Erdas imagine img).
- It built a workflow through which to obtain marine anomaly variations in the form of process objects at global scale and efficiently managed them.
- It explored dynamic evolution patterns and association patterns among marine environmental parameters, which included, but were not limited to, SST, sea surface salinity, sea surface precipitation, sea level anomaly, sea surface chl_a concentration and marine primary productivity.
- It offered a flexible visualization component for the display of spatial and thematic characteristics of oceanic dynamics at a scale from process and sequence to snapshot in time, as well as their evolutionary relationships.
3.2. Module Development and Integration
3.2.1. Raster-Formatted Dataset Pretreatment Module
3.2.2. Process-Oriented Extraction Module
3.2.3. Process-Oriented Graph Database
3.2.4. Process-Oriented Clustering Module
3.2.5. Process-Oriented Association Rule Mining Module
3.2.6. System Functions of PoSDMS
4. Case Study of Dynamic Analysis of SSTA in Global Ocean
4.1. Raster-Formatted SST Dataset and Its Pretreatment
4.2. Process Objects of SSTA, Process-Oriented Graph Database and Visualization
4.3. Clustering Pattern of SSTA Evolutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBAR | Cluster-Based Association Rule |
CPU | Central Processing Unit |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
DcSTCA | Dual-constraint SpatioTemporal Clustering Approach |
DEM | Digital Elevation Model |
ENSO | El Niño–Southern Oscillation |
ESRL | Earth System Research Laboratories |
GDAL | Geospatial Data Abstraction Library |
GeoDMA | Geographic Data Mining Analyst |
GIS | Geographic Information System |
GRASS | Geographic Resources Analysis Support System |
HDF | Hierarchical Data Format |
HFA | Hierarchal File Format |
MIQarma | Mutual-Information-based Quantitative Association Rule-Mining Algorithm |
NetCDF | Network Common Data Form |
NOAA | National Oceanic and Atmospheric Administration |
OAR | Ocean Area Reconnaissance |
PDO | Pacific Decadal Oscillation |
PoAIES | Process-oriented Approach to Identify Evolution of SSTA |
PoAIR | Process-oriented Approach for Identifying Rainstorm |
PoGDB | Process-oriented Graph Database |
PO | Process object |
POID | Process Object ID |
PoSCM | Process-oriented Spatiotemporal Clustering Method |
PoSDMS | Process-oriented Spatiotemporal Dynamics Mining System |
PoTGM | Process-oriented Two-tier Graph Model |
P-V-M | Plateau-Valley-Mountain |
RSMapMinig | Image-driven Remote-Sensing Mining System |
SOID | Sequence Object ID |
SRNN | Shared Reciprocal Nearest Neighborhood |
SST | Sea Surface Temperature |
SSTA | Sea Surface Temperature Anomalies |
ST | SpatioTemporal |
WSST | Warmer Sea Surface Temperature |
References
- Yuan, M.; Mark, D.M.; Egenhofer, M.J.; Peuquet, D.J. Extensions to Geographic Representation: A Research Agenda for Geographic Information Science; CRC Press: Boca Raton, FL, USA, 2004; pp. 129–156. [Google Scholar]
- Shaw, S.-L.; Ye, X. Capturing Spatiotemporal Dynamics in Computational Modeling. In The Geographic Information Science & Technology Body of Knowledge, 1st Quarter 2019 ed.; Wilson, J.P., Ed.; UCGIS: Ithaca, NY, USA, 2019. [Google Scholar] [CrossRef]
- Yi, J.W.; Du, Y.Y.; Liang, F.Y.; Zhou, C.H.; Wu, D.; Mo, Y. A representation framework for studying spatiotemporal changes and interactions of dynamic geographic phenomena. Int. J. Geogr. Inf. Sci. 2014, 28, 1010–1027. [Google Scholar] [CrossRef]
- Wang, J.; Duckham, M.; Worboys, M. A framework for models of movement in geographic space. Int. J. Geogr. Inf. Sci. 2016, 30, 970–992. [Google Scholar] [CrossRef]
- Long, J.A.; Weibel, R.; Dodge, S.; Laube, P. Moving ahead with computational movement analysis. Int. J. Geogr. Inf. Sci. 2018, 32, 1275–1281. [Google Scholar] [CrossRef] [Green Version]
- Dodge, S.; Song, G.; Tomko, M.; Weibel, R. Progress in computational movement analysis—Towards movement data science. Int. J. Geogr. Inf. Sci. 2020, 34, 2395–2400. [Google Scholar] [CrossRef]
- Saulquin, B.; Fablet, R.; Mercier, G.; Demarcq, H.; Mangin, A.; Fantond’ Andon, O.H. Multiscale Event-Based Mining in Geophysical Time Series: Characterization and Distribution of Significant Time-Scales in the Sea Surface Temperature Anomalies Relatively to ENSO Periods from 1985 to 2009. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3543–3552. [Google Scholar] [CrossRef]
- Xue, C.J.; Song, W.J.; Qin, L.J.; Dong, Q.; Wen, X.Y. A spatiotemporal mining framework for abnormal association patterns in marine environments with a time series of remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 105–114. [Google Scholar] [CrossRef]
- Wang, H.; Du, Y.; Yi, J.; Wang, N.; Liang, F. Mining evolution patterns from complex trajectory structures—A case study of mesoscale eddies in the South China Sea. Int. J. Geo-Inf. 2020, 9, 441. [Google Scholar] [CrossRef]
- Xue, C.J.; Su, F.Z.; He, Y.W. Process: A new view of geographical spatiotemporal dynamic analysis. Adv. Earth Sci. 2022, 37, 65–79. (In Chinese) [Google Scholar]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.H.; Chen, J.M.; Liang, S.L.; Xu, B.; Shi, J.C.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Guttler, F.; Lenco, D.; Nin, J.; Teisseire, M.; Poncelet, P. A graph-based approach to detect spatiotemporal dynamics in satellite image time series. ISPRS J. Photogramm. Remote Sens. 2017, 130, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.J.; Dong, Q.; Xie, J. Marine spatio-temporal process semantics and its application-taking the El Nino Southern Oscilation process and Chinese rainfall anomaly as an example. Acta Oceanol. Sin. 2012, 31, 16–24. [Google Scholar] [CrossRef]
- Xue, C.J.; Wu, C.; Liu, J.; Su, F. A novel process-oriented graph Storage for dynamic geographic phenomena. ISPRS Int. J. Geo-Inf. 2019, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Mcphaden, M.J.; Zebia, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, M. Why are events important and how to compute them in geospatial research? J. Spat. Inf. Sci. 2020, 21, 47–61. [Google Scholar] [CrossRef]
- Liu, W.B.; Li, X.G.; Rahn, D.A. Storm event representation and analysis based on a directed spatiotemporal graph model. Int. J. Geogr. Inf. Sci. 2016, 30, 948–969. [Google Scholar] [CrossRef]
- Yu, M.; Yang, C.; Jin, B. A Framework for Natural Phenomena Movement Tracking–Using 4D Dust Simulation as an Example. Comput. Geosci. 2018, 121, 53–66. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y.; Xue, C.; Fu, Y.; Zhang, Y. A Process-Oriented Approach to Identify Evolutions of Sea Surface Temperature Anomalies with a Time-Series of a Raster Dataset. ISPRS Int. J. Geo-Inf. 2021, 10, 500. [Google Scholar] [CrossRef]
- Lo, S.H.; Chen, C.T.; Russo, S.; Huang, W.R.; Shih, M.F. Tracking heatwave extremes from an event perspective. Weather Clim. Extrem. 2021, 34, 100371. [Google Scholar] [CrossRef]
- Wu, B.; Yu, B.; Shu, S.; Wu, Q.; Zhao, Y.; Wu, J. A spatiotemporal structural graph for detecting land cover changes. Int. J. Geogr. Inf. Sci. 2021, 35, 397–425. [Google Scholar] [CrossRef]
- Gowtham, A.; Anuj, K.; Vipin, K. Spatio-Temporal Data Mining: A Survey of Problems and Methods. ACM Comput. Surv. 2018, 51, 83.1–83.41. [Google Scholar] [CrossRef]
- Khiali, L.; Ndiath, M.; Alleaume, S.; Lenco, D.; Ose, K.; Teisseire, M. Detection of spatio-temporal evolutions on multi-annual satellite image time series: A clustering-based approach. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 103–119. [Google Scholar] [CrossRef]
- Yu, M.; Bambacus, M.; Cervone, G.; Clarke, K.; Duffy, D.; Huang, Q.; Li, J.; Li, W.; Li, Z.; Liu, Q.; et al. Spatiotemporal event detection: A review. Int. J. Digit. Earth 2020, 13, 1339–1365. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Du, Y.; Yi, J.; Sun, Y.; Liang, F. A new method for measuring topological structure similarity between complex trajectories. IEEE Trans. Knowl. Data Eng. 2019, 31, 1836–1848. [Google Scholar] [CrossRef]
- Liu, J.Y.; Xue, C.J.; Dong, Q.; Wu, C.B.; Xu, Y.F. A Process-Oriented Spatiotemporal Clustering Method for Complex Trajectories of Dynamic Geographic Phenomena. IEEE Access 2019, 7, 1237–1242. [Google Scholar] [CrossRef]
- Yan, J.; Wang, L.; Song, W.; Chen, Y. A time-series classification approach based on change detection for rapid land cover mapping. ISPRS J. Photogramm. Remote Sens. 2019, 158, 249–262. [Google Scholar] [CrossRef]
- Muñoz, C.; Wang, L.P.; Willems, P. Enhanced object-based tracking algorithm for convective rainstorms and cells. Atmos. Res. 2018, 201, 144–158. [Google Scholar] [CrossRef]
- Debusscher, B.; Coillie, F.M.B.V. Object-Based Flood Analysis Using a Graph-Based Representation. Remote Sens. 2019, 11, 1883. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Guilbert, E.; Wong, M.D. Object-oriented tracking of the dynamic behavior of urban heat islands. Int. J. Geogr. Inf. Sci. 2017, 31, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.J.; Liu, J.Y.; Yang, G.H.; Wu, C.B. A process-oriented method for tracking rainstorms with a time-series of raster datasets. Appl. Sci. 2019, 9, 2468. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Du, Y.; Wang, X.; He, Z.; Zhou, C. A clustering analysis of eddies’ spatial distribution in the South China Sea. Ocean. Sci. 2013, 9, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Caron, L.P.; Boudreault, M.; Camargo, S.J. On the Variability and Predictability of Eastern Pacific Tropical Cyclone Activity. J. Clim. 2015, 28, 9678–9696. [Google Scholar] [CrossRef]
- Pampuch, L.A.; Drumon, A.; Gimeno, L.; Ambrizzi, T. Anomalous patterns of SST and moisture sources in the south atlantic ocean associated with dry events in southeastern brazil. Int. J. Climatol. 2016, 36, 4913–4928. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, M.; Tan, P.N.; Boriah, S.; Kumar, V.; Klooster, S.; Potter, C. The Application of Clustering to Earth Science Data: Progress and Challenges. In Proceedings of the 2nd NASA Data Mining Workshop, Pasadena, CA, USA, 23–24 May 2006. [Google Scholar]
- Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Kawale, J.; Liess, S.; Kumar, A.; Steinbach, M.; Ganguly, A.; Samatova, N.F.; Semazzi, F.H.M.; Snyder, P.K.; Kumar, V. Data Guided Discovery of Dynamic Climate Dipoles. In Proceedings of the NASA Conference on Intelligent Data Understanding, Mountain View, CA, USA, 19–21 October 2011; pp. 30–44. [Google Scholar]
- Liu, J.Y.; Xue, C.J.; He, Y.W.; Dong, Q.; Kong, F.P.; Hong, Y.L. Dual-constraint Spatiotemporal Clustering Approach for Exploring Marine Anomaly Patterns using Remote Sensing Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3963–3976. [Google Scholar] [CrossRef]
- Srikant, R.; Agrawal, R. Mining quantitative association rules in large relational tables. In Proceedings of the ACM SIGMOD Conference on Management of Data, Montreal, QC, Canada, 4–6 June 1996; Volume 25, pp. 1–12. [Google Scholar] [CrossRef]
- Tsay, Y.J.; Chiang, J.Y. CBAR: An efficient method for mining association rules. Knowl.-Based Syst. 2005, 18, 99–105. [Google Scholar] [CrossRef]
- Xue, C.J.; Song, W.J.; Qin, L.J.; Dong, Q. A mutual-information-based mining method for marine abnormal association rules. Comput. Geosci. 2015, 76, 121–129. [Google Scholar] [CrossRef]
- Wu, X.D.; Kumar, V.; Ross, Q.L.J.; Ghosh, J.; Yang, Q.; Motoda, H.; Mclachlan, G.J. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Lee, Y.J. A knowledge discovery framework for spatiotemporal data mining. Int. J. Inf. Process. Syst. 2006, 2, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Compieta, P.; Martino, S.D.; Bertolotto, M.; Ferrucci, F.; Kechadi, T. Exploratory spatio-temporal data mining and visualization. J. Vis. Lang. Comput. 2007, 18, 255–279. [Google Scholar] [CrossRef]
- Bertolotto, M.; Di Martino, S.; Ferrucci, F.; Kechadi, T. Towards a framework for mining and analysing spatio-temporal datasets. Int. J. Geogr. Inf. Sci. 2007, 21, 895–906. [Google Scholar] [CrossRef]
- Yoo, J.S.; Bow, M. Mining spatial colocation patterns: A different framework. Data Min. Knowl. Discov. 2012, 24, 159–194. [Google Scholar] [CrossRef]
- He, Z.; Deng, M.; Cai, J.; Xie, Z.; Guan, Q.; Yang, C. Mining spatiotemporal association patterns from complex geographic phenomena. Int. J. Geogr. Inf. Sci. 2020, 34, 1162–1187. [Google Scholar] [CrossRef]
- Zhang, F.; Mao, R.; Du, Z.; Liu, R. Spatial and Temporal Processes Visualization for Marine Environmental Data Using Particle System. Comput. Geosci. 2019, 127, 53–64. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Zhang, B.; Li, X. Development of a component-based interactive visualization system for the analysis of ocean data. Big Earth Data 2021, 1–17. [Google Scholar] [CrossRef]
- Korting, T.S.; Fonseca, L.M.G.; Camara, G. GeoDMA-Geographic Data Mining Analyst. Comput. Geosci. 2013, 57, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Pieri, G.; Cocco, M.; Salvetti, O. A marine information system for environmental monitoring: ARGO-MIS. J. Mar. Sci. Eng. 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Romani, L.A.S.; de Avila, A.M.H.; Chino, D.Y.T.; Zullo, J.; Chbeir, R.; Traina, C.; Traina, A.J.M. A New Time Series Mining Approach Applied to Multitemporal Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 140–150. [Google Scholar] [CrossRef]
- Xue, C.J.; Dong, Q.; Li, X.; Fan, X.; Li, Y.; Wu, S. A remote-sensing-driven system for mining marine spatiotemporal association patterns. Remote Sens. 2015, 7, 9149–9165. [Google Scholar] [CrossRef] [Green Version]
- Song, W.J.; Dong, Q.; XUE, C.J. A classified El Niño index using AVHRR remote-sensing SST data. Int. J. Remote Sens. 2016, 37, 403–417. [Google Scholar] [CrossRef]
- Zhao, S.; Jin, F.-F.; Stuecker, M.F. Understanding lead times of warm water volumes to ENSO sea surface temperature anomalies. Geophys. Res. Lett. 2021, 48, e2021GL094366. [Google Scholar] [CrossRef]
- Robinson, I.; Webber, J.; Eifrem, E. Graph Database, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the International Conference on Knowledge Discovery & Data Mining, Portland, OR, USA, 2–4 April 1996. [Google Scholar]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An Improved In Situ and Satellite SST Analysis for Climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Zhang, P.; Steinbach, M.; Kumar, V.; Shekhar, S.; Tan, P.-N.; Klooster, S.; Potter, C. Discovery of patterns of Earth science data using data mining. In Next Generation of Data Mining Applications; Zurada, J., Kantardzic, M., Eds.; IEEE Press: Piscataway, NJ, USA, 2005; pp. 167–188. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Xue, C.; Xu, Y.; Wu, C.; Niu, C. PoSDMS: A Mining System for Oceanic Dynamics with Time Series of Raster-Formatted Datasets. Remote Sens. 2022, 14, 2991. https://doi.org/10.3390/rs14132991
Li L, Xue C, Xu Y, Wu C, Niu C. PoSDMS: A Mining System for Oceanic Dynamics with Time Series of Raster-Formatted Datasets. Remote Sensing. 2022; 14(13):2991. https://doi.org/10.3390/rs14132991
Chicago/Turabian StyleLi, Lianwei, Cunjin Xue, Yangfeng Xu, Chengbin Wu, and Chaoran Niu. 2022. "PoSDMS: A Mining System for Oceanic Dynamics with Time Series of Raster-Formatted Datasets" Remote Sensing 14, no. 13: 2991. https://doi.org/10.3390/rs14132991
APA StyleLi, L., Xue, C., Xu, Y., Wu, C., & Niu, C. (2022). PoSDMS: A Mining System for Oceanic Dynamics with Time Series of Raster-Formatted Datasets. Remote Sensing, 14(13), 2991. https://doi.org/10.3390/rs14132991