Thermal Structure of Water Exchange at the Entrance of a Tide-Dominated Strait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Remote-Sensed SST
2.2. Satellite-Observed and Reanalyzed Winds
2.3. Cruise Observations
2.4. Numerical Modeling
2.5. T_Tide Matlab Toolbox
3. Results
3.1. Trident-Shaped SST Tongue
3.2. Validation of Model Results
3.2.1. Tidal Current
3.2.2. SST Structure
3.3. Vertical Thermal Structure
3.4. Spatiotemporal Variation
4. Discussion
4.1. Mechanism of Trident-Shaped Warm Tongue
4.2. Role of Various Winds
5. Conclusions
- (1)
- cold upwelling water at the eastern side of the QS and well-mixed warm water on the western side establish a fundamental background of thermal exchange in the studied area.
- (2)
- water temperature characterizes remarkable horizontal variation but presents minor vertical difference at the western entrance of the QS, i.e., the thermal structure could be approximately treated as a two-dimensional problem there.
- (3)
- tidal current modulated by the alternative sea trough/ridge dominates the communication of two different water bodies, leading to alternatively warm/cold thermal distribution at the western entrance of the QS.
- (4)
- wind contributes significantly to the thermal property by modifying the circulation and modulating the intensity of upwelling at the eastern side of the QS.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruno, M.; Alonso, J.J.; Cózar, A.; Vidal, J.; Ruiz-Canavate, A.; Echevarrıa, F.; Ruiz, J. The boiling-water phenomena at Camarinal Sill, the strait of Gibraltar. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 4097–4113. [Google Scholar] [CrossRef]
- Baschek, B.; Send, U.; Lafuente, J.G.; Candela, J. Transport estimates in the strait of gibraltar with a tidal inverse model. J. Geophys. Res. Atmos. 2001, 106, 31033–31044. [Google Scholar] [CrossRef] [Green Version]
- Lafuente, J.G.; Vargas, J.M.; Plaza, F.; Sarhan, T.; Candela, J.; Bascheck, B. Tide at the eastern section of the Strait of Gibraltar. J. Geophys. Res. Ocean. 2000, 105, 14197–14213. [Google Scholar] [CrossRef] [Green Version]
- Sánchez Garrido, J.C.; García Lafuente, J.; Criado Aldeanueva, F.; Baquerizo, A.; Sannino, G. Time-spatial variability observed in velocity of propagation of the internal bore in the Strait of Gibraltar. J. Geophys. Res. Ocean. 2008, 113, C7. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z. Southward internal tides in the northeastern South China Sea. J. Geophys. Res. Ocean. 2020, 125, e2020JC016554. [Google Scholar] [CrossRef]
- Qu, T.; Girton, J.B.; Whitehead, J.A. Deepwater overflow through Luzon strait. J. Geophys. Res. Ocean. 2006, 111, C1. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhou, C.; Tian, J.; Yang, Q.; Wang, B.; Xie, L.; Qu, T. Deep water circulation in the Luzon Strait. J. Geophys. Res. Ocean. 2014, 119, 790–804. [Google Scholar] [CrossRef]
- Molinari, R.L.; Morrison, J. The separation of the Yucatan Current from the Campeche Bank and the intrusion of the Loop Current into the Gulf of Mexico. J. Geophys. Res. Ocean. 1988, 93, 10645–10654. [Google Scholar] [CrossRef]
- Ochoa, J.; Sheinbaum, J.; Badan, A.; Candela, J.; Wilson, D. Geostrophy via potential vorticity inversion in the Yucatan Channel. J. Mar. Res. 2001, 59, 725–747. [Google Scholar] [CrossRef]
- Zhuk, V.R.; Kubryakov, A.A. Effect of the East Siberian Current on Water Exchange in the Bering Strait Based on Satellite Altimetry Measurements. Oceanology 2021, 61, 791–802. [Google Scholar] [CrossRef]
- Zavialov, I.; Osadchiev, A.; Sedakov, R.; Barnier, B.; Molines, J.M.; Belokopytov, V. Water exchange between the Sea of Azov and the Black Sea through the Kerch Strait. Ocean Sci. 2020, 16, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Vasou, P.; Vervatis, V.; Krokos, G.; Hoteit, I.; Sofianos, S. Variability of water exchanges through the Strait of Hormuz. Ocean Dyn. 2020, 70, 1053–1065. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Lin, X.; Yang, J. On the mechanism of the cyclonic circulation in the Gulf of Tonkin in the summer. J. Geophys. Res. Ocean. 2008, 113, C09029. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Chen, C.; Beardsley, R.C.; Bao, X.; Shi, M.; Zhang, Y.; Viet, N.T. Observational and model studies of the circulation in the Gulf of Tonkin, South China Sea. J. Geophys. Res. Ocean. 2013, 118, 6495–6510. [Google Scholar] [CrossRef] [Green Version]
- Bai, P.; Gu, Y.; Li, P.; Wu, K. Modelling the upwelling off the east Hainan Island coast in summer 2010. Chin. J. Oceanol. Limnol. 2016, 34, 1358–1373. [Google Scholar] [CrossRef]
- Bai, P.; Yang, J.; Xie, L.; Zhang, S.; Ling, Z. Effect of topography on the cold water region in the east entrance area of Qiongzhou Strait. Estuar. Coast. Shelf Sci. 2020, 242, 106820. [Google Scholar] [CrossRef]
- Zu, T.; Gan, J.; Erofeeva, S.Y. Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 137–154. [Google Scholar] [CrossRef]
- Shi, M.; Chen, C.; Xu, Q.; Lin, H.; Liu, G.; Wang, H.; Yan, J. The role of Qiongzhou Strait in the seasonal variation of the South China Sea circulation. J. Phys. Oceanogr. 2002, 32, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.G.; Liu, J.F. The system and pattern of the South China Sea circulation. Mar. Forecast. 1993, 10, 13–17. (In Chinese) [Google Scholar]
- Bao, X.W.; Hou, Y.J.; Chen, C.S.; Chen, F.; Shi, M.C. Analysis of characteristics and mechanism of current system on the west coast of Guangdong of China in summer. Acta Oceanol. Sin. 2005, 24, 1–9. [Google Scholar]
- Yang, S.Y.; Chen, B.; Li, P.L. A study of the characteristics of water transport from the South China Sea into Beibu bay via the Qiongzhou Strait in summer in terms of temperature and salinity data. Trans. Oceanol. Limnol. 2006, 1, 1–7, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yan, C.; Chen, B.; Yang, S.; Yan, J. The Transportation volume of water through the Qiongzhou Strait in winter season. Trans. Oceanol. Limnol. 2008, 1, 1–9, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, C.; Li, P.; Shi, M.; Zuo, J.; Chen, M.; Sun, H. Numerical study of the tides and residual currents in the Qiongzhou Strait. Chin. J. Oceanol. Limnol. 2009, 27, 931–942. [Google Scholar] [CrossRef]
- Zhu, X.H.; Ma, Y.L.; Guo, X.; Fan, X.; Long, Y.; Yuan, Y.; Huang, D. Tidal and residual currents in the Qiongzhou Strait estimated from shipboard ADCP data using a modified tidal harmonic analysis method. J. Geophys. Res. Ocean. 2014, 119, 8039–8060. [Google Scholar] [CrossRef]
- Gao, J.; Chen, B.; Shi, M. Summer circulation structure and formation mechanism in the Beibu Gulf. Sci. China Earth Sci. 2015, 58, 286–299. [Google Scholar] [CrossRef]
- Golubeva, E.; Kraineva, M.; Platov, G.; Iakshina, D.; Tarkhanova, M. Marine Heatwaves in Siberian Arctic Seas and Adjacent Region. Remote Sens. 2021, 13, 4436. [Google Scholar] [CrossRef]
- Kuroda, H.; Setou, T. Extensive Marine Heatwaves at the Sea Surface in the Northwestern Pacific Ocean in Summer 2021. Remote Sens. 2021, 13, 3989. [Google Scholar] [CrossRef]
- Sims, L.D.; Subrahmanyam, B.; Trott, C.B. Ocean–Atmosphere Variability in the Northwest Atlantic Ocean during Active Marine Heatwave Years. Remote Sens. 2022, 14, 2913. [Google Scholar] [CrossRef]
- Mohamed, B.; Ibrahim, O.; Nagy, H. Sea Surface Temperature Variability and Marine Heatwaves in the Black Sea. Remote Sens. 2022, 14, 2383. [Google Scholar] [CrossRef]
- Liu, B.; Guan, L.; Chen, H. Detecting 2020 Coral Bleaching Event in the Northwest Hainan Island Using CoralTemp SST and Sentinel-2B MSI Imagery. Remote Sens. 2021, 13, 4948. [Google Scholar] [CrossRef]
- Pan, Y.; Ding, D.; Li, G.; Liu, X.; Liang, J.; Wang, X.; Liu, S.; Shi, J. Potential Temporal and Spatial Trends of Oceanographic Conditions with the Bloom of Ulva Prolifera in the West of the Southern Yellow Sea. Remote Sens. 2021, 13, 4406. [Google Scholar] [CrossRef]
- Olaya, F.C.; Durazo, R.; Oerder, V.; Pallàs-Sanz, E.; Bento, J.P. Ocean Front Detection with Glider and Satellite-Derived SST Data in the Southern California Current System. Remote Sens. 2021, 13, 5032. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G.; Han, Y.; Ma, C.; Lv, M. Southwestern Atlantic Ocean Fronts Detected from Satellite-Derived SST and Chlorophyll. Remote Sens. 2021, 13, 4402. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Wang, F.; Lv, M. Weak Mesoscale Variability in the Optimum Interpolation Sea Surface Temperature (OISST)-AVHRR-Only Version 2 Data before 2007. Remote Sens. 2022, 14, 409. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Liu, S.; Wang, X.; Sun, L. The Response and Feedback of Ocean Mesoscale Eddies to Four Sequential Typhoons in 2014 Based on Multiple Satellite Observations and Argo Floats. Remote Sens. 2021, 13, 3805. [Google Scholar] [CrossRef]
- Qiao, M.; Cao, A.; Song, J.; Pan, Y.; He, H. Enhanced Turbulent Mixing in the Upper Ocean Induced by Super Typhoon Goni (2015). Remote Sens. 2022, 14, 2300. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- da Silva, A.M.; Young, C.C.; Levitus, S. Atlas of surface marine data 1994, Vol. 1: Algorithms and procedures. Noaa Atlas Nesdis 1994, 6, 20910–23282. [Google Scholar]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Su, J.; Pohlmann, T. Wind and topography influence on an upwelling system at the eastern Hainan coast. J. Geophys. Res. Ocean. 2009, 114, C06017. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.Y.; Qi, Y.Q.; Hua, Z.L.; Zhang, H. Numerical study on the summer upwelling system in the northern continental shelf of the South China Sea. Cont. Shelf Res. 2009, 29, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Peng, S.; Yang, W.; Wang, D. Numerical simulation of the structure and variation of upwelling off the east coast of Hainan Island using QuikSCAT winds. Chin. J. Oceanol. Limnol. 2012, 30, 1068–1081. [Google Scholar] [CrossRef]
- Su, J.; Xu, M.; Pohlmann, T.; Xu, D.; Wang, D. A western boundary upwelling system response to recent climate variation (1960–2006). Cont. Shelf Res. 2013, 57, 3–9. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Wang, J.; Bai, X. A modeling study of the effects of river runoff, tides, and surface wind-wave mixing on the Eastern and Western Hainan upwelling systems of the South China Sea, China. Ocean Dyn. 2015, 65, 1143–1164. [Google Scholar] [CrossRef]
- Lin, P.; Hu, J.; Zheng, Q.; Sun, Z.; Zhu, J. Observation of summertime upwelling off the eastern and northeastern coasts of Hainan Island, China. Ocean Dyn. 2016, 66, 387–399. [Google Scholar] [CrossRef]
- Lü, X.; Qiao, F.; Wang, G.; Xia, C.; Yuan, Y. Upwelling off the west coast of Hainan Island in summer: Its detection and mechanisms. Geophys. Res. Lett. 2008, 35, L02604. [Google Scholar] [CrossRef]
- Bai, P.; Yang, J.L.; Zhang, S.W.; Xie, L.L.; Wu, J.S. Upwelling off the west coast of Hainan Island: Sensitivity to wave-mixing. Acta Oceanol. Sin. 2019, 38, 11–19. [Google Scholar] [CrossRef]
- Bai, P.; Ling, Z.; Zhang, S.; Xie, L.; Yang, J. Fast-changing upwelling off the west coast of Hainan Island. Ocean Model. 2020, 148, 101589. [Google Scholar] [CrossRef]
- Hu, J.Y.; Kawamura, H.; Tang, D.L. Tidal front around the Hainan Island, northwest of the South China Sea. J. Geophys. Res. Ocean. 2003, 108, 3342. [Google Scholar] [CrossRef]
- Wu, H.; Yu, H.; Ding, J.; Yuan, D. Modeling assessment of tidal current energy in the Qiongzhou Strait, China. Acta Oceanol. Sin. 2016, 35, 21–29. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
Experiment Abbreviation | Initial Condition | Boundary Condition | Tidal Forcing | Surface Fluxes | Surface Wind Stress | Bathymetry |
---|---|---|---|---|---|---|
EXP_D45 | HYCOM | HYCOM | TPXO7 | COADS05 | Direction: 45°; Intensity: 0.035 N/m2 | GEBCO_2019 |
EXP_D0 | HYCOM | HYCOM | TPXO7 | COADS05 | Direction: 0°; Intensity: 0.035 N/m2 | GEBCO_2019 |
EXP_D315 | HYCOM | HYCOM | TPXO7 | COADS05 | Direction: 315°; Intensity: 0.035 N/m2 | GEBCO_2019 |
EXP_TOPO | HYCOM | HYCOM | TPXO7 | COADS05 | Direction: 45°; Intensity: 0.035 N/m2 | ETOPO5 |
EXP_BT | Motionless; no stratification | N/A | TPXO7 | N/A | N/A | GEBCO_2019 |
Time | Location of Vertexes * | Distance (km) | Speed (m/s) | ||||||
---|---|---|---|---|---|---|---|---|---|
1st Branch | 2nd Branch | 3rd Branch | 1st Branch | 2nd Branch | 3rd Branch | 1st Branch | 2nd Branch | 3rd Branch | |
14:25 | 109.64°E, 20.43°N | 109.59°E, 20.35°N | 109.52°E, 20.18°N | N/A | N/A | N/A | N/A | N/A | N/A |
18:12 | 109.69°E, 20.35°N | 109.66°E, 20.29°N | 109.61°E, 20.15°N | 9.31 | 9.44 | 10.42 | 0.68 | 0.69 | 0.76 |
Experiment Abbreviation | Grid Design | Initial Condition | Boundary Condition | External Forcing | |||
---|---|---|---|---|---|---|---|
Western | Eastern | Northern | Southern | ||||
EXP_ID1 | As Figure 12c | Motionless; homogeneous 29.5 °C water | 31 °C water; 1.5 m/s periodic reciprocating current | 28 °C water; 1.5 m/s periodic reciprocating current plus 0.1 m/s westward residual current | Closed | Closed | None |
EXP_ID2 | As Figure 12c | Motionless; homogeneous 29.5 °C water | 28 °C water; 1.5 m/s periodic reciprocating current | 31 °C water; 1.5 m/s periodic reciprocating current plus 0.1 m/s westward residual current | Closed | Closed | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, P.; Wang, J.; Zhao, H.; Li, B.; Yang, J.; Li, P.; Zhang, T. Thermal Structure of Water Exchange at the Entrance of a Tide-Dominated Strait. Remote Sens. 2022, 14, 3053. https://doi.org/10.3390/rs14133053
Bai P, Wang J, Zhao H, Li B, Yang J, Li P, Zhang T. Thermal Structure of Water Exchange at the Entrance of a Tide-Dominated Strait. Remote Sensing. 2022; 14(13):3053. https://doi.org/10.3390/rs14133053
Chicago/Turabian StyleBai, Peng, Jia Wang, Hui Zhao, Bo Li, Jingling Yang, Peiliang Li, and Tianyu Zhang. 2022. "Thermal Structure of Water Exchange at the Entrance of a Tide-Dominated Strait" Remote Sensing 14, no. 13: 3053. https://doi.org/10.3390/rs14133053
APA StyleBai, P., Wang, J., Zhao, H., Li, B., Yang, J., Li, P., & Zhang, T. (2022). Thermal Structure of Water Exchange at the Entrance of a Tide-Dominated Strait. Remote Sensing, 14(13), 3053. https://doi.org/10.3390/rs14133053