Comparative Analysis of Single-View and Multi-View Airborne SAR Positioning Error and Course Planning for Multi-View Airborne SAR Optimal Positioning
Abstract
:1. Introduction
2. Methodology
2.1. Analytical Expression of Single-View Airborne SAR Positioning Error
2.2. Multi-View Airborne SAR Positioning and Course Planning Analysis Method
2.2.1. Multi-View Airborne SAR Positioning Model
2.2.2. Multi-View Airborne SAR Positioning Error Transfer Model
2.2.3. Course Planning Analysis Method for Multi-View Airborne SAR Platform
3. Experiment Results and Analysis
3.1. Accuracy Verification of Multi-View Airborne SAR Positioning Error Transfer Model
3.1.1. Verification Experiment Design
- Simulated flight experiment: Add single motion error (position or velocity) to the aircraft in the imaging coordinate system, and then obtain the position and velocity of the radar antenna phase center through the simulation experiment, and complete the error locating of the target according to Equation (1). Based on the known real position of the target, we can obtain the actual target positioning error d caused by the aircraft motion error according to Equation (5).
- Positioning error transfer experiment: Under the premise of knowing the target real position and the radar antenna phase center real position, real velocity, we can convert the motion error which is added to the aircraft in the imaging coordinate system in experiment a. into the aircraft motion error which is under ECF coordinate system according to Appendix C and then put it into error transfer model. Finally, the target positioning error estimation d1 is calculated according to Equation (3).
3.1.2. Experimental Parameter Setting and Verification Results
3.2. Comparative Analysis of Single-View and Multi-View Airborne SAR Positioning Error
- (1)
- The velocity errors of aircraft in range and altitude are the main factors affecting the single-view airborne SAR positioning accuracy.
- (2)
- Dual aircraft DM velocity errors in range and altitude are the main factors affecting the positioning accuracy of the multi-view airborne SAR.
- (3)
- Dual aircraft CM position error in azimuth and CM velocity errors in range, azimuth and altitude basically do not affect the positioning accuracy of the multi-view airborne SAR.
- (4)
- Comparing (a–f) we can see that compared to the effect of single-view airborne SAR motion error on the target positioning error, the influence of aircraft motion error on the target positioning error will be suppressed when dual aircraft motion errors constitute CM motion errors, while the influence of aircraft motion error on the target positioning error will be amplified when dual aircraft motion errors constitute DM motion errors. This rule reveals the advantage of the multi-view airborne SAR positioning method compared with the single-view airborne SAR positioning method. Thus, dual aircraft of the same type are used to complete the positioning of the target in the same environment as far as possible. In this case, dual aircraft motion errors can be basically regarded as CM motion errors which will make the positioning accuracy of multi-view airborne SAR higher than that of single-view airborne SAR. If the working environment of dual aircraft is very different, dual aircraft DM motion errors are the main motion errors, which will lead to the target positioning effect of multi-view airborne SAR being inferior to that of single-view airborne SAR.
3.3. Course Planning for Multi-View Airborne SAR Optimal Positioning
3.3.1. Course Angle Optimization of Dual Aircraft
3.3.2. View Angle Optimization under Radar Antenna
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Chen, X.; Yi, T.; He, F.; He, Z.; Dong, Z. An Improved Generalized Chirp Scaling Algorithm Based on Lagrange Inversion Theorem for High-Resolution Low Frequency Synthetic Aperture Radar Imaging. Remote Sens. 2019, 11, 1874. [Google Scholar] [CrossRef] [Green Version]
- Reinisch, E.C.; Cardiff, M.; Akerley, J.; Warren, I.; Feigl, K.L. Spatio–Temporal Analysis of Deformation at San Emidio Geothermal Field, Nevada, USA Between 1992 and 2010. Remote Sens. 2019, 11, 1935. [Google Scholar] [CrossRef] [Green Version]
- Dymond, J.R.; Zörner, J.; Shepherd, J.D.; Wiser, S.K.; Pairman, D.; Sabetizade, M. Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR. Remote Sens. 2019, 11, 1911. [Google Scholar] [CrossRef] [Green Version]
- Strimbu, B.M.; Qi, C.; Sessions, J. Accurate Geo-Referencing of Trees with No or Inaccurate Terrestrial Location Devices. Remote Sens. 2019, 11, 1877. [Google Scholar] [CrossRef] [Green Version]
- Coe, D.J.; Pedlar, D.N. Target geolocation using SAR. IEE Proc.-Radar. Sonar. Navigat. 2005, 152, 35–42. [Google Scholar]
- Tannous, I.; Pikeroen, B. Parametric modeling of spaceborne SAR image geometry. Eng. Remote Sens. 1994, 60, 755–766. [Google Scholar]
- Konecny, G.; Schuhr, W. Reliability of radar image data. In Proceedings of the 16th ISPRS Congress Commission, Kyoto, Japan, 1–10 July 1988; pp. 92–102. [Google Scholar]
- Curlander, J.C. Location of Spaceborne Sar Imagery. IEEE Trans. Geosci. Remote Sens. 1982, 20, 359–364. [Google Scholar] [CrossRef]
- Curlander, J.C.; Kwok, R.; Pang, S.S. A post-processing system for automated rectification and registration of spaceborne SAR imagery. Int. J. Remote Sens. 1987, 8, 621–638. [Google Scholar] [CrossRef]
- Leberl, F.W.; Kobrick, M.; Domik, G. Mapping with aircraft and satellite radar images. Photogramm. Rec. 1985, 11, 647–665. [Google Scholar] [CrossRef]
- Zhang, Q. Research on Key Technologies of Dual Airborne SAR Stereoscopic Positioning. Master’s Thesis, Nanjing University of Science and Technology, Nanjing, China, 2019. [Google Scholar]
- Li, M. Research of Airborne High Resolution SAR Imaging and Location Techniques. Master’s Thesis, Xidian University, Xi’an, China, 2018. [Google Scholar]
- Kouba, J.; Héroux, P. Precise point positioning using IGS orbit and clock Products. GPS Solut. 2001, 5, 12–28. [Google Scholar] [CrossRef]
- Guo, Q.; Li, M. Algorithm for the Latitude and Longitude of An Arbitrary Pixel in Air-borne Strip Mode SAR Image. Mod. Radar 2007, 9, 5–8. [Google Scholar]
- Sun, W.; An, C.; Zhang, C. Range-Doppler Approach for Calibration and Location of Air-borne SAR Image. In Proceedings of the 2006 CIE International Conference on Radar, Shanghai, China, 16–19 October 2006; pp. 1–4. [Google Scholar]
- Wang, D.; Liu, A.; Xia, X. New method for airborne SAR image positioning. J. Eng. 2019, 19, 6021–6023. [Google Scholar] [CrossRef]
- Raggam, H.; Gutjahr, K.; Perko, R.; Schardt, M. Assessment of the Stereo-Radargrammetric mapping potential of TerraSAR-X multibeam spotlight Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 971–977. [Google Scholar] [CrossRef]
- Qian, L.; Sun, W.; Xiao, Y. Locating Method of Airborne Strip-Map SAR Image Without Reference Points. Radar Sci. Technol. 2008, 5, 352–355. [Google Scholar]
- Zhang, H.; Jin, G.; Xu, Q.; Deng, L. Positioning with Single SAR Image Based on DEM without Ground Control Point. J. Geomat. Sci. Technol. 2013, 30, 274–278. [Google Scholar]
- Huang, Z.; Yin, K. SAR platform positioning method based on generalized pseud-range. Electron. Meas. Technol. 2020, 43, 64–68. [Google Scholar]
- Johnsen, H.; Lauknes, L.; Guneriussen, T. Geocoding of fast-delivery ERS-l SAR image mode product using DEM data. Int. J. Remote Sens. 1995, 16, 1957–1968. [Google Scholar] [CrossRef]
- Walker, J.L. Range-Doppler Imaging of Rotating Objects. IEEE Trans. Aerosp. Electron. Syst. 1980, 16, 23–52. [Google Scholar] [CrossRef]
- Song, W.; Zhu, D.; Li, Y. Airborne Spotlight SAR Geolocation Accuracy. J. Data Acquis. Process. 2014, 29, 555–561. [Google Scholar]
- Yue, X.; Han, C. Research on the Mathematic Model of Direct Geolocation with Airborne SAR Image. In Proceedings of the 2011 International Symposium Image and Data Fusion, Tengchong, China, 9–11 August 2011; pp. 1–4. [Google Scholar]
- Leberl, F.W. Radargrammetric Image Processing; Artech House: Norwood, MA, USA, 1990; pp. 579–590. [Google Scholar]
- Kropacek, J.; Grandi, G.D.; Rauste, Y. Geo-referencing of continental-scale JERS-1 SAR mosaics based on matching homologous features with a digital elevation model: Theory and practice. Int. J. Remote Sens. 2012, 33, 2413–2433. [Google Scholar] [CrossRef]
- Pedlar, D.N.; Blake, A.P. SAR target geolocation performance. In Proceedings of the IEEE International Radar Conference, Arlington, VA, USA, 9–12 May 2005; pp. 212–216. [Google Scholar]
- Miao, H.; Wang, Y.; Zhang, B.; Huang, Q. Influence of the motion error to airborne SAR geolocation accuracy. Electron. Meas. Technol. 2007, 1, 63–67. [Google Scholar]
- Song, S.H.; Rho, S.H.; Jung, C.H.; Kwag, Y.K. Geo-location error correction for Synthetic Aperture Radar image. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3406–3409. [Google Scholar]
- Quegan, S. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. J. Atmos. Sol.-Terr. Phys. 1995, 59, 597–598. [Google Scholar] [CrossRef]
Error Pattern | Type | Location Error ∆r of Target |
---|---|---|
Position error | dxs | dxs |
dys | dys | |
dzs | ||
Velocity error | dvx | |
dvy | 0 | |
dvz |
Parameters | Value |
---|---|
Carrier frequency | 17 GHz |
Bandwidth | 80 MHz |
Platform height | 4 km |
Platform velocity | 150 m/s |
Squint angle | 0° |
Pitch angle | 53° |
Type | Longitude/(°) | Latitude/(°) | Altitude/m |
---|---|---|---|
Target | −89.9730505 | 0.0273685 | 0.00 |
Antenna 1 | −90.0000000 | 0.0273512 | 4000.00 |
Antenna 2 | −89.9730674 | 0.0545000 | 4000.00 |
Type | Longitude/(°) | Latitude/(°) | Altitude/m | d/m | d1/m | |d-d1|/m |
---|---|---|---|---|---|---|
Target | −89.9730505 | 0.0273685 | 0.00 | / | / | / |
Case1 | −89.9730553 | 0.0273685 | 1.97 | 2.39 | 2.25 | 0.14 |
Case2 | −89.9730505 | 0.0273685 | 0.00 | 0.00 | 0.00 | 0.00 |
Case3 | −89.9730503 | 0.0273678 | −3.00 | 3.00 | 3.00 | 0.00 |
Case4 | −89.9730505 | 0.0273685 | 0.00 | 0.00 | 0.00 | 0.00 |
Case5 | −89.9730505 | 0.0273685 | 0.00 | 0.00 | 0.00 | 0.00 |
Case6 | −89.9730506 | 0.0273684 | 0.00 | 0.01 | 0.00 | 0.01 |
Case7 | −89.9730563 | 0.0273721 | 0.02 | 0.65 | 0.75 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Yu, A.; Chen, X.; Wang, Z.; Dong, Z. Comparative Analysis of Single-View and Multi-View Airborne SAR Positioning Error and Course Planning for Multi-View Airborne SAR Optimal Positioning. Remote Sens. 2022, 14, 3055. https://doi.org/10.3390/rs14133055
Zhang B, Yu A, Chen X, Wang Z, Dong Z. Comparative Analysis of Single-View and Multi-View Airborne SAR Positioning Error and Course Planning for Multi-View Airborne SAR Optimal Positioning. Remote Sensing. 2022; 14(13):3055. https://doi.org/10.3390/rs14133055
Chicago/Turabian StyleZhang, Ben, Anxi Yu, Xing Chen, Zhengbin Wang, and Zhen Dong. 2022. "Comparative Analysis of Single-View and Multi-View Airborne SAR Positioning Error and Course Planning for Multi-View Airborne SAR Optimal Positioning" Remote Sensing 14, no. 13: 3055. https://doi.org/10.3390/rs14133055
APA StyleZhang, B., Yu, A., Chen, X., Wang, Z., & Dong, Z. (2022). Comparative Analysis of Single-View and Multi-View Airborne SAR Positioning Error and Course Planning for Multi-View Airborne SAR Optimal Positioning. Remote Sensing, 14(13), 3055. https://doi.org/10.3390/rs14133055