Remote Sensing and Mineralogical Analyses: A First Application to the Highly Active Hydrothermal Discharge Area of Pisciarelli in the Campi Flegrei Volcanic Field (Italy)
Abstract
:1. Introduction
2. Volcanic and Geomorphological Setting
3. Materials and Methods
3.1. Preprocessing of TLS and SfM Survey
3.2. Mineralogical Analyses
4. Results
4.1. Geomorphological Change and Geostructural Characterization
4.2. Mineralogy
5. Discussion
6. Conclusions
- (a)
- a hydrothermal steam-heated environment has preferentially developed along tectonic discontinuities favoring the hottest and acidic fluid circulation;
- (b)
- the fault and gas venting dynamics have led to the formation of disaggregated gouge zones characterized by higher possibility of fluids permeation and crystallization of soluble sulfate minerals, native sulfur and sulfides, both co-operating in a looped disaggregation process;
- (c)
- the hydrothermal alteration determines a leaching of deposits so extreme so as to leave a rigid silica amorphous matrix that has hardened the slope around the fault rocks. The rock fall and/or erosion is particularly favored in the weakened fault zones, where deeper hydrothermal facies below the water table can be exposed and supergene oxidation and erosion can deepen [20,22,25,72,73,74,83,84,85,86].
- (d)
- the association of native S, pyrite with sulfates as alunite is indicative of timely redox state and temperature variations, as well as fluid availability, with enhanced changes observed in dry vs. wet seasons, favoring oxidizing conditions [6].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosi, M.; Sbrana, A. Phlegrean Fields. Quad. Ric. Sci. 1987, 9, 175. [Google Scholar]
- Piochi, M.; Mormone, A.; Balassone, G.; Strauss, H.; Troise, C.; Natale, G.D. Native Sulfur, Sulfates and Sulfides from the Active Campi Flegrei Volcano (Southern Italy): Genetic Environments and Degassing Dynamics Revealed by Mineralogy and Isotope Geochemistry. J. Volcanol. Geotherm. Res. 2015, 304, 180–193. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; Cardellini, C.; Granieri, D.; Avino, R.; Baldini, A.; Donnini, M.; Minopoli, C. Long-Term Variations of the Campi Flegrei, Italy, Volcanic System as Revealed by the Monitoring of Hydrothermal Activity. J. Geophys. Res. Solid Earth 2010, 115, B03205. [Google Scholar] [CrossRef] [Green Version]
- Chiodini, G.; Avino, R.; Caliro, S.; Minopoli, C. Temperature and Pressure Gas Geoindicators at the Solfatara Fumaroles (Campi Flegrei). Ann. Geophys. 2011, 54, 151–160. [Google Scholar] [CrossRef]
- Chiodini, G.; Paonita, A.; Aiuppa, A.; Costa, A.; Caliro, S.; De Martino, P.; Acocella, V.; Vandemeulebrouck, J. Magmas near the Critical Degassing Pressure Drive Volcanic Unrest towards a Critical State. Nat. Commun. 2016, 7, 13712. [Google Scholar] [CrossRef] [Green Version]
- Piochi, M.; Mormone, A.; Strauss, H.; Balassone, G. The Acid Sulfate Zone and the Mineral Alteration Styles of the Roman Puteoli (Neapolitan Area, Italy): Clues on Fluid Fracturing Progression at the Campi Flegrei Volcano. Solid Earth 2019, 10, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Tamburello, G.; Caliro, S.; Chiodini, G.; Martino, P.D.; Avino, R.; Minopoli, C.; Carandente, A.; Rouwet, D.; Aiuppa, A.; Costa, A.; et al. Escalating CO2 Degassing at the Pisciarelli Fumarolic System, and Implications for the Ongoing Campi Flegrei Unrest. J. Volcanol. Geotherm. Res. 2019, 384, 151–157. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; Martino, P.D.; Avino, R.; Gherardi, F. Early Signals of New Volcanic Unrest at Campi Flegrei Caldera? Insights from Geochemical Data and Physical Simulations. Geology 2012, 40, 943–946. [Google Scholar] [CrossRef]
- Cardellini, C.; Chiodini, G.; Frondini, F.; Avino, R.; Bagnato, E.; Caliro, S.; Lelli, M.; Rosiello, A. Monitoring Diffuse Volcanic Degassing during Volcanic Unrests: The Case of Campi Flegrei (Italy). Sci. Rep. 2017, 7, 12815. [Google Scholar] [CrossRef] [Green Version]
- Bellucci Sessa, E.; Castellano, M.; Ricciolino, P. GIS Applications in Volcano Monitoring: The Study of Seismic Swarms at the Campi Flegrei Volcanic Complex, Italy. Adv. Geosci. 2021, 52, 131–144. [Google Scholar] [CrossRef]
- Gaudio, C.D.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest Episodes at Campi Flegrei: A Reconstruction of Vertical Ground Movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- Ricco, C.; Petrosino, S.; Aquino, I.; Del Gaudio, C.; Falanga, M. Some Investigations on a Possible Relationship between Ground Deformation and Seismic Activity at Campi Flegrei and Ischia Volcanic Areas (Southern Italy). Geosciences 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Browne, P.R.L. Hydrothermal Alteration in Active Geothermal Fields. Ann. Rev. Earth Planet. Sci 1978, 6, 229–250. [Google Scholar] [CrossRef]
- Chalres, R.W.; Buden, R.J.V.; Goff, F. An Interpretation of the Alteration Assemblages at Sulphur Springs, Valles Caldera, New Mexico. J. Geophys. Res. Solid Earth 1986, 91, 1887–1898. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between Volcanotectonic Settings, Ore-Fluid Compositions, and Epithermal Precious Metal Deposits. Volcan. Geotherm. Ore-Form. Fluids 2005, 10, 315–343. [Google Scholar] [CrossRef]
- Zimbelman, D.R.; Rye, R.O.; Breit, G.N. Origin of Secondary Sulfate Minerals on Active Andesitic Stratovolcanoes. Chem. Geol. 2005, 215, 37–60. [Google Scholar] [CrossRef] [Green Version]
- Hicks, W.S.; Bowman, G.M.; Fitzpatrick, R.W. Effect of Season and Landscape Position on the Aluminium Geochemistry of Tropical Acid Sulfate Soil Leachate. Soil Res. 2009, 47, 137–153. [Google Scholar] [CrossRef]
- Fedele, A.; Somma, R.; Troise, C.; Holmberg, K.; Natale, G.D.; Matano, F. Time-Lapse Landform Monitoring in the Pisciarelli (Campi Flegrei-Italy) Fumarole Field Using UAV Photogrammetry. Remote Sens. 2020, 13, 118. [Google Scholar] [CrossRef]
- Finn, C.A.; Sisson, T.W.; Deszcz-Pan, M. Aerogeophysical Measurements Reveal Collapseprone Hydrothermally Altered Zones At Mount Rainier Volcano, Washington. In Proceedings of the 14th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, Denver, CO, USA, 4–7 May 2001; Volume 409. [Google Scholar] [CrossRef]
- Heap, M.J.; Farquharson, J.I.; Baud, P.; Lavallée, Y.; Reuschlé, T. Fracture and Compaction of Andesite in a Volcanic Edifice. Bull. Volcanol. 2015, 77, 55. [Google Scholar] [CrossRef] [Green Version]
- John, D.A.; Sisson, T.W.; Breit, G.N.; Volcanology, R.R.-J. Characteristics, Extent and Origin of Hydrothermal Alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for Debris-Flow Hazards and Mineral Deposits; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- López, D.L.; Williams, S.N. Catastrophic Volcanic Collapse: Relation to Hydrothermal Processes. Science 1993, 260, 1794–1796. [Google Scholar] [CrossRef]
- Norini, G.; Bustos, E.; Arnosio, M.; Baez, W.; Zuluaga, M.C.; Roverato, M. Unusual Volcanic Instability and Sector Collapse Configuration at Chimpa Volcano, Central Andes. J. Volcanol. Geotherm. Res. 2020, 393, 106807. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Kennedy, B.M.; Villeneuve, M.C.; Cook, S.C.W.; Jolly, A.D.; Keys, H.J.R.; Leonard, G.S. Stability Assessment of the Crater Lake/Te Wai-ā-Moe Overflow Channel at Mt. Ruapehu (New Zealand), and Implications for Volcanic Lake Break-out Triggers. J. Volcanol. Geotherm. Res. 2018, 358, 31–44. [Google Scholar] [CrossRef]
- del Potro, R.; Hürlimann, M. The Decrease in the Shear Strength of Volcanic Materials with Argillic Hydrothermal Alteration, Insights from the Summit Region of Teide Stratovolcano, Tenerife. Eng. Geol. 2009, 104, 135–143. [Google Scholar] [CrossRef]
- Pola, A.; Crosta, G.B.; Fusi, N.; Castellanza, R. General Characterization of the Mechanical Behaviour of Different Volcanic Rocks with Respect to Alteration. Eng. Geol. 2014, 169, 1–13. [Google Scholar] [CrossRef]
- Kereszturi, G.; Schaefer, L.N.; Miller, C.; Mead, S. Hydrothermal Alteration on Composite Volcanoes: Mineralogy, Hyperspectral Imaging, and Aeromagnetic Study of Mt Ruapehu, New Zealand. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009270. [Google Scholar] [CrossRef]
- Capra, L. Abrupt Climatic Changes as Triggering Mechanisms of Massive Volcanic Collapses. J. Volcanol. Geotherm. Res. 2006, 155, 329–333. [Google Scholar] [CrossRef]
- Procter, J.N.; Cronin, S.J.; Zernack, A.V.; Lube, G.; Stewart, R.B.; Nemeth, K.; Keys, H. Debris Flow Evolution and the Activation of an Explosive Hydrothermal System; Te Maari, Tongariro, New Zealand. J. Volcanol. Geotherm. Res. 2014, 286, 303–316. [Google Scholar] [CrossRef]
- Mayer, K.; Scheu, B.; Yilmaz, T.I.; Montanaro, C.; Gilg, H.A.; Rott, S.; Joseph, E.P.; Dingwell, D.B. Phreatic Activity and Hydrothermal Alteration in the Valley of Desolation, Dominica, Lesser Antilles. Bull. Volcanol. 2017, 79, 82. [Google Scholar] [CrossRef]
- Pardo, N.; Cronin, S.J.; Németh, K.; Brenna, M.; Schipper, C.I.; Breard, E.; White, J.D.L.; Procter, J.; Stewart, B.; Agustín-Flores, J.; et al. Perils in Distinguishing Phreatic from Phreatomagmatic Ash; Insights into the Eruption Mechanisms of the 6 August 2012 Mt. Tongariro Eruption, New Zealand. J. Volcanol. Geotherm. Res. 2014, 286, 397–414. [Google Scholar] [CrossRef]
- Orsi, G. Volcanic and Deformation History of the Campi Flegrei Volcanic Field, Italy. In Campi Flegrei: A Restless Caldera in a Densely Populated Area; Orsi, G., D’Antonio, M., Civetta, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–53. ISBN 978-3-642-37060-1. [Google Scholar]
- Piochi, M.; Mastrolorenzo, G.; Pappalardo, L. Magma Ascent and Eruptive Processes from Textural and Compositional Features of Monte Nuovo Pyroclastic Products, Campi Flegrei, Italy. Bull. Volcanol. 2005, 67, 663–678. [Google Scholar] [CrossRef]
- Piochi, M.; Kilburn, C.R.J.; Vito, M.A.D.; Mormone, A.; Tramelli, A.; Troise, C.; Natale, G.D. The Volcanic and Geothermally Active Campi Flegrei Caldera: An Integrated Multidisciplinary Image of Its Buried Structure. Int. J. Earth Sci. 2014, 103, 401–421. [Google Scholar] [CrossRef]
- Deino, A.L.; Orsi, G.; De Vita, S.; Piochi, M. The Age of the Neapolitan Yellow Tuff Caldera-Forming Eruption (Campi Flegrei Caldera—Italy) Assessed by 40Ar/39Ar Dating Method. J. Volcanol. Geotherm. Res. 2004, 133, 157–170. [Google Scholar] [CrossRef]
- Di Vito, M.A.; Isaia, R.; Orsi, G.; Southon, J.; De Vita, S.; D’Antonio, M.; Pappalardo, L.; Piochi, M. Volcanism and Deformation since 12,000 Years at the Campi Flegrei Caldera (Italy). J. Volcanol. Geotherm. Res. 1999, 91, 221–246. [Google Scholar] [CrossRef]
- Valentino, G.M.; Cortecci, G.; Franco, E.; Stanzione, D. Chemical and Isotopic Compositions of Minerals and Waters from the Campi Flegrei Volcanic System, Naples, Italy. J. Volcanol. Geotherm. Res. 1999, 91, 329–344. [Google Scholar] [CrossRef]
- Mayer, K.; Scheu, B.; Montanaro, C.; Yilmaz, T.I.; Isaia, R.; Aßbichler, D.; Dingwell, D.B. Hydrothermal Alteration of Surficial Rocks at Solfatara (Campi Flegrei): Petrophysical Properties and Implications for Phreatic Eruption Processes. J. Volcanol. Geotherm. Res. 2016, 320, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Allard, P.; Maiorani, A.; Tedesco, D.; Cortecci, G.; Turi, B. Isotopic Study of the Origin of Sulfur and Carbon in Solfatara Fumaroles, Campi Flegrei Caldera. J. Volcanol. Geotherm. Res. 1991, 48, 139–159. [Google Scholar] [CrossRef]
- Chiodini, G.; Frondini, F.; Cardellini, C.; Granieri, D.; Marini, L.; Ventura, G. CO2 Degassing and Energy Release at Solfatara Volcano, Campi Flegrei, Italy. J. Geophys. Res. Solid Earth 2001, 106, 16213–16221. [Google Scholar] [CrossRef]
- Valentino, G.M.; Stanzione, D. Geochemical Monitoring of the Thermal Waters of the Phlegraean Fields. J. Volcanol. Geotherm. Res. 2004, 133, 261–289. [Google Scholar] [CrossRef]
- Valentino, G.M.; Stanzione, D. Source Processes of the Thermal Waters from the Phlegraean Fields (Naples, Italy) by Means of the Study of Selected Minor and Trace Elements Distribution. Chem. Geol. 2003, 194, 245–274. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Petrosino, S.; Damiano, N.; Cusano, P.; Di Vito, M.A.; de Vita, S.; Del Pezzo, E. Subsurface Structure of the Solfatara Volcano (Campi Flegrei Caldera, Italy) as Deduced from Joint Seismic-Noise Array, Volcanological and Morphostructural Analysis. Geochem. Geophys. Geosyst. 2012, 13, Q07006. [Google Scholar] [CrossRef] [Green Version]
- Isaia, R.; Di Giuseppe, M.G.; Natale, J.; Tramparulo, F.D.; Troiano, A.; Vitale, S. Volcano-Tectonic Setting of the Pisciarelli Fumarole Field, Campi Flegrei Caldera, Southern Italy: Insights Into Fluid Circulation Patterns and Hazard Scenarios. Tectonics 2021, 40, e2020TC006227. [Google Scholar] [CrossRef]
- Isaia, R.; Vitale, S.; Giuseppe, M.G.D.; Iannuzzi, E.; Tramparulo, F.D.A.; Troiano, A. Stratigraphy, Structure, and Volcano-Tectonic Evolution of Solfatara Maar-Diatreme (Campi Flegrei, Italy). GSA Bull. 2015, 127, 1485–1504. [Google Scholar] [CrossRef] [Green Version]
- Aulitto, M.; Gallo, G.; Puopolo, R.; Mormone, A.; Limauro, D.; Contursi, P.; Piochi, M.; Bartolucci, S.; Fiorentino, G. Genomic Insight of Alicyclobacillus Mali FL18 Isolated From an Arsenic-Rich Hot Spring. Front. Microbiol. 2021, 12, 669. [Google Scholar] [CrossRef]
- Pinto, G.; Ciniglia, C.; Cascone, C.; Pollio, A. Species Composition of Cyanidiales Assemblages in Pisciarelli (Campi Flegrei, Italy) and Description of Galdieria Phlegrea SP. NOV. In Algae and Cyanobacteria in Extreme Environments; Seckbach, J., Ed.; Cellular Origin, Life in Extreme Habitats and Astrobiology; Springer: Dordrecht, The Netherlands, 2007; pp. 487–502. ISBN 978-1-4020-6112-7. [Google Scholar]
- Bellucci Sessa, E.; Borriello, G.; Cirillo, F. NAPLES (moNitoring mAps of camPania voLcanoES). 2022. Available online: https://zenodo.org/communities/naples_cartografia?page=1&size=20 (accessed on 1 May 2022).
- Biagi, R.; Tassi, F.; Caliro, S.; Capecchiacci, F.; Venturi, S. Impact on Air Quality of Carbon and Sulfur Volatile Compounds Emitted from Hydrothermal Discharges: The Case Study of Pisciarelli (Campi Flegrei, South Italy). Chemosphere 2022, 297, 134166. [Google Scholar] [CrossRef] [PubMed]
- Remondino, F.; Pizzo, S.D.; Kersten, T.P.; Troisi, S. Low-Cost and Open-Source Solutions for Automated Image Orientation—A Critical Overview. In Progress in Cultural Heritage Preservation, Proceedings of the 4th International Conference, EuroMed 2012, Lemessos, Cyprus, 29 October–3 November 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7616, pp. 40–54. [Google Scholar] [CrossRef]
- Lafarge, F.; Mallet, C. Creating Large-Scale City Models from 3D-Point Clouds: A Robust Approach with Hybrid Representation. Int. J. Comput. Vis. 2012, 99, 69–85. [Google Scholar] [CrossRef]
- Haala, N.; Cramer, M.; Rothermel, M. Quality of 3D Point Clouds from Highly Overlapping UAV Imagery Semantic Segmentation of Urban Scenes View Project Quality of 3d Point Clouds from Highly Overlapping Uav Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W2, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Agisoft Metashape User Manual—Professional Edition, Version 1.7. Available online: https://www.agisoft.com/pdf/metashape-pro_1_7_en.pdf (accessed on 1 April 2022).
- Pesci, A.; Teza, G.; Kastelic, V.; Carafa, M.M.C. Resolution and Precision of Fast Long-Range Terrestrial Photogrammetric Surveying Aimed at Detecting Slope Changes. J. Surv. Eng. 2020, 146, 04020017. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV Topographic Surveys Processed with Structure-from-Motion: Ground Control Quality, Quantity and Bundle Adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Abellán, A.; Oppikofer, T.; Jaboyedoff, M.; Rosser, N.J.; Lim, M.; Lato, M.J. Terrestrial Laser Scanning of Rock Slope Instabilities. Earth Surf. Processes Landf. 2014, 39, 80–97. [Google Scholar] [CrossRef]
- Somma, R.; Caputo, T.; Carlino, S.; Troise, C.; Natale, G.D.; Matano, F.; Esposito, G.; Caccavale, M.; Iuliano, S.; Mazzola, S.; et al. Application of Laser Scanning for Monitoring Coastal Cliff Instability in the Pozzuoli Bay, Coroglio Site, Posillipo Hill, Naples. In Engineering Geology for Society and Territory—Volume 5 Urban Geology, Sustainable Planning and Landscape Exploitation; Springer: Cham, Switzerland, 2015; pp. 687–690. [Google Scholar] [CrossRef]
- Matano, F.; Pignalosa, A.; Marino, E.; Esposito, G.; Caccavale, M.; Caputo, T.; Sacchi, M.; Somma, R.; Troise, C.; Natale, G.D. Laser Scanning Application for Geostructural Analysis of Tuffaceous Coastal Cliffs: The Case of Punta Epitaffio, Pozzuoli Bay, Italy. Eur. J. Remote Sens. 2015, 48, 615–637. [Google Scholar] [CrossRef] [Green Version]
- Caputo, T.; Marino, E.; Matano, F.; Somma, R.; Troise, C.; Natale, G.D. Terrestrial Laser Scanning (TLS) Data for the Analysis of Coastal Tuff Cliff Retreat: Application to Coroglio Cliff, Naples, Italy. Ann. Geophys. 2018, 61, SE110. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Girardeau-Montaut, D. CloudCompare Version 2.6.1 User Manual. 2015. Available online: http://www.cloudcompare.org/doc/qCC/CloudCompare%20v2.6.1%20-%20User%20manual.pdf (accessed on 20 February 2022).
- Photos-Jones, E.; Christidis, G.E.; Piochi, M.; Keane, C.; Mormone, A.; Balassone, G.; Perdikatsis, V.; Leanord, A. Testing Greco-Roman Medicinal Minerals: The Case of Solfataric Alum. J. Archaeol. Sci. Rep. 2016, 10, 82–95. [Google Scholar] [CrossRef] [Green Version]
- GIS Mapping Software, Location Intelligence & Spatial Analytics|Esri. Available online: https://www.esri.com/en-us/home (accessed on 25 May 2022).
- Cai, M.; Kaiser, P.K.; Tasaka, Y.; Maejima, T.; Morioka, H.; Minami, M. Generalized Crack Initiation and Crack Damage Stress Thresholds of Brittle Rock Masses near Underground Excavations. Int. J. Rock Mech. Min. Sci. 2004, 41, 833–847. [Google Scholar] [CrossRef]
- Stoiber, R.E.; Rose, W.I. Fumarole Incrustations at Active Central American Volcanoes. Geochim. Cosmochim. Acta 1974, 38, 495–516. [Google Scholar] [CrossRef]
- Rouwet, D.; Tamburello, G.; Ricci, T.; Sciarra, A.; Capecchiacci, F.; Caliro, S. CO2 and H2S Degassing at Fangaia Mud Pool, Solfatara, Campi Flegrei (Italy): Origin and Dynamics of the Pool Basin. Minerals 2020, 10, 1051. [Google Scholar] [CrossRef]
- Pignatelli, A.; Piochi, M. Machine Learning Applied to Rock Geochemistry for Predictive Outcomes: The Neapolitan Volcanic History Case. J. Volcanol. Geotherm. Res. 2021, 415, 107254. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Chiodini, G.; Avino, R.; Brandi, G.; Caliro, S.; De Cesare, W.; Galluzzo, D.; Esposito, A.; La Rocca, A.; Lo Bascio, D.; et al. Tracking Episodes of Seismicity and Gas Transport in Campi Flegrei Caldera Through Seismic, Geophysical, and Geochemical Measurements. Seismol. Res. Lett. 2020, 92, 965–975. [Google Scholar] [CrossRef]
- Caputo, T.; Cusano, P.; Petrosino, S.; Sansivero, F.; Vilardo, G. Spectral Analysis of Ground Thermal Image Temperatures: What We Are Learning at Solfatara Volcano (Italy). Adv. Geosci. 2020, 52, 55–65. [Google Scholar] [CrossRef]
- Cusano, P.; Caputo, T.; De Lauro, E.; Falanga, M.; Petrosino, S.; Sansivero, F.; Vilardo, G. Tracking the Endogenous Dynamics of the Solfatara Volcano (Campi Flegrei, Italy) through the Analysis of Ground Thermal Image Temperatures. Atmosphere 2021, 12, 940. [Google Scholar] [CrossRef]
- Reid, M.E.; Sisson, T.W.; Brien, D.L. Volcano Collapse Promoted by Hydrothermal Alteration and Edifice Shape, Mount Rainier, Washington. Geology 2001, 29, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Ball, J.L.; Calder, E.S.; Hubbard, B.E.; Bernstein, M.L. An Assessment of Hydrothermal Alteration in the Santiaguito Lava Dome Complex, Guatemala: Implications for Dome Collapse Hazards. Bull. Volcanol. 2013, 75, 676. [Google Scholar] [CrossRef] [Green Version]
- Heap, M.J.; Baumann, T.S.; Rosas-Carbajal, M.; Komorowski, J.C.; Gilg, H.A.; Villeneuve, M.; Moretti, R.; Baud, P.; Carbillet, L.; Harnett, C.; et al. Alteration-Induced Volcano Instability at La Soufrière de Guadeloupe (Eastern Caribbean). J. Geophys. Res. Solid Earth 2021, 126, e2021JB022514. [Google Scholar] [CrossRef]
- Rye, R.O.; Bethke, P.M.; Wasserman, M.D. The Stable Isotope Geochemistry of Acid Sulfate Alteration. Econ. Geol. 1992, 87, 225–262. [Google Scholar] [CrossRef]
- Arribas, A.J. Characteristics of High-Sulfidation Epithermal Deposits, and Their Relation to Magmatic Fluid. Mineral. Assoc. Can. Short Course 1995, 23, 419–454. [Google Scholar]
- Pirajno, F.; Mao, J.; Zhang, Z.; Zhang, Z.; Chai, F. The Association of Mafic–Ultramafic Intrusions and A-Type Magmatism in the Tian Shan and Altay Orogens, NW China: Implications for Geodynamic Evolution and Potential for the Discovery of New Ore Deposits. J. Asian Earth Sci. 2008, 32, 165–183. [Google Scholar] [CrossRef]
- Smith, V.C.; Isaia, R.; Pearce, N.J.G. Tephrostratigraphy and Glass Compositions of Post-15 Kyr Campi Flegrei Eruptions: Implications for Eruption History and Chronostratigraphic Markers. Quat. Sci. Rev. 2011, 30, 3638–3660. [Google Scholar] [CrossRef]
- Forni, F.; Degruyter, W.; Bachmann, O.; De Astis, G.; Mollo, S. Long-Term Magmatic Evolution Reveals the Beginning of a New Caldera Cycle at Campi Flegrei. Sci. Adv. 2018, 4, eaat9401. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.; Rodgers, K.A.; Browne, P.R.L. The Nature and Significance of Sulphate-Rich, Aluminous Efflorescences from the Te Kopia Geothermal Field, Taupo Volcanic Zone, New Zealand. Mineral. Mag. 1999, 63, 413–419. [Google Scholar] [CrossRef]
- Fink, W.L.; Horn, K.V.; Pazour, H.A. Thermal Decomposition of Alunite1. Ind. Eng. Chem. 1931, 23, 1248–1250. [Google Scholar] [CrossRef]
- Kristóf, J.; Frost, R.; Palmer, S.; Horváth, E.; Jakab, E. Thermoanalytical Studies of Natural Potassium, Sodium and Ammonium Alunites. J. Therm. Anal. Calorim. 2010, 100, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Cox, M.E.; Browne, P. Hydrothermal Alteration Mineralogy as an Indicator of Hydrology at the Ngawha Geothermal Field, New Zealand. Geothermics 1998, 27, 259–270. [Google Scholar] [CrossRef]
- Pola, A.; Crosta, G.; Fusi, N.; Barberini, V.; Norini, G. Influence of Alteration on Physical Properties of Volcanic Rocks. Tectonophysics 2012, 566–567, 67–86. [Google Scholar] [CrossRef]
- Wyering, L.D.; Villeneuve, M.C.; Wallis, I.C.; Siratovich, P.A.; Kennedy, B.M.; Gravley, D.M.; Cant, J.L. Mechanical and Physical Properties of Hydrothermally Altered Rocks, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 2014, 288, 76–93. [Google Scholar] [CrossRef]
- Van Wyk de Vries, B.; Kerle, N.; Petley, D. Sector Collapse Forming at Casita Volcano, Nicaragua. Geology 2000, 28, 167–170. [Google Scholar] [CrossRef]
- Wong, T.; Baud, P. The Brittle-Ductile Transition in Porous Rock: A Review. J. Struct. Geol. 2012, 44, 25–53. [Google Scholar] [CrossRef]
Area | Mean (m) | St. Dev. (m) |
---|---|---|
1 | −0.0072 | −0.1016 |
2 | 0.0055 | 0.1815 |
3 | −0.0172 | 0.1586 |
4 | 0.0036 | 0.1581 |
5 | −0.0368 | 0.2089 |
6 | −0.0177 | 0.2247 |
Volume (m3) | Area (m2) | |
---|---|---|
Gain | 1.422 | 2.163 |
Loss | −4.324 | 18.245 |
Mineral | Composition |
---|---|
Alunite | KAl3(SO4)2(OH)6 |
Alunogen | Al2(SO4)3•17(H2O) |
Alum-(K) | KAl(SO4)2•12(H2O) |
Amorphous | SiO2 |
Baryte | Ba(SO4) |
Gypsum | CaSO4•2(H2O) |
Halite | NaCl |
Halotrichite | Fe++Al2(SO4)4•22(H2O) |
Illite * | (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] |
Jarosite | KFe+++3(SO4)2(OH)6 |
Kaolinite | Al2Si2O5(OH)4 |
Mascagnite | (NH4)2(SO4)4 |
Montmorillonite | (Na,Ca)0,3(Al,Mg)2Si4O10(OH)2•n(H2O) |
Opal | SiO2•nH2O |
Pickeringite | MgAl2(SO4)4•22(H2O) |
Pyrite | FeS2 |
Quartz | SiO2 |
Sulfur | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caputo, T.; Mormone, A.; Marino, E.; Balassone, G.; Piochi, M. Remote Sensing and Mineralogical Analyses: A First Application to the Highly Active Hydrothermal Discharge Area of Pisciarelli in the Campi Flegrei Volcanic Field (Italy). Remote Sens. 2022, 14, 3526. https://doi.org/10.3390/rs14153526
Caputo T, Mormone A, Marino E, Balassone G, Piochi M. Remote Sensing and Mineralogical Analyses: A First Application to the Highly Active Hydrothermal Discharge Area of Pisciarelli in the Campi Flegrei Volcanic Field (Italy). Remote Sensing. 2022; 14(15):3526. https://doi.org/10.3390/rs14153526
Chicago/Turabian StyleCaputo, Teresa, Angela Mormone, Ermanno Marino, Giuseppina Balassone, and Monica Piochi. 2022. "Remote Sensing and Mineralogical Analyses: A First Application to the Highly Active Hydrothermal Discharge Area of Pisciarelli in the Campi Flegrei Volcanic Field (Italy)" Remote Sensing 14, no. 15: 3526. https://doi.org/10.3390/rs14153526
APA StyleCaputo, T., Mormone, A., Marino, E., Balassone, G., & Piochi, M. (2022). Remote Sensing and Mineralogical Analyses: A First Application to the Highly Active Hydrothermal Discharge Area of Pisciarelli in the Campi Flegrei Volcanic Field (Italy). Remote Sensing, 14(15), 3526. https://doi.org/10.3390/rs14153526