GNSS/Accelerometer Adaptive Coupled Landslide Deformation Monitoring Technology
Abstract
:1. Introduction
2. Method
2.1. GNSS-RTK Double Difference Observation Model
2.2. Accelerometer Integration
2.3. GNSS/Accelerometer Adaptively Coupled Monitoring Algorithm
3. Experiment and Analysis
3.1. Scene 1: GNSS Signal Normally Fixed
3.2. Scene 2: GNSS Signal Blocking Unlocked
3.2.1. Scene 2.1 Base Station Outage
3.2.2. Scene 2.2 Multipath Reflection and Satellite Occlusion
3.3. Scene 3: GNSS Signal Short-Term Interruption
4. Conclusions
- (1)
- When the GNSS signal was normally locked, the accuracy was comparable to that of the coupled solution with an accelerometer, and the 3D RMS values were all within 1 cm.
- (2)
- When the GNSS signal lock was partially lost, after closed-loop correcting the raw accelerometer observation by estimating the BSE and introducing the variance inflation model, the proposed algorithm could effectively suppress the GNSS low-precision solution and more effectively restore the deformation sequence of the landslide.
- (3)
- When the GNSS was interrupted for a short time and unable to output any monitoring information, since the BSE cannot be updated by filtering, the accuracy of the results given by the accelerometer would degrade faster when the landslide was sliding than when it was stable. However, the raw observation of the accelerometer could yield the landslide motion state at a high resolution, which could perhaps be used as a real-time identification indicator for early disaster warning.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maciuk, K. Advantages of Combined Gnss Processing Involving a Limited Number of Visible Satellites. Sci. J. Sil. Univ. Technol. Ser. Transp. 2018, 98, 89–99. [Google Scholar] [CrossRef]
- Farah, A. Double-Difference Carrier-Phase Network Solution Using Nominal Gnss Constellations (Future Perception). Artif. Satell. 2008, 43, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Luo, X. GPS Stochastic Modelling: Signal Quality Measures and ARMA Processes; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Blewitt, G. Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J. Geophys. Res. Solid Earth 1989, 94, 10187–10203. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.-N.; Bock, Y. Global Positioning System Network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J. Geophys. Res. Solid Earth 1989, 94, 3949–3966. [Google Scholar] [CrossRef]
- Wang, L. A Study on Key Technology of High Precision GPS Monitoring for Geological Hazard. Acta Geod. Et Cartogr. Sin. 2015, 44, 826. [Google Scholar]
- Rodriguez, J.; Deane, E.; Hendry, M.T.; Macciotta, R.; Evans, T.; Gräpel, C.; Skirrow, R.K. Practical evaluation of single-frequency dGNSS for monitoring slow-moving landslides. Landslides 2021, 18, 3671–3684. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, Q.; Huang, G.; Jing, C.; Wang, J. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”. Acta Geod. Et Cartogr. Sin. 2019, 48, 1424–1429. [Google Scholar]
- Lau, L. Wavelet packets based denoising method for measurement domain repeat-time multipath filtering in GPS static high-precision positioning. GPS Solut. 2016, 21, 461–474. [Google Scholar] [CrossRef] [Green Version]
- Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J. Assessment of ground-based monitoring techniques applied to landslide investigations. Geomorphology 2016, 253, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Huang, D.; Ding, X.; Xiong, Y.; Zhong, P.; Li, C. On the Influence of Signal Multipath Effects in GPS Carrier Phase Surveying. Acta Geod. Et Cartogr. Sin. 2004, 210–215. [Google Scholar]
- Yan, Y.; Cui, Y.; Tian, X.; Hu, S.; Guo, J.; Wang, Z.; Yin, S.; Liao, L. Seismic signal recognition and interpretation of the 2019 “7.23” Shuicheng landslide by seismogram stations. Landslides 2020, 17, 1191–1206. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.; Sohn, H. Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements. Mech. Syst. Signal Process. 2014, 42, 194–205. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.; Koo, G.; Sohn, H. Dynamic displacement estimation by fusing biased high-sampling rate acceleration and low-sampling rate displacement measurements using two-stage Kalman estimator. Smart Struct. Syst. 2016, 17, 647–667. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.S.; Xu, Y.L.; Ding, X.L.; Dai, W.J. An integrated GPS–accelerometer data processing technique for structural deformation monitoring. J. Geod. 2006, 80, 705–719. [Google Scholar] [CrossRef]
- Dai, W.; Wu, X.; Luo, F. Integration of GPS and accelerometer for high building vibration monitoring. J. Vib. Shock 2011, 30, 223–226+249. [Google Scholar] [CrossRef]
- Smyth, A.; Wu, M. Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring. Mech. Syst. Signal Process. 2007, 21, 706–723. [Google Scholar] [CrossRef]
- Meng, X.; Nguyen, D.T.; Xie, Y.; Owen, J.S.; Psimoulis, P.; Ince, S.; Chen, Q.; Ye, J.; Bhatia, P. Design and Implementation of a New System for Large Bridge Monitoring-GeoSHM. Sensors 2018, 18, 775. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Nguyen, D.T.; Owen, J.S.; Xie, Y.; Psimoulis, P.; Ye, G. Application of GeoSHM System in Monitoring Extreme Wind Events at the Forth Road Bridge. Remote Sens. 2019, 11, 2799. [Google Scholar] [CrossRef] [Green Version]
- Bock, Y.; Melgar, D.; Crowell, B.W. Real-Time Strong-Motion Broadband Displacements from Collocated GPS and Accelerometers. Bull. Seismol. Soc. Am. 2011, 101, 2904–2925. [Google Scholar] [CrossRef]
- Wang, R.; Schurr, B.; Milkereit, C.; Shao, Z.; Jin, M. An Improved Automatic Scheme for Empirical Baseline Correction of Digital Strong-Motion Records. Bull. Seismol. Soc. Am. 2011, 101, 2029–2044. [Google Scholar] [CrossRef]
- Wang, R.; Parolai, S.; Ge, M.; Jin, M.; Walter, T.R.; Zschau, J. The 2011 Mw 9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data. Bull. Seismol. Soc. Am. 2013, 103, 1336–1347. [Google Scholar] [CrossRef]
- Geng, J.; Bock, Y.; Melgar, D.; Crowell, B.W.; Haase, J.S. A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm: Implications for earthquake early warning. Geochem. Geophys. Geosyst. 2013, 14, 2124–2142. [Google Scholar] [CrossRef]
- Xin, S.; Geng, J.; Zeng, R.; Zhang, Q.; Ortega-Culaciati, F.; Wang, T. In-situ real-time seismogeodesy by integrating multi-GNSS and accelerometers. Measurement 2021, 179, 109453. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Li, X.; Zhang, G.; Guan, J.; Tu, R. Dynamic and real time deformation monitoring of landslide with gps-rtk technology. J. Eng. Geol. 2011, 19, 193–198. [Google Scholar]
- Xu, Q.; Zeng, Y.; Qian, J.; Wang, C.; He, C. Study on a improved tangential angle and the corresponding landslide prewarning criteria. Geol. Bull. China 2009, 28, 5. [Google Scholar] [CrossRef]
- Odolinski, R.; Teunissen, P.J.G.; Odijk, D. Combined GPS + BDS for short to long baseline RTK positioning. Meas. Sci. Technol. 2015, 26, 045801. [Google Scholar] [CrossRef]
- Yuan, Y.; Mi, X.; Zhang, B. Initial assessment of single- and dual-frequency BDS-3 RTK positioning. Satell. Navig. 2020, 1, 31. [Google Scholar] [CrossRef]
- Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In International Symposium on GPS/GNSS; International Convention Center: Jeju, Korea, 2009; Volume 1. [Google Scholar]
- El-Sheimy, N.; Hou, H.; Niu, X. Analysis and Modeling of Inertial Sensors Using Allan Variance. IEEE Trans. Instrum. Meas. 2008, 57, 140–149. [Google Scholar] [CrossRef]
- Yang, Y.; Song, L.; Xu, T. Robust Parameter Eastimation for Geodetic Correlated Observations. Acta Geod. Et Cartogr. Sin. 2002, 31, 95–99. [Google Scholar]
- Huber, P.J. Robust Estimation of a Location Parameter; Springer: New York, NY, USA, 1992; pp. 492–518. [Google Scholar] [CrossRef]
- Yang, Y. Robust LS Estimation for Classical Adjustment Models. J. Geomat. Sci. Technol. 1994, 2, 77–82. [Google Scholar]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. J Geod. 1995, 70, 65–82. [Google Scholar] [CrossRef]
- Liang, Z.; Hanfeng, L.; Dingjie, W.; Yanqing, H.; Jie, W. Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output. J Geod. 2015, 89, 641–653. [Google Scholar] [CrossRef]
- Du, Y.; Huang, G.; Zhang, Q.; Gao, Y.; Gao, Y. A New Asynchronous RTK Method to Mitigate Base Station Observation Outages. Sensors 2019, 19, 3376. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Huang, G.; Zhang, Q.; Tu, R.; Du, Y.; Wang, X. A New Azimuth-Dependent Elevation Weight (ADEW) Model for Real-Time Deformation Monitoring in Complex Environment by Multi-GNSS. Sensors 2018, 18, 2473. [Google Scholar] [CrossRef] [Green Version]
Indicator Entry | Technical Indicators |
---|---|
Channels | ≥3(E-W, N-S, U-D) |
Range | −19.6 m/s2~19.6 m/s2 (E-W and N-S); −29.6 m/s2~9.8 m/s2 (U-D); |
Dynamic range | 80 dB (0.1 Hz~20 Hz) |
Measurement error | <5% (0.1 Hz~20 Hz) |
Frequency band | Low-frequency cutoff frequency: ≤0.01 Hz (−3 dB) High-frequency cutoff frequency: ≥40 Hz (−3 dB, sampling rate 100 sps) |
Linearity error | <1% |
E Axis | N Axis | U Axis | |
---|---|---|---|
Acceleration random walk coefficient | 4.54 × 10−5 | 2.94 × 10−5 | 2.05 × 10−5 |
Static/Dynamic | Time Period | Deformation |
---|---|---|
Static period | 11:18:20–11:25:00 UTC+ 08:00 (SOW 98,300–98,700 s) | NULL |
Dynamic period | 11:41:40–11:43:20 UTC+ 08:00 (SOW 99,700–99,800 s) | Swipe east about 19.5 cm |
RMS_E | RMS_N | RMS_U | |
---|---|---|---|
GNSS/accelerometer Coupled | 0.11 | 0.33 | 0.30 |
GNSS | 0.12 | 0.34 | 0.33 |
GNSS Anomalies | Period Index | Time Period | Deformation |
---|---|---|---|
Base station outage | Period 1 (stabilization) | 11:05:00–11:05:50 UTC + 08:00 (SOW 97,500–97,550 s) | NULL |
Period 2 (Sliding) | 11:31:40–11:33:20 UTC + 08:00 (SOW 98,300–98,700 s) | Swipe south about 20.0 cm Keep for about 25 s | |
Multi-path diffraction | Period 3 (stabilization) | 11:10:00–11:12:30 UTC + 08:00 (SOW 97,800–97,950 s) | NULL |
Period 4 (Sliding) | 11:41:40–11:43:20 UTC + 08:00 (SOW 99,700–99,800 s) | Swipe east about 19.5 cm Keep for about 30 s |
GNSS Base Station Outage Duration | RMS_E | RMS_N | RMS_U |
---|---|---|---|
5 s | 0.08 | 0.02 | 0.11 |
10 s | 0.08 | 0.01 | 0.43 |
15 s | 0.04 | 0.10 | 0.65 |
20 s | 0.06 | 0.12 | 1.14 |
25 s * | 0.48 | 0.16 | 5.97 |
Duration of Satellite Occlusion | RMS_E | RMS_N | RMS_U |
---|---|---|---|
5 s * | 0.82 | 0.15 | 0.34 |
10 s | 1.21 | 0.31 | 0.58 |
15 s | 1.83 | 0.31 | 0.85 |
20 s | 3.09 | 0.39 | 1.14 |
Period Index | Time | Simulated Landslide Deformation |
---|---|---|
Period 1 (Stability) | 11:05:00–11:05:50 GMT + 08:00 (SOW 97,500–97,950 s) | NULL |
Period 2 (Sliding) | 11:35:00–11:36:40 GMT + 08:00 (SOW 99,300–99,400 s) | Swipe north about 32.4 cm |
GNSS Interruption Duration | RMS_E | RMS_N | RMS_U |
---|---|---|---|
5 s | 0.24 | 0.02 | 0.05 |
10 s | 0.61 | 0.24 | 0.25 |
15 s | 0.92 | 0.92 | 0.60 |
20 s | 1.11 | 1.82 | 1.04 |
GNSS Interruption Duration | RMS_E | RMS_N | RMS_U |
---|---|---|---|
5 s | 1.08 | 1.27 | 0.57 |
10 s | 4.10 | 6.84 | 2.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, C.; Huang, G.; Zhang, Q.; Li, X.; Bai, Z.; Du, Y. GNSS/Accelerometer Adaptive Coupled Landslide Deformation Monitoring Technology. Remote Sens. 2022, 14, 3537. https://doi.org/10.3390/rs14153537
Jing C, Huang G, Zhang Q, Li X, Bai Z, Du Y. GNSS/Accelerometer Adaptive Coupled Landslide Deformation Monitoring Technology. Remote Sensing. 2022; 14(15):3537. https://doi.org/10.3390/rs14153537
Chicago/Turabian StyleJing, Ce, Guanwen Huang, Qin Zhang, Xin Li, Zhengwei Bai, and Yuan Du. 2022. "GNSS/Accelerometer Adaptive Coupled Landslide Deformation Monitoring Technology" Remote Sensing 14, no. 15: 3537. https://doi.org/10.3390/rs14153537
APA StyleJing, C., Huang, G., Zhang, Q., Li, X., Bai, Z., & Du, Y. (2022). GNSS/Accelerometer Adaptive Coupled Landslide Deformation Monitoring Technology. Remote Sensing, 14(15), 3537. https://doi.org/10.3390/rs14153537